
Introduction OpenMP Parallelization

Christian D. Ott

TAPIR, California Institute of Technology

June 2, 2011

Overview

I Shared-Memory vs. Distributed-Memory Parallelism:
Processes and Threads

I Approaches to Shared-Memory Parallelization

I OpenMP: Overview

I OpenMP: A Practical Introduction

I Hybrid Parallelism

Distributed-Memory Parallelism

I MPI-type distributed-memory parallelism.

Distributed-Memory Parallelism

I MPI-type distributed-memory parallelism

I Multicore CPU → multiple MPI processes per CPU.
Interconnection via networking software stack.

I Multiple CPUs per node →
Interconnection via networking software stack.

I Between nodes: Interconnect via networking hardware.

Distributed-Memory Parallelism

I Iowa’s Helium cluster has 2 quad-core CPUs per node.

I MPI: each core runs one process with its own memory.
Communication via network stack within node and with other
nodes.

I This seems like a great waste! Why not share the memory
within a CPU or even a node and bypass the interconnect?

Distributed-Memory Parallelism

I Iowa’s Helium cluster has 2 quad-core CPUs per node.

I MPI: each core runs one process with its own memory.
Communication via network stack within node and with other
nodes.

I This seems like a great waste! Why not share the memory
within a CPU or even a node and bypass the interconnect?

Threaded Shared-Memory Parallelism

I A process may have multiple parallel threads sharing the same
memory (multi-threading). Each process has at least one thread.

I One thread per physical core (note: Intel Hyper-Threading – 2
virtual cores per physical core)

Parallelism Hierarchy

I Only one thread communicates with the “outside”.

I At least one thread per process (exactly 1 in classical MPI setup).

I No shared memory between typical cluster nodes.

I Number of cores per node keeps increasing.

Architectures for Shared-Memory Parallelism

Multi-core laptop SGI Altix UV “Blacklight” at PSC

I Any shared memory symmetric multiprocessor machine (SMP).
→ Any modern laptop/desktop; any one cluster compute node.
Limited to physical unit (cluster node).

I Non-Uniform Memory Access machines – system-wide shared
memory architectures → 1000s of cores.

Routes to Shared-Memory Multi-Threading

I Compiler-based automatic parallelization.
I Code unchanged.
I Compiler specific. Results vary greatly.

Won’t parallelize complex loops.
I Number of threads per process usually set at compile

time.

I PThreads library
I Provides full control and run-time allocation of threads.
I Requires major code re-write from single-thread version.

Lots of pedestrian work.
I Available only for C.

I OpenMP
I Full control, run-time thread allocation.
I Only small code changes needed.
I Convenient, high-level interface.

Routes to Shared-Memory Multi-Threading

I Compiler-based automatic parallelization.
I Code unchanged.
I Compiler specific. Results vary greatly.

Won’t parallelize complex loops.
I Number of threads per process usually set at compile

time.

I PThreads library
I Provides full control and run-time allocation of threads.
I Requires major code re-write from single-thread version.

Lots of pedestrian work.
I Available only for C.

I OpenMP
I Full control, run-time thread allocation.
I Only small code changes needed.
I Convenient, high-level interface.

Routes to Shared-Memory Multi-Threading

I Compiler-based automatic parallelization.
I Code unchanged.
I Compiler specific. Results vary greatly.

Won’t parallelize complex loops.
I Number of threads per process usually set at compile

time.

I PThreads library
I Provides full control and run-time allocation of threads.
I Requires major code re-write from single-thread version.

Lots of pedestrian work.
I Available only for C.

I OpenMP
I Full control, run-time thread allocation.
I Only small code changes needed.
I Convenient, high-level interface.

Routes to Shared-Memory Multi-Threading

I Compiler-based automatic parallelization.
I Code unchanged.
I Compiler specific. Results vary greatly.

Won’t parallelize complex loops.
I Number of threads per process usually set at compile

time.

I PThreads library
I Provides full control and run-time allocation of threads.
I Requires major code re-write from single-thread version.

Lots of pedestrian work.
I Available only for C.

I OpenMP
I Full control, run-time thread allocation.
I Only small code changes needed.
I Convenient, high-level interface.

Introduction: What is OpenMP?

http://www.openmp.org

I OpenMP us an application programming interface (API)
for shared-memory multi-threading.

I OpenMP is not an external library. It is implemented
directly by the compiler.

I OpenMP 1.0 in 1997; Current: OpenMP 3.0 (3.1 coming).

I OpenMP works with C/C++ and Fortran.

http://www.openmp.org

Basic: The OpenMP Concept

I Fork-Join multi-threading model for mixing serial with
shared-memory-parallel program sections.

Basics: Compiling with OpenMP

I The compiler must be told to use OpenMP. This is
accomplished via compiler flags that differ between
compilers.

GNU gcc/gfortran (open source)

gcc -fopenmp ... , g++ -fopenmp ...,

gfortran -fopenmp ...

Intel Compilers

icc -openmp ..., icpc -openmp ...,

ifort -openmp ...

Basics: OpenMP API Components

OpenMP has three basic components:

I Pre-processor directives.

C/C++: #pragma omp parallel ...

F90 : !$OMP PARALLEL ... !$OMP END PARALLEL

I Runtime library routines.

C/C++: #include <omp.h>

F90 : use module omp lib

I Environment variables. To be set in the shell, e.g.,
OMP NUM THREADS=8

A First OpenMP Program in F90

A first OpenMP Program in Fortran 90:
program omp1

use omp_lib

implicit none

!$OMP PARALLEL ! Fork threads

write(6,*) "my thread id: ", omp_get_thread_num()

!$OMP END PARALLEL ! Join threads

end program omp1

A First OpenMP Program in C

A first OpenMP Program in C:
#include <stdio.h>

#include <omp.h>

int main(void) {

#pragma omp parallel // Fork threads

{

printf("my thread id: %d\n", omp_get_thread_num());

} // Join threads

}

In this example (and in the previous Fortran one), every thread
redundantly executes the code in the parallel region.

Useful OpenMP Library Functions

I omp get thread num: current thread index (0, 1, . . .)

I omp get num threads: size of the active team

I omp set num threads: set size of the thread team
(make this call outside of a parallel region)

I omp get max threads: maximum number of threads

I omp get num procs: number of cores available

There are a couple more – see the OpenMP reference manual for a

full list and description.

Parallelizing Loops

Finally doing something useful...
The compute-intense parts of most codes are loops over large
datasets that carry out many floating point operations.

do k=1,nz

do j=1,ny

do i=1,nx

[do something crazy complicated]

enddo

enddo

enddo

[do something crazy complicated] is executed nx*ny*nz times!

Basic Worksharing: Parallel do/for

Parallelizing “do/for” loops:

I C for loop

#pragma omp parallel

#pragma omp for

for(i=0;i<n;i++) {

// do something in parallel

}

or, using a combined directive:

#pragma omp parallel for

for(i=0;i<n;i++) {

// do something in parallel

}

Basic Worksharing: Parallel do/for

Parallelizing “do/for” loops:

I Fortran do loop
!$OMP PARALLEL

!$OMP DO

do i=1,n

! do something in parallel

enddo

!$OMP END DO

!$OMP END PARALLEL

or, using a combined directive:
!$OMP PARALLEL DO

do i=1,n

! do something in parallel

enddo

!$OMP END PARALLEL DO

Basic Worksharing with Loops: Rules

I Only standard for/do loops can be parallelized.
while loops cannot.

I Program correctness must not depend upon which thread
executes a particular iteration. For example:

Does not work: Works:

x(1) = 0

do i=2,n

x(i) = x(i-1) + f

enddo

do i=1,n

x(i) = (i-1)*f

enddo

I Branching statements such as break, exit, continue,
goto, return etc. are not allowed.

Basic Worksharing: Basic loop example

A somewhat mindless example:

Let’s write a simple code that fills an array of length n with
numbers and see how this can be sped up with OpenMP.

Basic Worksharing: Basic loop example – serial

program omp2ser

implicit none

integer :: i

integer, parameter :: n = 260000000

real*8,allocatable :: myarray(:)

allocate(myarray(n))

do i=1,n

myarray(i) = 5*i**3 + i**2 + i + sin(1.0*i)**2

enddo

deallocate(myarray)

end program omp2ser

Basic Worksharing: Basic loop example – parallel

program omp2

implicit none

integer :: i

integer, parameter :: n = 260000000

real*8,allocatable :: myarray(:)

allocate(myarray(n))

!$OMP PARALLEL DO

do i=1,n

myarray(i) = 5*i**3 + i**2 + i + sin(1.0*i)**2

enddo

!$OMP END PARALLEL DO

deallocate(myarray)

end program omp2

Basic Worksharing: Basic loop example – parallel

Let’s try this on helium:

export OMP NUM THREADS=1;time ./omp2

export OMP NUM THREADS=2;time ./omp2

export OMP NUM THREADS=4;time ./omp2

export OMP NUM THREADS=8;time ./omp2

→ Won’t see major improvement at more than 8 threads, since
helium only has 8 physical cores.

Basic Worksharing: Basic loop example – parallel

Let’s reduce the problem size n by a factor of 100 and try again:

export OMP NUM THREADS=1;time ./omp2b100

export OMP NUM THREADS=2;time ./omp2b100

export OMP NUM THREADS=4;time ./omp2b100

export OMP NUM THREADS=8;time ./omp2b100

→ No improvement with increasing number of threads! Why?
OpenMP “fork/join” process requires time. If problem size too
small, forking/joining dominates compute time.

Basic Worksharing: Basic loop example – parallel

Let’s reduce the problem size n by a factor of 100 and try again:

export OMP NUM THREADS=1;time ./omp2b100

export OMP NUM THREADS=2;time ./omp2b100

export OMP NUM THREADS=4;time ./omp2b100

export OMP NUM THREADS=8;time ./omp2b100

→ No improvement with increasing number of threads! Why?

OpenMP “fork/join” process requires time. If problem size too
small, forking/joining dominates compute time.

Basic Worksharing: Basic loop example – parallel

Let’s reduce the problem size n by a factor of 100 and try again:

export OMP NUM THREADS=1;time ./omp2b100

export OMP NUM THREADS=2;time ./omp2b100

export OMP NUM THREADS=4;time ./omp2b100

export OMP NUM THREADS=8;time ./omp2b100

→ No improvement with increasing number of threads! Why?
OpenMP “fork/join” process requires time. If problem size too
small, forking/joining dominates compute time.

Basic Worksharing: Private/Shared Vars

In more complex settings, it becomes necessary to tell OpenMP what
variables are private to each thread and which are shared.

By default, all variables are assumed to be shared. Exceptions: Loop
counters of the outermost loop and variables declared inside the parallel
region (only in C).

Declaring vars private/shared:
→ In C:
#pragma omp parallel for private(pvar1,pvar2) shared(svar)

→ In Fortran:
!$OMP PARALLEL DO PRIVATE(pvar1,pvar2) SHARED(svar)

[...]

!$OMP END PARALLEL DO

Basic Worksharing: Private/Shared Vars

In more complex settings, it becomes necessary to tell OpenMP what
variables are private to each thread and which are shared.

By default, all variables are assumed to be shared. Exceptions: Loop
counters of the outermost loop and variables declared inside the parallel
region (only in C).
Declaring vars private/shared:

→ In C:
#pragma omp parallel for private(pvar1,pvar2) shared(svar)

→ In Fortran:
!$OMP PARALLEL DO PRIVATE(pvar1,pvar2) SHARED(svar)

[...]

!$OMP END PARALLEL DO

Basic Worksharing: Private/Shared Vars

In more complex settings, it becomes necessary to tell OpenMP what
variables are private to each thread and which are shared.

By default, all variables are assumed to be shared. Exceptions: Loop
counters of the outermost loop and variables declared inside the parallel
region (only in C).
Declaring vars private/shared:
→ In C:
#pragma omp parallel for private(pvar1,pvar2) shared(svar)

→ In Fortran:
!$OMP PARALLEL DO PRIVATE(pvar1,pvar2) SHARED(svar)

[...]

!$OMP END PARALLEL DO

Basic Worksharing: Private/Shared Vars

I Shared vars: Seen by all threads, but not more than one
thread must write to a shared var at a time. Persistent.

I Private vars: Private “copy” for each thread. Undefined when
the thread team is created; undefined after parallel region.

Private/Shared Example

Consider this code snippet:

[...]

!$OMP PARALLEL DO

do i=1,n

x = 5*i**3 + i**2 + i + sin(1.0*i)**2

myarray(i) = x

enddo

!$OMP END PARALLEL DO

[...]

i is private, but n, x, and myarray are shared.

data race condition: x is updated inconsistently and
uncontrollably by multiple threads!

Private/Shared Example

Consider this code snippet:

[...]

!$OMP PARALLEL DO

do i=1,n

x = 5*i**3 + i**2 + i + sin(1.0*i)**2

myarray(i) = x

enddo

!$OMP END PARALLEL DO

[...]

i is private, but n, x, and myarray are shared.
data race condition: x is updated inconsistently and
uncontrollably by multiple threads!

Private/Shared Example: fixed

Fixed:
[...]

!$OMP PARALLEL DO PRIVATE(x)

do i=1,n

x = 5*i**3 + i**2 + i + sin(1.0*i)**2

myarray(i) = x

enddo

!$OMP END PARALLEL DO

[...]

i and x are private. n, myarray are shared.
Outside the parallel segment, i and x are undefined.

Another Loop Example

Suppose we wanted to parallelize
[...]

sum = 0.0d0

do i=1,n

val = f(i)

sum = sum + val

enddo

[...]

First attempt:
[...]

sum = 0.0d0

!$OMP PARALLEL DO PRIVATE(val)

do i=1,n

val = f(i)

sum = sum + val

enddo

!$OMP END PARALLEL DO

[...]

Problem: Race condition in the updating of sum!

Another Loop Example

Suppose we wanted to parallelize
[...]

sum = 0.0d0

do i=1,n

val = f(i)

sum = sum + val

enddo

[...]

First attempt:
[...]

sum = 0.0d0

!$OMP PARALLEL DO PRIVATE(val)

do i=1,n

val = f(i)

sum = sum + val

enddo

!$OMP END PARALLEL DO

[...]

Problem: Race condition in the updating of sum!

Another Loop Example

Suppose we wanted to parallelize
[...]

sum = 0.0d0

do i=1,n

val = f(i)

sum = sum + val

enddo

[...]

First attempt:
[...]

sum = 0.0d0

!$OMP PARALLEL DO PRIVATE(val)

do i=1,n

val = f(i)

sum = sum + val

enddo

!$OMP END PARALLEL DO

[...]

Problem: Race condition in the updating of sum!

Another Loop Example: fixed (1: CRITICAL)

One way of fixing this is the !$OMP CRITICAL directive:
[...]

sum = 0.0d0

!$OMP PARALLEL DO PRIVATE(val)

do i=1,n

val = f(i)

!$OMP CRITICAL

sum = sum + val

!$OMP END CRITICAL

enddo

!$OMP END PARALLEL DO

[...]

The CRITICAL directive ensures that only one thread accesses
sum at a time.

Another Loop Example: fixed (2: reduction)

An even better way of dealing with this issue is a sum
reduction:

[...]

sum = 0.0d0

!$OMP PARALLEL DO PRIVATE(val) REDUCTION(+:sum)

do i=1,n

val = f(i)

sum = sum + val

enddo

!$OMP END PARALLEL DO

[...]

The REDUCTION clause tells OpenMP that the team of threads
must safely add to sum so that it assumes the same value as in
the serial case.
Numerical reduction operators: +, -, *

See reference manual/sheet for more.

Advanced Stuff: Ask Google!

Some more useful clauses that modify OpenMP behavior
I NO WAIT clause – don’t wait after a loop (or other directive)

inside a parallel section until all threads are done.
I SCHEDULE(STATIC) – evenly divide iterations of a loop

among threads.
I SCHEDULE(DYNAMIC[,chunk]) – divide work into

chunk-sized parcels. If a thread is done with a chunk, it grabs
another one. Default chunk size is 1.

I SCHEDULE(GUIDED[,chunk]) – divide work into chunks of
exponentially decreasing size. chunk is the minimum chunk
size. Default is 1.

There are a more OpenMP directives.
I SECTIONS – non-iterative work sharing.
I BARRIER – force threads to wait for each other.
I ORDERED – force sequential order in a loop.
I MASTER – section in a loop executed only by the master.
I SINGLE – section in a loop executed only by one thread.

Advanced Stuff: Ask Google!

Some more useful clauses that modify OpenMP behavior
I NO WAIT clause – don’t wait after a loop (or other directive)

inside a parallel section until all threads are done.
I SCHEDULE(STATIC) – evenly divide iterations of a loop

among threads.
I SCHEDULE(DYNAMIC[,chunk]) – divide work into

chunk-sized parcels. If a thread is done with a chunk, it grabs
another one. Default chunk size is 1.

I SCHEDULE(GUIDED[,chunk]) – divide work into chunks of
exponentially decreasing size. chunk is the minimum chunk
size. Default is 1.

There are a more OpenMP directives.
I SECTIONS – non-iterative work sharing.
I BARRIER – force threads to wait for each other.
I ORDERED – force sequential order in a loop.
I MASTER – section in a loop executed only by the master.
I SINGLE – section in a loop executed only by one thread.

Hybrid Parallelism

I Modern cluster supercomputers have nodes with an increasing
number of cores. Helium: 8 cores per node (two 4-core CPUs).

I All cores within a node share the same main memory.

Hybrid Parallelism

Hybrid Parallelism:

I Node-local OpenMP.

I Internode MPI.

I Reduces communication overhead. Optimal number of
MPI processes per node depends on software & hardware.

