Design of Parallel Algorithms

Gregory G. Howes
Department of Physics and Astronomy
University of lowa

PHYS 5905: Numerical Simulation of Plasmas L
Department of Physics and Astronomy
University of lowa '
Spring 2019 THE
UNIVERSITY

OF lOWA

L

Thank you o B

UNIVERSITY
OF lowA

This presentation borrows heavily from information freely available on the web by
lan Foster and Blaise Barney
(see references)

L

Outline mﬁ

UNIVERSITY
OF lowA

* Basics of Parallel Algorithm Design
- Partitioning
- Communication
- Agglomeration
- Mapping

* Final Thoughts

 References

L

Design of Parallel Algorithms e S

UNIVERSITY
. OF lOowA
* Ensure that you understand fully the problem and/or the serial code that

you wish to make parallel

* |dentify the program hotspots
- These are places where most of the computational work is being done
- Making these sections parallel will lead to the most improvement
- Profiling can help to determine the hotspots (more on this VWednesday)

* Identify bottlenecks in the program
- Some sections of the code are disproportionately slow
- It is often possible to restructure a code to minimize the bottlenecks

* Sometimes it is possible to identify a different computational algorithm
that has much better scaling properties

L

PCAM .

UNIVERSITY
OF lowA

Methodological Approach to Parallel Algorithm Design:

|) Partitioning

2) Communication

3) Agglomeration

4) Mapping

Partitioning

* Split both the computation to be performed and the data into a large
number of small tasks (fine-grained)

Two primary ways of decomposing the problem:

* Domain Decomposition

1-D 2-D 3-D

* Functional Decomposition

Atmospheric Model

Hydrology
Model Ocean

Model

¥

Land/Surface Model |*——'

L

THE ﬁ

UNIVERSITY
OF lowA

L

PCAM i

UNIVERSITY
OF lowA

Methodological Approach to Parallel Algorithm Design:

|) Partitioning

2) Communication

3) Agglomeration

4) Mapping

L

Communication mﬁ

UNIVERSITY

’ i CAt : F lOWA
* |dentify the necessary communication between the fine-grained tasks to OF [0
perform the necessary computation

* For functional decomposition, this task is often relatively straightforward

* For domain decomposition, this can a challenging task.
We'll consider some examples:

Finite Difference Relaxation:

ft+1 4f _I_ z+1,9 T f 1T f ,J+1
(2] 8

0 O] () S} * This is a local communication,
involving only neighboring tasks

L

Communication Tmaﬁ

- UNIVERSITY
Gravitational N-Body Problems: NENREERRRray;: OF lowa
* This is a global communication, 6 \\\\\\ : ////// 1%
requiring information from all N \\\\\ | ///7//.//.
tasks ~ N\ A
RSN/ Z2s
—] //7 \\\\\\\.\\.
IEEZZIINSS
E RN
/| VNN
00 2 4 6 8

When communication is necessary, it is important to
employ a scheme that executes the communications
between different tasks concurrently.

L

Schemes for Global Communication .

UNIVERSITY
: : —0 J: OF lowA
Consider the problem of summing the values on N=8 different processors

* This is an example of a parallel process generically called reduction.

Method |: Summing by a Manager tasl, S

)
) 3)_~13) l:‘k\mg
@”6/6//%3 P RORORG

* Requires N=8 communications

* If all processors require the sum, it will require 2N=16 communications

This is a poor parallel algorithm!

* Two properties of this method hinder parallel execution:
- The algorithm is centralized, the manager participates in all interactions
- The algorithm is sequential, without communications occurring
concurrently

L

Schemes for Global Communication .

UNIVERSITY
OF lowA

Method |I: Line or Ring Communications

* By decentralizing, one can achieve some savings
] X} 2 3] 1 Il x
o l61 lSJ l4J 131 121 lLJ 10y U

* Requires N-1=7 communications, but it
is still sequential

* If all processors require the sum, we can

achieve this result with the same number @

of concurrent communications S
- By arranging the communcations in a f@) @\
ring, we can distribute the sum at all @
processors in N-1=7 communication @%
steps. (4) (5/

\@/

L
Schemes for Global Communication .

UNIVEIRSI”[Y
L OF lOowA
Method |l l: Tree Communications

* But we can do better by using a divide and conquer approach to the problem

-Split problem into two of equwalent size to be performed concurrently
N/2—1

ZX — Z X + Z X;
=N /2 / \
* Recursive appllcatlon of th|s prmuple leads

to a tree approach

@ *9
* Requires loga N=3 communication steps 6 é é é

* Distribution of the sum to all processors
can be accomplished with the same
logo N=3 communication steps.

This is called a hypercube communication scheme

L

Hypercube Communication i

UNIVERSITY
OF lowA

In Hypercube Communications,
-All tasks communicate with one other tasks at each step,
-At each step, the task passes along all of the information it has
gathered up to that point

0-D hypercube 1-D hypercube

4-D hypercube

Communication: Latency vs. Bandwidth

L
THE m

UNIVERSITY
OF lowA

Cost of Communications (Overhead):

180 -

* Latency: The time it takes to send a 160 1
140 -
minimal message (| bit) from A to B

120 A
100 4

latency (us)

 Bandwidth: The amount of data that can

Single-trip Latency (Back-to-back)

be communicated per unit of time

—o— P2P-GEDP-UP-ETB
—&— P2P-GEDP-SMP-BTE
—a— P2P-FEDP-ETE

s T T T T
-100 100 300 a00 700 a00

message size (bytes)

1100 1300 1500

Factors to consider:

* Sending many small messages will cause latency to dominate the
communications overhead

- It is better to package many small messages into one large message

* The less information that needs to be transmitted, the less time the
communications will require.

* It is often best to have all necessary communication occur at the same time

L
Synchronous vs.Asynchronous Communication, i

UNIVERSITY
OF lowA

Consider a communication involving a message sent from task A to task B

Synchronous Communication:

* Task A sends the message, and must wait until task B receives message to
move on

* Also known as blocking communication

Asynchronous Communication:

* After task A has sent the message, it can move on to do other work.
When task B receives the message doesn’t matter to task A.

* Also known as non-blocking communication

* Requires care to insure that different tasks don’t get wildly out of step,
possibly leading to race conditions or deadlocks.

L

PCAM i

UNIVERSITY
OF lowA

Methodological Approach to Parallel Algorithm Design:

|) Partitioning

2) Communication

3) Agglomeration

4) Mapping

L

Agglomeration .

UNIVERSITY
OF lowA

* Fine-grained partitioning of a problem is generally not an efficient parallel
design
- Requires too much communication of data to be efficient

* Agglomeration is required to achieve data locality and good performance

Agglomeration:

* Combine the many fine-grained tasks from partitioning into fewer coarse-
grained tasks of larger size

* This task must take into account the details @
of the problem in order to achieve an algorithm
with good scaling properties and good

efficiency

L

Granularity .

UNIVERSITY
OF lowA

Granularity is the ratio of local computation to communication.

* Agglomeration is used to increase the
granularity, improving performance
since communication is slow
compared to computation. (a) -©

* By combining many finely grained tasks,
we reduce both:
(i) number of communications
(ii) size of communications

* In (3), updating |6 points requires .. mmm o

- "
e

(i) 16x4=64 communications = i I :
(ii) passing 64 “bits” H) ~{ EE : TR
T

® I

* In (b), updating |6 points requires T ' Y

(i) 4 communications
(ii) passing |16 “bits” {) C}

L
Surface-to-Volume in Domain Decomposition . _f

UNIVERSITY
OF lowA

For domain decomposition in problems with local data dependency,
(ex. finite difference):

- Communication is proportional to subdomain surface area

- Computation is proportional to volume of the subdomain

For this 2-D problem:
(a) Surface S =4d & Area A = d”

Thus, § — é (a)

A d

(b) Surface S = 16d & Area A = 16d°

1
Thus, § —
A d
Decrease of surface-to-volume ratiois ® | I Py :

equivalent to increased granularity Q Q

L

Other Factors in Agglomeration i

UNIVERSITY
OF lowA

Maintaining flexibility:

* It is possible to make choices in designing a parallel
algorithm that limit flexibility

* For example, if 3-D data is decomposed in only |-D,

1-D
it will limit the scalability of the application

WVe'll see this later in the weak scaling example of HYDRO

Replication of Data and/or Computation:

* Sometimes significant savings in communication can be made by replicating
either data or computation

* Although from a serial point of view this seems inefficient and wasteful,
because communication is much slower than computation, it can often
lead to significant improvements in performance.

L

PCAM i

UNIVERSITY
OF lowA

Methodological Approach to Parallel Algorithm Design:

|) Partitioning

2) Communication

3) Agglomeration

4) Mapping

L

Mapping i

UNIVERSITY
Mapping Coarse-grained Tasks to Processors: OF lowA

e Goal: To minimize total execution time

* Guidelines:
- Tasks that can execute concurrently map to different processors
- Tasks that communicate frequently map to the same processor

* For many domain decomposition approaches, the agglomeration stage
decreases the number of coarse-grained tasks to exactly the number of
processors, and the job is done

* In general, however, one wants to map tasks to achieve good load balancing

L

Load Balancing o B

UNIVERSITY

* Good parallel scaling and efficiency requires that all processors have an ©F LOWA
equal amount of work

* Otherwise, some processors will sit around idle, while others are
completing their work, leading to a less efficient computation

* Complicated Load Balancing algorithms often must s
be employed. | @

L

Load Balancing e [

LINIVERSITY

: : : - . __OF lowA
* For problems involving functional decomposition or a master/slave design,

load balancing can be a very significant challange

Atmospheric Model @ @ @

—m O\

Model O Pop O
W W
PP
Land/Surface Model ' - manager

L

Parting Thoughts i

UNIVERSITY
OF lowA

* Part of the challenge of parallel computing is that the most efficient
parallelization strategy for each problem generally requires a unique solution.

* It is generally worthwhile spending significant time considering alternative
algorithms to find an optimal one, rather than just implementing the first thing
that comes to mind

* But, consider the time required to code a given parallel implementation
-You can use a less efficient method if the implementation is much easier.
- You can always improve the parallelization scheme later. Just focus on making
the code parallel first.

TIME is the ultimate factor is choosing a parallelization strategy---Your Time!

L

References o i

HE
e [N[V ERSITY
Introductory Information on Parallel Computing OF lowA

* Designing and Building Parallel Programs, lan Foster
http://www.mcs.anl.gov/~itf/dbpp/
-Somewhat dated (1995), but an excellent online textbook with detailed discussion about
many aspects of HPC. This presentation borrowed heavily from this reference
* Introduction to Parallel Computing, Blaise Barney
https://computing.linl.gov/tutorials/parallel _comp/
-Up to date introduction to parallel computing with excellent links to further information
* MPICH2: Message Passage Inteface (MPI) Implementation
http://www.mcs.anl.gov/research/projects/mpich2/
-The most widely used Message Passage Interface (MPI) Implementation
 OpenMP
http://openmp.org/wp/
-Application Program Interface (API) supports multi-platform shared-memory parallel
programming in C/C++ and Fortran
* Numerical Recipes
http://www.nr.com/
-Incredibly useful reference for a wide range of numerical methods, though not focused on
parallel algorithms.
* The Top 500 Computers in the World
http://www.top500.org/
-Updated semi-annually list of the Top 500 Supercomputers

http://www.mcs.anl.gov/research/projects/mpich2/
http://www.nr.com
http://www.top500.org

References

L

THE ﬁ

e _INIVERSITY

Introductory Information on Parallel Computing

* Message Passing Interface (MPl), Blaise Barney
https://computing.linl.gov/tutorials/mpi/
-Excellent tutorial on the use of MPI, with both Fortran and C example code

e OpenMF Blaise Barney
https://computing.linl.gov/tutorials/openMP/
-Excellent tutorial on the use of OpenMP, with both Fortran and C example code

* High Performance Computing Training Materials, Lawrence Livermore National Lab
https://computing.linl.gov/?set=training&page=index
-An excellent online set of webpages with detailed tutorials on many aspects of high
performance computing.

OF lowA

