
Parallel Programming Using MPI

Gregory G. Howes
Department of Physics and Astronomy

University of Iowa

PHYS 5905: Numerical Simulation of Plasmas
Department of Physics and Astronomy

University of Iowa
Spring 2019

Outline

• General Comments

• Concepts

• Environment Management Routines

• Point-to-Point Communication Routines

• Collective Communication Routines

• Asynchronous Communication

General Comments

• Biggest hurdle to parallel computing is just getting started

• I will not cover all of the functionality of the MPI library
- Focus on basic point-to-point and collective communications.

• You can do almost everything you ever need to do with just 8 commands.
- Another 4 commands for collective communications are also useful.
- Probably 95% of MPI users can get away with just these 12 commands,
so I will focus on these commands here, and briefly mention a few others.

Concepts

• Communicators

• Point-to-point vs. collective communications

• Buffering of messages

• Issues of Synchronization and Determinism
- Deadlocks and Race Conditions

Outline

• General Comments

• Concepts

• Environment Management Routines

• Point-to-Point Communication Routines

• Collective Communication Routines

• Asynchronous Communication

Environment Management Routines

Basic Requirements:
• Include Header File:

• General Format of calls differs between C and Fortran

Initializing and Finalizing parallel tasks in MPI:
• Initialization

• Finalization

Environment Management Routines

Size and Rank:
• Determine number of MPI tasks

• Determine rank of this MPI task:

-Rank is the Task ID

Example: Hello World

Serial Version:
!--
! HELLO WORLD
!--
program helloworld_serial
 implicit none

 !Write out message to screen
 write(*,'(a)')'Hello World.'

end program helloworld_serial

Example: Hello World
Parallel Version:
!--
! HELLO WORLD
!--
program helloworld
 implicit none
 include 'mpif.h'
 integer :: nproc !Number of Processors
 integer :: iproc !ID Number of local processor
 integer :: ierror !Integer error flag

 !Initialize MPI message passing
 call mpi_init (ierror)
 call mpi_comm_size (mpi_comm_world, nproc, ierror)
 call mpi_comm_rank (mpi_comm_world, iproc, ierror)

 !Write out message to screen
 write(*,'(a,i4,a,i4)')'Hello World. I am processor ',iproc, &

' of ',nproc

 !Finalize MPI message passing
 call mpi_finalize (ierror)

end program helloworld

Outline

• General Comments

• Concepts

• Environment Management Routines

• Point-to-Point Communication Routines

• Collective Communication Routines

• Asynchronous Communication

Point-to-Point Communication Routines

• Send a Message

Point-to-Point Communication Routines

• Receive a Message

Point-to-Point Communication Routines

• Blocking vs. Non-blocking

• Synchronous vs. Asynchronous

• Determinism

• Deadlocks, or Race Conditions

Outline

• General Comments

• Concepts

• Environment Management Routines

• Point-to-Point Communication Routines

• Collective Communication Routines

• Asynchronous Communication

Collective Communication Routines

• Broadcast:

Collective Communication Routines

• Reduction:
- This operation takes the data in the same variable on each processor, or
array of variables, and performs an operation on all of the variables, for
example computing the sum or finding the maximum value.
-The result is either collected at the root process (MPI_Reduce) or
distributed to all processes (MPI_Allreduce).

•

Collective Communication Routines

• Example of Reduction Operation:

Collective Communication Routines

• Barrier: Wait for all tasks to synchronize

• Others: Scatter and Gather

Outline

• General Comments

• Concepts

• Environment Management Routines

• Point-to-Point Communication Routines

• Collective Communication Routines

• Asynchronous Communication

Asynchronous Communication Routines

• Asynchronous communication allows an MPI task continue with local
computational operations while waiting for a message to be sent or
delivered

• This can be very computationally efficient, but requires care in ensuring
data is only used after a message has been received.

• Some of the MPI calls are MPI_ISEND, MPI_IPROBE, and MPI_IRECV.

References

Information on Message Passing Interface (MPI)

• Designing and Building Parallel Programs, Ian Foster
http://www.mcs.anl.gov/~itf/dbpp/
-Somewhat dated (1995), but an excellent online textbook with detailed discussion about many
aspects of HPC. This presentation borrowed heavily from this reference

• Message Passing Interface (MPI), Blaise Barney
https://computing.llnl.gov/tutorials/mpi/
-Excellent tutorial on the use of MPI, with both Fortran and C example code

