
Parallel Performance and
Optimization

Gregory G. Howes
Department of Physics and Astronomy

University of Iowa

PHYS 5905: Numerical Simulation of Plasmas
Department of Physics and Astronomy

University of Iowa
Spring 2019

Thank you

Ben Rogers
Glenn Johnson
Mary Grabe
Sai Ramadugu
Brenna Miller
Tino Kaltsis
Ben Rothman

Information Technology Services
Information Technology Services
Information Technology Services
Information Technology Services
Information Technology Services
Information Technology Services
Information Technology Services

and
National Science Foundation

Outline

• General Comments on Optimization

• Measures of Parallel Performance

• Debugging Parallel Programs

• Profiling and Optimization

General Comments on Optimization

• Always keep in mind the Rule of Thumb

• If you can do extra work in an initialization step to reduce
the work done in each timestep, it is generally well worth the
effort

• Collect all of your communication at one point in your
program timestep

Computation is FAST Communication is SLOW

Measures of Parallel Performance

• When you apply for time on a supercomputer, it is critical to
provide quantitative data on the parallel performance of your
application

• Algorithm vs. Parallel Scaling
- Algorithm scaling measures the increased computational
time as the size of computation is increased
- Parallel scaling measures the decrease in wallclock time as
more processors are used for the calculation

• Common measures of parallel scaling
- Strong Scaling: Time for fixed problem size as number of
processors is increased
-Weak Scaling: Time for fixed computational work per
processor as problem size is increased

Strong Scaling
• Measure time for fixed problem size as number of processors increases

• To get the best strong scaling, you want to find the largest problem size
that will fit on one processor

• Eventually, all but embarrassingly parallel applications will lead to a
turnover in the strong scaling plot:

-As number of processors increases, computational work per processor
decreases, and communication time typically increases.
-This reduces the granularity (time for local computation vs. time for
communication), and generally degrades parallel performance

• To get an impressive strong scaling curve, it will often take some
experimentation to identify parameters that allow ideal performance over
the widest range of processor number.

• Multi-core processors often lead to some complications in strong scaling
behaviors due to bandwidth limitations of memory access.

Strong Scaling for HYDRO

• Note: For ideal behavior, computational time is inversely proportional to
the number of processors.

Strong Scaling for AstroGK

• Note: Kraken (Cray XT5) nodes have dual hex-core processors, so performance
degrades as more cores/node are used due to memory bandwidth limitations

Weak Scaling
• Measure time for fixed computational work per processor as problem
size is increased

• Again, you want to find the largest problem size that will fit on one
processor

• It is usually easier to get a good weak scaling than a good strong scaling
-Since computational work per processor is constant, granularity only
decreases due to increased communication time

• Since the total problem size must increase, one has to choose how to
increase it.

- Ex: In HYDRO, you can increase either nx or ny
- Often weak scaling performance will depend on which choice you make

• Again, some exploration of parameters may be necessary to yield the most
impressive weak scaling curve

Weak Scaling for HYDRO

• Note: For ideal behavior, computational time should remain constant.

Weak Scaling for AstroGK

Speedup

• Another measure is the speedup, S =
Time on 1 processor

Time on N processors

Linear vs. Logarithmic Scaling

Additional Notes
• You need to choose what time you will use for the scaling tests:

-Do you want to include or exclude initialization time?

• Be sure that your code does not write to the disk or the screen at any
time during the scaling test (turn off output if possible), as this will lead to
degraded performance.

Outline

• General Comments on Optimization

• Measures of Parallel Performance

• Debugging Parallel Programs

• Profiling and Optimization

Parallel Debuggers
• One can always debug by hand (inserting lines to write out output as the
code progresses).

-Generally the easiest approach
-Time consuming
-Difficult to debug problems particular to parallel codes, for example race
conditions.

• In addition to serial debuggers to find errors in your source, such as gdb,
a valuable tool for parallel programming is the use of parallel debuggers.

• Common parallel debuggers are TotalView and DDT (Distributed
Debugging Tool)

• Parallel debuggers treat all tasks in an MPI job simultaneously, giving the
user a view of the synchronization of different MPI tasks

- This enables the identification of race conditions and other problems
that are otherwise difficult to identify.

• Running out of memory is common problem in parallel applications

Outline

• General Comments on Optimization

• Measures of Parallel Performance

• Debugging Parallel Programs

• Optimization and Profiling

Code Optimization

General approaches to code optimization:
• Automatic Optimization at compile time (mpif90 -O3)

-Level 3 optimization may produce incorrect results, so be careful

• Use libraries of optimized routines for common mathematical operations
- BLAS and LAPACK for matrix computations
- FFTW for Fast Fourier Transforms
-Intel’s Math Kernel Library (MKL) has routines optimized for particular

architectures

• By hand, ensure innermost loops do no unnecessary computation

• Profiling:
-Measuring the performance of the running code to generate a profile or
trace file
-Although it does introduce some overhead, it is a good way to measure
code performance until typical running conditions

Array Element Ordering

• Array Elements are stored linearly in memory, and designing your code
optimally requires taking this into account

• Row Major Languages: C/C++, NumPy in Python

• Column Major Languages: Fortran, MATLAB

• Neither Row nor Column Major: Java (ordered by age), Python (lists of lists)

Array Element Ordering

• Linearly memory storage obviously extends to arrays of dimension >2

• In Fortran, leftmost subscript varies most rapidly

Array Element Ordering

• Why does this matter?

- The CPU draws blocks of data needed for a computation into the cache

- If the data needed is not within the cache, the data needs to be swapped

- This is called a cache miss, and can dramatically slow down a code

- This problem particularly arises for large problem size

Array Element Ordering
• Example (Fortran90):

time hw12_left.e
 BEGIN: HW12 Simulation: Array Element Ordering: Lefttmost first
 END: HW12 Simulation
 92.27 real 88.21 user 3.38 sys
time hw12_right.e
 BEGIN: HW12 Simulation: Array Element Ordering: Righttmost first
 END: HW12 Simulation
 165.06 real 154.81 user 7.86 sys

n=1024
allocate(data(1:n,1:n,1:n))

do i=1,n
 do j=1,n
 do k=1,n
 data(i,j,k)=(sin(real(i*j*k))* &
 exp(real(k)/(real(i)*real(j))) +1.0)**(1./3.)

 enddo
 enddo
enddo

• Leftmost first: (k,j,i)(i,j,k)• Rightmost first:

In this ordering, rightmost index
changes most rapidly (not optimal)

Array Element Ordering

time hw12_left.e
 BEGIN: HW12 Simulation: Array Element Ordering: Lefttmost first
 END: HW12 Simulation
 31.07 real 25.49 user 3.62 sys
time hw12_right.e
 BEGIN: HW12 Simulation: Array Element Ordering: Righttmost first
 END: HW12 Simulation
 30.85 real 27.90 user 2.74 sys

• Optimizing Compilers will sometimes re-order calculation to make it faster

ifort -O0

- Previous example turned off optimization

ifort -O4

- Re-compiling the example with

Profiling
Profiling: Measure performance by collecting statistics of a running code

• Two methods for triggering when to collect data:

-Sampling
-Triggered by timer interrupt or hardware counter overflow

-Instrumentation
-Based on events in the code (function calls, etc.)
-Instrumentation code can be automatically generated or inserted by hand

• Two types of performance data:
-Profile: Summation of events over time
-Trace file: Sequence of events over time

Tools for Profiling
• You’ll want to look at the system you are running on to see what profiling
tools are installed

• Example Software tools for profiling on Moffett
- Valgrind: Useful for serial or multi-threaded (not MPI parallel) codes
- Intel VTune: Profiling tool for Intel Compilers
- PAPI: Measures general application performance
- MpiP: Measure’s MPI Performance
- HPCToolKit: Event based sampling and profiling related to source code
- TAU (Tuning and Analysis Utilities)
- Vampir from ParaTools
- GPTL (General Purpose Timing Library): Timers and counters
- IOex: Measure I/O statistics
- Pfmon: Performance monitor
- Oprofile: Single-node statistical profiler

• Many of the tools above are available on many different platforms

Profiling Using PAPI and MpiP
• For the remainder of this talk, we do some profiling using the tools

PAPI and MpiP

• On the following pages, we will look at metrics derived by PAPI and the load
balance and MPI statistics from MpiP.

PAPI Results on HYDRO
Total Computational Speed:

Floating-point vs. non-floating-point Instructions:

Floating-point instructions to compute your answer:

Computational Intensity and Cache Misses:

PAPI Results on HYDRO
Memory Stall:

Measured and Estimated Stall:
\

Ideal MFLOPS:

Parallel Communication Overhead:

PAPI Results on HYDRO
Memory Usage per Processor:

MpiP Results on HYDRO
MPI Time and Load Balance:

