PHYS:5905 Homework #10a

Please submit your solutions as a single PDF file with answers to the questions asked.
Please complete required problems before lecture on Tuesday, April 9, 2019.

The following exercises may be completed in either C or Fortran.

1. Hello World in Parallel
Write a parallel version of the “Hello World” program using MPI and run it to observe the output.
The basic elements of this simple program are: initialize MPI, determine the number of each processor
and total number of processors, have each process write out the message “Hello World. I am processor
3 of 4 processors” to the screen (standard output), and finalize MPI. Run the program interactively
using 16 processors to observe the output.

(a) (Return) In what order do the messages appear on the screen?

(b) (Return) Modify the program using the appropriate logic and MPIT calls to ensure that the mes-
sages on the screen appear in order. Explain your strategy to accomplish ordered output?

2. Monte Carlo Determination of the Value of =
Using the Monte Carlo method of numerical integration, determine the value of 7. This is accomplished
by choosing N random points within a box —1 <2 <1 and —1 <y < 1, and calculating the integral
using
™= 4ﬁ

N
where n is the number of the random points that fall within a circle of radius r = 1.

(a) First, write a serial code that calculates this value of .

(b) Next, use MPI to make the code parallel and verify that it gives you the same results. (Keep the
working serial version intact for the next step).

(c) (Return) Calculate the time it takes to perform this calculation with N = 10® points using 1, 2,
4, 8, and 16 processors. I suggest using the MPI_WTime call to calculate the CPU time on each
processor (see HYDRO for an example of how to use this call), but you are free to use other C
or Fortran calls to calculate the CPU time, or use the unix command time before the run, for
example,
time ./mc_pi
Note that not all of the methods will work on every architecture (although MPI_WTime should),
so it is worthwhile testing the timing calls to be sure they give an acceptable output before com-
mitting to one approach. Produce a plot of the calculation time ¢ vs. number of processors 7p,oc.
Find the slope of this plot.

NOTE: Consider whether or not you want to include the initialization time in these performance
tests.



3. (Optional) Write a code that sets a real variable on each of N processors equal to the MPI rank (Task
ID) of the task. Then write your own routine to perform a reduction operation over all processors to
sum the values using only MPI_Send and MPI_Recv calls. Do this global reduction operation using the
following communication algorithms:

(a) Communications in a ring.

(b) Hypercube communications.

Put in timing calls using MPI_WTime (see HYDRO for an example of how to use this call) to test the timing
of your routines compared to using the MPI routine MPI_Allreduce.to do the same computation.

4. (Optional) Array Processing Using a Master-Slave Strategy:
Consider a problem where you have a very large N x N array of data, where N = 65536, and you
want to perform the same computation on each element of the array. Take the initial conditions of the
array such that A;; = real(i)*real(j). The operation to perform on each element is the function
f(z) = /x. After the operation has been performed on all array elements, we want to calculate the
sum of all of the array elements.

(a) First, write a serial code that calculates one element at a time in sequential order. Try looping
through the two dimensions in different orders (row major vs. column major) to see if it changes
the computation time. Why might different orders take different wallclock times?

(b) Next, write a parallel code using a Master-Slave scheme where the Master initializes the array,
distributes chunks of the array to the slave workers to do the computation, and then gathers the
computed data to ultimately produce the sum. Consider the following issues when writing this
parallel code:

i. Should the Master keep part of the array to do some of the computation itself?

ii. How should you decompose the array to send it to different processors? Consider the answer
to the question in the serial part of this problem.

iii. How will you achieve a load balance between processors?



