
PHYS:5905 Homework #5a
Please submit your solutions as a single PDF file with answers to the questions asked.
Please complete required problems before lecture on Thursday, February 21, 2019.

1. (Required) Small-Angle Collision Scattering Routine

(a) Write a routine the performs elastic small-angle collisions of angle θ, normally distributed with a
small-angle variance σ(θ).

(b) This routine will take an initial velocity vector vi and scatter it away from that angle by a small θ
with a random azimuthal angle φ about the original vector. Let us take our initial velocity vector
to be v′

i = v′
0
x̂, where v′

0
= 1.

(c) To accomplish this small-angle scattering, use the following steps:

i. First, we rotate the velocity vector vi to the z-axis, here denoted vinc. This can be done
by computing the direction of the velocity vi in spherical coordinates using the Cartesian to
Spherical coordinate function,
[phi1,elev1,vmag]=cart2sph(y0(4),y0(5),y0(6));

where y0 =[x y z vx vy vz] is row vector with the initial position and velocity, the az-
imuthal angle phi1 ranges over [−π, π] and the elevation elev1 ranges over [−π/2, π/2].
If we rotate our vector about z by -phi1 and then about y by minus the polar angle
−θ1 =elev1−π/2, then our vector will be aligned with z. (Verify this before moving on.)

ii. Next, we obtain a scattering through an angle θ by rotating first about the y-axis by the
angle θ using a rotation matrix

R1 =

cos(θ) 0 sin(θ)
0 1 0

− sin(θ) 0 cos(θ)

 (1)

We also need to allow for a rotation by φ about the z-axis using

R2 =

cos(φ) − sin(φ) 0
sin(φ) cos(φ) 0

0 0 1

 (2)

Using these rotation matrices, the scattered vector vscat = R2R1vinc

NOTE: The usual convention for rotation matrices is for a rotation of the coordinate system

by angle φ. In a fixed coordinate system, the same rotation matrix will yield rotation of the
vector by angle −φ, which is why the negative signs in the matrices above may be opposite
from where you are used to seeing them.

iii. We can model small angle collisions by using normally distributed random numbers, using
the Matlab function randn, to determine the angle θ with some small typical variance σ(θ)
of the distribution. Thus, you can use
the=randn*sigmatheta;

to compute θ over a range with a variance σ(θ) = π/18.

iv. The azimuthal angle φ of the scattering is a randomly selected value with uniform probablity
in the range 0 ≤ φ ≤ 2π , using
phi=rand*2*pi;

v. Finally, we perform the reverse steps of the original rotation, first −θ1 about y followed by
+phi1 about z.

(d) (Return) Perform the scattering ncoll = 1000 times, plotting in 3D using plot3 the track of the
tip of the velocity vector (vx, vy, vz) at each scattering for σ(θ) = π/18. Use
axis([-1. 1. -1. 1. -1. 1.]);

to ensure that the entire unit sphere is included in the plot dimensions.

(e) (Return) Produce another 3D plot using a smaller scattering angle variance, σ(θ) = π/180.

1

2. (Required) Implementation of Monte Carlo Collisions

(a) For electron single-particle motion and confinement in a magnetic mirror configuration, we will
implement a collision model for electron-ion collisions with mi ≫ me, such that the electrons
exchange no energy with the massive ions, but rather simply have a change in the direction of the
velocity.

(b) We will take a velocity-independent collision operator with a small collision frequency ν such that
ν/Ω ≪ 1. In this limit, collisions are a Poisson process with a probability for a collision in a
timestep ∆t given by

Pcoll = ν∆t ≪ 1 (3)

(c) Because a collision in this limit changes the velocity of the particle discontinuously (while con-
serving kinetic energy), the implementation of a higher order stepping scheme that depends on
derivatives at previous timesteps is problematic. (Can you discern what the problem may be?).
Therefore, I recommend you use Runge-Kutta timestepping since it depends only on the current
timestep values to advance the particles.

(d) Since the probability of a collision during one timestep is low, ν∆t ≪ 1, we can achieve significant
computational savings by only checking to see if a collision occurs at regular intervals T (which
may be longer than a single timestep T > ∆t, as long as νT ≪ 1).

(e) You are free to implement your Monte Carlo Collision operator as you see fit, but I can recommend
this approach:

i. Integrate over a short interval of time T using the RK45 Adaptive Timestepping algorithm
using a relative tolerance
options = odeset(’RelTol’,1.0e-3);

ii. At the end of each interval T , check to see if the particle has escaped the magnetic mirror
(with |z| > L/2, where L is the length between field maxima along the mirror axis). If the
particle has escaped, save the time at which the particle escaped as τ and exit the time
integration of the particle motion. This time τ is a measure of the confinement time in the
magnetic mirror.

iii. At the end of each interval T , check to see if a collision has occurred.

iv. If the collision has occurred, rotate the velocity vector of the particle by a small angle collision
with variance σ(θ) = π/18 (use results of previous problem).

v. Integrate over the next short interval of time T using the RK45 Adaptive Timestepping
algorithm, and repeat the steps above.

vi. Stop the time integration at Tend if the particle has not yet escaped.

(f) Set up a magnetic mirror with the parameters: mirror length L′ = 10, minimum axial field value
B′

00
= 10 and mirror ratio Rm = 4.

(g) Choose an initial position x0/rL = (0, 0, 0), and an initial velocity v0/v⊥ = (0, 1, 1) for the
electron for each run of the ensemble. You may want to limit the total integration time for each
run to ΩTend = 100π and choose the collision check interval T = Tend/5000.

(h) Run an ensemble of runs with different collisionalities over the range 0.001 ≤ ν/Ω ≤ 1 with at
least 4 different collisionalities to sample the range. Note that, for the lowest collisionality values,
the particles may not escape before Tend, but over a sufficiently large ensemble, you should see
that the mean confinement time has a dependence on the collisionality.

(i) For each choice of collisionality, run at least 8 single-particle motion (with Monte Carlo collisions)
runs to obtain good statistics for the confinement time τ .

(j) (Return) Produce a plot of mean confinement time 〈τ〉 with error bars giving the standard de-
viation σ(τ) vs. the normalized collision frequency ν/Ω. You will likely want to use the Matlab
plotting function errorbar to make this plot.

(k) (Return) Produce a plot of the position of the particle in (v‖, v⊥) space (relative to local mean
magnetic field) at the point in time at which the particle is lost. The best way to do this is to
write a function that inputs the vector y0 and returns vpar and vperp.

(l) (Optional) Plot the mean and standard deviation (errorbar plot) of the number of collisions as
a function of normalized collision frequency ν/Ω.

2

