
Introduction to
High Performance Computing

Gregory G. Howes
Department of Physics and Astronomy

University of Iowa

PHYS 5905: Numerical Simulation of Plasmas
Department of Physics and Astronomy

University of Iowa
Spring 2019

Thank you

This presentation borrows heavily from information freely available on the web by
Ian Foster and Blaise Barney

(see references)

Outline

• Introduction

• Thinking in Parallel

• Parallel Computer Architectures

• Parallel Programming Models

• References

Introduction

Why Use Parallel Computing?

• Single processor speeds are reaching their ultimate limits

• Multi-core processors and multiple processors are the most
promising paths to performance improvements

Definition of a parallel computer:

A set of independent processors that can work cooperatively
to solve a problem.

Disclaimer: High Performance Computing (HPC) is valuable to
a variety of applications over a very wide range of fields.
Many of my examples will come from the world of physics,
but I will try to present them in a general sense

Introduction

The March towards Petascale Computing
• Computing performance is defined in terms of

FLoating-point OPerations per Second (FLOPS)

1 GF = 109 FLOPS
1 TF = 1012 FLOPS
1 PF = 1015 FLOPS

GigaFLOP

TeraFLOP

PetaFLOP

• Petascale computing also refers to extremely large data sets

PetaByte 1 PB = 1015 Bytes

Introduction

Performance improves by factor of ~10 every 4 years!

Outline

• Introduction

• Thinking in Parallel

• Parallel Computer Architectures

• Parallel Programming Models

• References

Thinking in Parallel

DEFINITION Concurrency: The property of a parallel algorithm
that a number of operations can be performed by separate
processors at the same time.

Concurrency is the key concept in the design of parallel algorithms:
• Requires a different way of looking at the strategy to solve a

problem
• May require a very different approach from a serial program to

achieve high efficiency

Thinking in Parallel

DEFINITION Scalability: The ability of a parallel algorithm to
demonstrate a speedup proportional to the number of processors
used.

DEFINITION Speedup: The ratio of the serial wallclock time to the
parallel wallclock time required for execution.

S =
wallclock timeserial

wallclock timeparallel

• An algorithm that has good scalability will take half the time with
double the number of processors

• Parallel Overhead, the time required to coordinate parallel tasks
and communicate information between processors, degrades
scalability.

f(x)

x

Numerical Integration: Monte Carlo Method
• Choose points within the box of total area
• Determine the number of points falling below
• Integral value is I =

n

N
A

N
n

A
f(x)

How do we do this computation in parallel?

Example: Numerical Integration

Example: Numerical Integration

1) Give different ranges of
to different processors and
sum results

x 2) Give points to each
processor and sum results

N/4

Strategies for Parallel Computation of the Numerical Integral:

Example: Fibonacci Series

The Fibonacci series is defined by:
 with f(k + 2) = f(k + 1) + f(k) f(1) = f(2) = 1

The Fibonacci series is therefore (1, 1, 2, 3, 5, 8, 13, 21, . . .)

The Fibonacci series can be calculated using the loop
f(1)=1
f(2)=1
do i=3, N
 f(i)=f(i-1)+f(i-2)
enddo

How do we do this computation in parallel?

This calculation cannot be made parallel.
- We cannot calculate until we have and

- This is an example of data dependence that results in a non-
parallelizable problem

f(k + 2) f(k + 1) f(k)

Example: Protein Folding

• Protein folding problems involve a large number of independent
calculations that do not depend on data from other calculations

• Concurrent calculations with no dependence on the data from
other calculations are termed Embarrassingly Parallel

• These embarrassingly parallel problems are ideal for solution by
HPC methods, and can realize nearly ideal concurrency and
scalability

Unique Problems Require Unique Solutions

• Each scientific or mathematical problem will, in general, require a
unique strategy for efficient parallelization

Thus, each of you may require a different parallel implementation
of your numerical problem to achieve good performance.

• Flexibility in the way a problem is solved is beneficial to finding a
parallel algorithm that yields a good parallel scaling.

• Often, one has to employ substantial creativity in the way a
parallel algorithm is implemented to achieve good scalability.

Understand the Dependencies

• One must understand all aspects of the problem to be solved, in
particular the possible dependencies of the data.

Example: Pressure Forces (Local) vs. Gravitational Forces (Global)

• It is important to understand fully all parts of a serial code that
you wish to parallelize.

Rule of Thumb

Computation is FAST

Communication is SLOW

Input/Output (I/O) is INCREDIBLY SLOW

When designing a parallel algorithm, always remember:

Other Issues

In addition to concurrency and scalability, there are a number of
other important factors in the design of parallel algorithms:

Locality

Granularity

Modularity

Flexibility

Load balancing

We’ll learn about these when we discuss the design of parallel
algorithms.

Outline

• Introduction

• Thinking in Parallel

• Parallel Computer Architectures

• Parallel Programming Models

• References

The Von Neumann Architecture

Virtually all computers follow this basic design

• Memory stores both instructions and data

• Control unit fetches instructions from memory,
decodes instructions, and then sequentially performs
operations to perform programmed task

• Arithmetic Unit performs mathematical operations

• Input/Output is interface to the user

Flynn’s Taxonomy

• SISD: This is a standard serial computer: one set of instructions, one data stream

• SIMD: All units execute same instructions on different data streams (vector)
- Useful for specialized problems, such as graphics/image processing
- Old Vector Supercomputers worked this way, also moderns GPUs

• MISD: Single data stream operated on by different sets of instructions, not
generally used for parallel computers

• MIMD: Most common parallel computer, each processor can execute different
instructions on different data streams
-Often constructed of many SIMD subcomponents

Parallel Computer Memory Architectures

Shared Memory

Hybrid Distributed Shared Memory

Distributed Memory

Relation to Parallel Programming Models

• OpenMP: Multi-threaded calculations occur within shared-memory components
of systems, with different threads working on the same data.

• MPI: Based on a distributed-memory model, data associated with another
processor must be communicated over the network connection.

• GPUs: Graphics Processing Units (GPUs) incorporate many (hundreds) of
computing cores with single Control Unit, so this is a shared-memory model.

• Processors vs. Cores: Most common parallel computer, each processor can
execute different instructions on different data streams

-Often constructed of many SIMD subcomponents

Outline

• Introduction

• Thinking in Parallel

• Parallel Computer Architectures

• Parallel Programming Models

• References

Parallel Programming Models

• Embarrassingly Parallel

• Master/Slave

• Threads

• Message Passing

• Single Program-Multiple Data (SPMD)
vs. Multiple Program-Multiple Data (MPMD)

• Other Parallel Implementations: GPUs and CUDA

Embarrassingly Parallel

• Refers to an approach that involves solving many similar but independent
tasks simultaneously

• Little to no coordination (and thus no communication) between tasks

• Each task can be a simple serial program

• This is the “easiest” type of problem to implement in a parallel manner.
Essentially requires automatically coordinating many independent calculations
and possibly collating the results.

• Examples:
- Computer Graphics and Image Processing
- Protein Folding Calculations in Biology
- Geographic Land Management Simulations in Geography
- Data Mining in numerous fields
- Event simulation and reconstruction in Particle Physics

Master/Slave

• Master Task assigns jobs to pool of slave
tasks

• Each slave task performs its job
independently

• When completed, each slave
returns its results to the
master, awaiting a new job

• Emabarrasingly parallel problems are often
well suited to this parallel programming model

Master

Slave
Slave

Slave

Slave
Slave

Slave

Multi-Threading

• Threading involves a single process that can have multiple, concurrent
execution paths

• Works in a shared memory architecture

• Most common implementation is OpenMP (Open Multi-Processing)

serial code
.
.
.

!$OMP PARALLEL DO
do i = 1,N
A(i)=B(i)+C(i)

enddo
!$OMP END PARALLEL DO

.

.

.
serial code

• Relatively easy to make inner loops of a
serial code parallel and achieve substantial
speedups with modern multi-core processors

Message Passing
• The most widely used model for parallel programming

• Message Passing Interface (MPI) is the most widely used implementation

• A set of tasks have their own local memory during the computation
(distributed-memory, but can also be used on shared-memory machines)

• Tasks exchange data by sending
and receiving messages, requires
programmer to coordinate explicitly
all sends and receives.

• One aim of this course will focus on the
use of MPI to write parallel programs.

SPMD vs. MPMD
Single Program-Multiple Data (SPMD)

• A single program executes on all tasks simultaneously

• At a single point in time, different tasks
may be executing the same or different
instructions (logic allows different tasks to execute different parts of the code)

Multiple Program-Multiple Data (MPMD)

• Each task may be executing the same or different programs than other tasks

• The different executable programs may
communicate to transfer data

Other Parallel Programming Models

• GPUs (Graphics Processing Units) contain many (hundreds) of processing
cores, allowing for rapid vector processing (Single Instruction, Multiple Data)

• CUDA (Compute Unified Device Architecture) programming allows one to
call on this powerful computing engine from codes written in C, Fortran,
Python, Java, and Matlab.

• This is an exciting new way to achieve massive computing power for little
hardware cost, but memory access bandwidth limitations constrain the possible
applications.

Parting Thoughts

• But, consider the time required to code a given parallel implementation
- You can use a less efficient method if the implementation is much easier.
- You can always improve the parallelization scheme later. Just focus on making
 the code parallel first.

TIME is the ultimate factor is choosing a parallelization strategy---Your Time!

• Part of the challenge of parallel computing is that the most efficient
parallelization strategy for each problem generally requires a unique solution.

• It is generally worthwhile spending significant time considering alternative
algorithms to find an optimal one, rather than just implementing the first thing
that comes to mind

References
Introductory Information on Parallel Computing
• Designing and Building Parallel Programs, Ian Foster

http://www.mcs.anl.gov/~itf/dbpp/
-Somewhat dated (1995), but an excellent online textbook with detailed discussion about
many aspects of HPC. This presentation borrowed heavily from this reference

• Introduction to Parallel Computing, Blaise Barney
https://computing.llnl.gov/tutorials/parallel_comp/
-Up to date introduction to parallel computing with excellent links to further information

• MPICH2: Message Passage Inteface (MPI) Implementation
http://www.mcs.anl.gov/research/projects/mpich2/
-The most widely used Message Passage Interface (MPI) Implementation

• OpenMP
http://openmp.org/wp/
-Application Program Interface (API) supports multi-platform shared-memory parallel
programming in C/C++ and Fortran

• Numerical Recipes
http://www.nr.com/
-Incredibly useful reference for a wide range of numerical methods, though not focused on
parallel algorithms.

• The Top 500 Computers in the World
http://www.top500.org/
-Updated semi-annually list of the Top 500 Supercomputers

http://www.mcs.anl.gov/research/projects/mpich2/
http://www.nr.com
http://www.top500.org

References
Introductory Information on Parallel Computing
• Message Passing Interface (MPI), Blaise Barney

https://computing.llnl.gov/tutorials/mpi/
-Excellent tutorial on the use of MPI, with both Fortran and C example code

• OpenMP, Blaise Barney
https://computing.llnl.gov/tutorials/openMP/
-Excellent tutorial on the use of OpenMP, with both Fortran and C example code

• High Performance Computing Training Materials, Lawrence Livermore National Lab
https://computing.llnl.gov/?set=training&page=index
-An excellent online set of webpages with detailed tutorials on many aspects of high
performance computing.

