Introduction to
High Performance Computing

Gregory G. Howes
Department of Physics and Astronomy
University of lowa

PHYS 5905: Numerical Simulation of Plasmas L
Department of Physics and Astronomy
University of lowa '
Spring 2019 THE
UNIVERSITY

OF lOWA

L

Thank you o B

UNIVERSITY
OF lowA

This presentation borrows heavily from information freely available on the web by
lan Foster and Blaise Barney
(see references)

L

Outline mﬁ

UNIVERSITY
OF lowA

* Introduction

* Thinking in Parallel

* Parallel Computer Architectures
* Parallel Programming Models

 References

. L
Introduction T ﬁm

e _INIVERSITY

Disclaimer: High Performance Computing (HPC) is valuable to owA

a variety of applications over a very wide range of fields.
Many of my examples will come from the world of physics,
but | will try to present them in a general sense

Why Use Parallel Computing?

* Single processor speeds are reaching their ultimate limits

* Multi-core processors and multiple processors are the most
promising paths to performance improvements

Definition of a parallel computer:

A set of independent processors that can work cooperatively
to solve a problem.

The March towards Petascale Computing

L

Introduction - ﬁ

e I NIVERSITY

OF lowA

* Computing performance is defined in terms of
FLoating-point OPerations per Second (FLOPS)

GigaFLOP 1 GF = 10” FLOPS

TeraFLOP
PetaFLOP

1 TF =

1 PF =_

10?2 FLOPS

0 FLOPS

* Petascale computing also refers to extremely large data sets

PetaByte

1 PB = 10'° Bytes

Pericrmance

10 EFlop/s
1 Cllop/s
100 PFlop/s
10 PFlop/s
1 PFlop/s
100 TFlop/s
10 TFlop/s
1 "Flop/e
100 GFlop/s
10 GFlop/s
1 Grllop/s

100 MFlop/e

Introduction

e _INIVERSITY

Performance Development

1994 1906 1008 2000 2002 2004 2005 2008

Lists

BSun B# [#500

2010

2012

Performance improves by factor of ~10 every 4 years!

2014

L

THE ﬁ

OF lowA

L

Outline mﬁ

UNIVERSITY
OF lowA

* Introduction

* Thinking in Parallel

* Parallel Computer Architectures
* Parallel Programming Models

 References

L

Thinking in Parallel i

UNIVERSITY
OF lowA

DEFINITION Concurrency: The property of a parallel algorithm

that a number of operations can be performed by separate
processors at the same time.

Concurrency is the key concept in the design of parallel algorithms:
* Requires a different way of looking at the strategy to solve a
problem

* May require a very different approach from a serial program to
achieve high efficiency

L

Thinking in Parallel i

UNIVERSITY
OF lowA

DEFINITION Scalability: The ability of a parallel algorithm to

demonstrate a speedup proportional to the number of processors
used.

DEFINITION Speedup: The ratio of the serial wallclock time to the
parallel wallclock time required for execution.

wallclock timese, g

g —

wallclock timeyqrqirer

* An algorithm that has good scalability will take half the time with
double the number of processors

* Parallel Overhead, the time required to coordinate parallel tasks
and communicate information between processors, degrades
scalability.

L

Example: Numerical Integration -

UNIVERSITY
OF lowA

Numerical Integration: Monte Carlo Method
* Choose NN points within the box of total area A
» Determine the number of points n, falling below f ()

n
* Integral valueis I = — A
ntegral value is N

=)

How do we do this computation in parallel?

f(x)

X

L

Example: Numerical Integration i

UNIVERSITY
OF lowA

Strategies for Parallel Computation of the Numerical Integral:

1) Give different ranges of 2) Give N/4 points to each
to different processors and processor and sum results
sum results

L

Example: Fibonacci Series v f

e (| N TVERSITY
OF lowA

The Fibonacci series is defined by:

flk+2)=f(k+1)+ f(k) with f(1) = f(2) =1
The Fibonacci series is therefore (1,1,2,3,5,8,13,21,...)

The Fibonacci series can be calculated using the loop
£(1)=1
£(2)=1
do i=3, N
f(i)=f(i-1)+f(i-2)
enddo

How do we do this computation in parallel?

This calculation cannot be made parallel.
- We cannot calculate f(k + 2) until we have f(k 4+ 1)and f(k)

- This is an example of data dependence that results in a non-
parallelizable problem

L

Example: Protein Folding v f

e (| N TVERSITY
OF lowA

* Protein folding problems involve a large number of independent
calculations that do not depend on data from other calculations

* Concurrent calculations with no dependence on the data from
other calculations are termed Embarrassingly Parallel

* These embarrassingly parallel problems are ideal for solution by
HPC methods, and can realize nearly ideal concurrency and
scalability

Unique Problems Require Unique Solutions T%ﬁ

UNIVERSITY
OF lowA

* Each scientific or mathematical problem will, in general, require a
unique strategy for efficient parallelization

Thus, each of you may require a different parallel implementation
of your numerical problem to achieve good performance.

* Flexibility in the way a problem is solved is beneficial to finding a
parallel algorithm that yields a good parallel scaling.

» Often, one has to employ substantial creativity in the way a
parallel algorithm is implemented to achieve good scalability.

L

Understand the Dependencies -

UNIVERSITY
OF lowA

* One must understand all aspects of the problem to be solved, in
particular the possible dependencies of the data.

* It is important to understand fully all parts of a serial code that
you wish to parallelize.

Example: Pressure Forces (Local) vs. Gravitational Forces (Global)

8 8

NRVAVRRbAVAY;
N R R N R 6 \\\\\\\\ i ///// |
T .\\\\\\0 ///j//
WEEEREREE %4\\\N'./&?¢/
o I O O A TS :
| Z -
— TV TN -
2 . . . 1 2 — 7/// l \i\\R\\?\.
=R BANNNS
7TV NS -

0 2 4 6 8 0 2 4 6 8
X X

Rule of Thumb THEﬁ

UNIVERSITY
OF lowA

When designing a parallel algorithm, always remember:

Computation is FAST

Communication is SLOW

Input/Output (I/O) is INCREDIBLY SLOW

L

Other Issues Tm;ﬁ

U.NlVElRSl’[Y
In addition to concurrency and scalability, there are a number of =
other important factors in the design of parallel algorithms:

Locality
Granularity
Modularity
Flexibility

Load balancing

We'll learn about these when we discuss the design of parallel
algorithms.

L

Outline mﬁ

UNIVERSITY
OF lowA

* Introduction

* Thinking in Parallel

* Parallel Computer Architectures
* Parallel Programming Models

 References

L

The Von Neumann Architecture i

UNIVERSITY
OF lowA

Virtually all computers follow this basic design

* Memory stores both instructions and data

! ! * Control unit fetches instructions from memory,

decodes instructions, and then sequentially performs
operations to perform programmed task

Arithmetic
Logic
Unit

* Arithmetic Unit performs mathematical operations

* Input/Output is interface to the user

L

Flynn’s Taxonomy .

UNIVERSITY
OF lowA

SISD SIMD

Single Instruction, Single Data | Single Instruction, Multiple Data

MISD MIMD

Multiple Instruction, Single Data | Multiple Instruction, Multiple Data

 SISD: This is a standard serial computer: one set of instructions, one data stream

* SIMD: All units execute same instructions on different data streams (vector)
- Useful for specialized problems, such as graphics/image processing
- Old Vector Supercomputers worked this way, also moderns GPUs

* MISD: Single data stream operated on by different sets of instructions, not
generally used for parallel computers

* MIMD: Most common parallel computer, each processor can execute different
instructions on different data streams

-Often constructed of many SIMD subcomponents

. L
Parallel Computer Memory Architectures . ff

UNIVERSITY
OF lowA

Shared Memory Distributed Memory

T -

Hybrid Distributed Shared Memory

L
Relation to Parallel Programming Models . fq

UNIVERSITY
. : L OF lowA
* OpenMP: Multi-threaded calculations occur within shared-memory components

of systems, with different threads working on the same data.

* MPI: Based on a distributed-memory model, data associated with another
processor must be communicated over the network connection.

* GPUs: Graphics Processing Units (GPUs) incorporate many (hundreds) of
computing cores with single Control Unit, so this is a shared-memory model.

* Processors vs. Cores: Most common parallel computer, each processor can
execute different instructions on different data streams
-Often constructed of many SIMD subcomponents

L

Outline mﬁ

UNIVERSITY
OF lowA

* Introduction

* Thinking in Parallel

* Parallel Computer Architectures
* Parallel Programming Models

 References

L

Parallel Programming Models .

UNIVERSITY
OF lowA

* Embarrassingly Parallel
* Master/Slave

 Threads

* Message Passing

* Single Program-Multiple Data (SPMD)
vs. Multiple Program-Multiple Data (MPMD)

* Other Parallel Implementations: GPUs and CUDA

L

Embarrassingly Parallel .

I (| N1V ERSITY
OF lOWA
* Refers to an approach that involves solving many similar but independent

tasks simultaneously

* Little to no coordination (and thus no communication) between tasks
* Each task can be a simple serial program

* This is the “easiest” type of problem to implement in a parallel manner.
Essentially requires automatically coordinating many independent calculations
and possibly collating the results.

* Examples:
- Computer Graphics and Image Processing
- Protein Folding Calculations in Biology
- Geographic Land Management Simulations in Geography
- Data Mining in numerous fields
- Event simulation and reconstruction in Particle Physics

L

Master/Slave - ﬁ

UNIVERSITY
OF lowA

* Master Task assigns jobs to pool of slave W
tasks Master [T/

A
* Each slave task performs its job [~ X
independently
* When completed, each slave ‘
returns its results to the ; X
master, awaiting a new job

Sa}«e

* Emabarrasingly parallel problems are often 4
well suited to this parallel programming model

L

Multi- Threading Toe ﬂm

UNIVERSITY

. .. . : OF lOowA
Threading involves a single process that can have multiple, concurrent

execution paths

* Works in a shared memory architecture

* Most common implementation is OpenMP (Open Multi-Processing)

serial code

e
master
thread
1 SOMP PARALLEL DO { parallel region } { parallel region }
do 1 = 1,N
A(1)=B(1)+C (1)
enddo * Relatively easy to make inner loops of a

'SOMP END PARALLEL DO serjal code parallel and achieve substantial

speedups with modern multi-core processors

serial code

L

Message Passing i

UNIVERSITY
OF lowA

* The most widely used model for parallel programming
* Message Passing Interface (MPI) is the most widely used implementation

* A set of tasks have their own local memory during the computation
(distributed-memory, but can also be used on shared-memory machines)

. Machine A Machine B
* Tasks exchange data by sending f
and receiving messages, requires task 0 task 1
programmer to coordinate explicitly
all sends and receives. send() recv()
network |
task 2 | task 3
* One aim of this course will focus on the = o

use of MPI to write parallel programs. — —

L

SPMD vs. MPMD T

UNIVERSITY

Single Program-Multiple Data (SPMD) OF lowa

* A single program executes on all tasks simultaneously

* At a single point in time, different tasks —I —I —I —I

may be executing the same or different task 1 task2 ~ task3 .. taskn
instructions (logic allows different tasks to execute different parts of the code)

Multiple Program-Multiple Data (MPMD)

* Each task may be executing the same or different programs than other tasks

=1-1-T-

task 1 task2 task3 ... taskn

* The different executable programs may
communicate to transfer data

Other Parallel Programming Models mﬁ

UNIVERSITY
OF lowA

* GPUs (Graphics Processing Units) contain many (hundreds) of processing
cores, allowing for rapid vector processing (Single Instruction, Multiple Data)

=-24() ‘cores::

4:cores

* CUDA (Compute Unified Device Architecture) programming allows one to
call on this powerful computing engine from codes written in C, Fortran,
Python, Java, and Matlab.

* This is an exciting new way to achieve massive computing power for little
hardware cost, but memory access bandwidth limitations constrain the possible
applications.

L

Parting Thoughts i

UNIVERSITY
OF lowA

* Part of the challenge of parallel computing is that the most efficient
parallelization strategy for each problem generally requires a unique solution.

* It is generally worthwhile spending significant time considering alternative
algorithms to find an optimal one, rather than just implementing the first thing
that comes to mind

* But, consider the time required to code a given parallel implementation
-You can use a less efficient method if the implementation is much easier.
- You can always improve the parallelization scheme later. Just focus on making
the code parallel first.

TIME is the ultimate factor is choosing a parallelization strategy---Your Time!

L

References o i

HE
e [N[V ERSITY
Introductory Information on Parallel Computing OF lowA

* Designing and Building Parallel Programs, lan Foster
http://www.mcs.anl.gov/~itf/dbpp/
-Somewhat dated (1995), but an excellent online textbook with detailed discussion about
many aspects of HPC. This presentation borrowed heavily from this reference
* Introduction to Parallel Computing, Blaise Barney
https://computing.linl.gov/tutorials/parallel _comp/
-Up to date introduction to parallel computing with excellent links to further information
* MPICH2: Message Passage Inteface (MPI) Implementation
http://www.mcs.anl.gov/research/projects/mpich2/
-The most widely used Message Passage Interface (MPI) Implementation
 OpenMP
http://openmp.org/wp/
-Application Program Interface (API) supports multi-platform shared-memory parallel
programming in C/C++ and Fortran
* Numerical Recipes
http://www.nr.com/
-Incredibly useful reference for a wide range of numerical methods, though not focused on
parallel algorithms.
* The Top 500 Computers in the World
http://www.top500.org/
-Updated semi-annually list of the Top 500 Supercomputers

http://www.mcs.anl.gov/research/projects/mpich2/
http://www.nr.com
http://www.top500.org

References

L

THE ﬁ

e _INIVERSITY

Introductory Information on Parallel Computing

* Message Passing Interface (MPl), Blaise Barney
https://computing.linl.gov/tutorials/mpi/
-Excellent tutorial on the use of MPI, with both Fortran and C example code

e OpenMF Blaise Barney
https://computing.linl.gov/tutorials/openMP/
-Excellent tutorial on the use of OpenMP, with both Fortran and C example code

* High Performance Computing Training Materials, Lawrence Livermore National Lab
https://computing.linl.gov/?set=training&page=index
-An excellent online set of webpages with detailed tutorials on many aspects of high
performance computing.

OF lowA

