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General Comments on Optimization

• Always keep in mind the Rule of  Thumb

• If you can do extra work in an initialization step to reduce 
the work done in each timestep, it is generally well worth the 
effort

• Collect all of your communication at one point in your 
program timestep

Computation is FAST Communication is SLOW



Measures of Parallel Performance

• When you apply for time on a supercomputer, it is critical to 
provide quantitative data on the parallel performance of your 
application

• Algorithm vs. Parallel Scaling
- Algorithm scaling measures the increased computational 
time as the size of computation is increased
- Parallel scaling measures the decrease in wallclock time as 
more processors are used for the calculation

• Common measures of parallel scaling
- Strong Scaling: Time for fixed problem size as number of 
processors is increased
-Weak Scaling: Time for fixed computational work per 
processor as problem size is increased



Strong Scaling
• Measure time for fixed problem size as number of processors increases

• To get the best strong scaling, you want to find the largest problem size 
that will fit on one processor

• Eventually, all but embarrassingly parallel applications will lead to a 
turnover in the strong scaling plot:

-As number of processors increases, computational work per processor 
decreases, and communication time typically increases.  
-This reduces the granularity (time for local computation vs. time for 
communication), and generally degrades parallel performance

• To get an impressive strong scaling curve, it will often take some 
experimentation to identify parameters that allow ideal performance over 
the widest range of processor number.

• Multi-core processors often lead to some complications in strong scaling 
behaviors due to bandwidth limitations of memory access.



Strong Scaling for HYDRO

• Note: For ideal behavior, computational time is inversely proportional to 
the number of processors. 



Strong Scaling for AstroGK

• Note: Kraken (Cray XT5) nodes have dual hex-core processors, so performance 
degrades as more cores/node are used due to memory bandwidth limitations



Weak Scaling
• Measure time for fixed computational work per processor as problem 
size is increased

• Again, you want to find the largest problem size that will fit on one 
processor

• It is usually easier to get a good weak scaling than a good strong scaling
-Since computational work per processor is constant, granularity only 
decreases due to increased communication time

• Since the total problem size must increase, one has to choose how to 
increase it.

- Ex: In HYDRO, you can increase either nx or ny
- Often weak scaling performance will depend on which choice you make

• Again, some exploration of parameters may be necessary to yield the most 
impressive weak scaling curve



Weak Scaling for HYDRO

• Note: For ideal behavior, computational time should remain constant.



Weak Scaling for AstroGK



Speedup

• Another measure is the speedup, S =
Time on 1 processor

Time on N processors



Linear vs. Logarithmic Scaling



Additional Notes
• You need to choose what time you will use for the scaling tests:

-Do you want to include or exclude initialization time?

• Be sure that your code does not write to the disk or the screen at any 
time during the scaling test (turn off output if possible), as this will lead to 
degraded performance.
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Parallel Debuggers
• One can always debug by hand (inserting lines to write out output as the 
code progresses).  

-Generally the easiest approach
-Time consuming 
-Difficult to debug problems particular to parallel codes, for example race 
conditions.

• In addition to serial debuggers to find errors in your source, such as gdb,
a valuable tool for parallel programming is the use of parallel debuggers.

• Common parallel debuggers are TotalView and DDT (Distributed 
Debugging Tool)

• Parallel debuggers treat all tasks in an MPI job simultaneously, giving the 
user a view of the synchronization of different MPI tasks

- This enables the identification of race conditions and other problems 
that are otherwise difficult to identify.

• Running out of memory is common problem in parallel applications
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Code Optimization

General approaches to code optimization:
• Automatic Optimization at compile time (mpif90 -O3)

-Level 3 optimization may produce incorrect results, so be careful

• Use libraries of optimized routines for common mathematical operations
- BLAS and LAPACK for matrix computations
- FFTW for Fast Fourier Transforms
-Intel’s Math Kernel Library (MKL) has routines optimized for particular 

architectures

• By hand, ensure innermost loops do no unnecessary computation

• Profiling:
-Measuring the performance of the running code to generate a profile or 
trace file
-Although it does introduce some overhead, it is a good way to measure 
code performance until typical running conditions



Array Element Ordering

• Array Elements are stored linearly in memory, and designing your code 
optimally requires taking this into account

• Row Major Languages:   C/C++, NumPy in Python

• Column Major Languages:   Fortran, MATLAB

• Neither Row nor Column Major:   Java (ordered by age), Python (lists of lists)



Array Element Ordering

• Linearly memory storage obviously extends to arrays of dimension >2

• In Fortran, leftmost subscript varies most rapidly



Array Element Ordering

• Why does this matter?

- The CPU draws blocks of data needed for a computation into the cache

- If the data needed is not within the cache, the data needs to be swapped

- This is called a cache miss, and can dramatically slow down a code

- This problem particularly arises for large problem size



Array Element Ordering
• Example (Fortran90):

time hw12_left.e 
 BEGIN: HW12 Simulation: Array Element Ordering: Lefttmost first 
 END: HW12 Simulation 
       92.27 real        88.21 user         3.38 sys 
time hw12_right.e 
 BEGIN: HW12 Simulation: Array Element Ordering: Righttmost first 
 END: HW12 Simulation 
      165.06 real       154.81 user         7.86 sys 

n=1024 
allocate(data(1:n,1:n,1:n)) 
   
do i=1,n 
   do j=1,n 
      do k=1,n 
       data(i,j,k)=(sin(real(i*j*k))* & 
          exp(real(k)/(real(i)*real(j))) +1.0 )**(1./3.) 

      enddo 
   enddo 
enddo

• Leftmost first: (k,j,i)(i,j,k)• Rightmost first:

In this ordering, rightmost index 
changes most rapidly (not optimal)



Array Element Ordering

time hw12_left.e 
 BEGIN: HW12 Simulation: Array Element Ordering: Lefttmost first 
 END: HW12 Simulation 
       31.07 real        25.49 user         3.62 sys 
time hw12_right.e 
 BEGIN: HW12 Simulation: Array Element Ordering: Righttmost first 
 END: HW12 Simulation 
       30.85 real        27.90 user         2.74 sys

• Optimizing Compilers will sometimes re-order calculation to make it faster

ifort -O0

- Previous example turned off optimization

ifort -O4

- Re-compiling the example with 



Profiling
Profiling: Measure performance by collecting statistics of a running code

• Two methods for triggering when to collect data:

-Sampling
-Triggered by timer interrupt or hardware counter overflow

-Instrumentation
-Based on events in the code (function calls, etc.)
-Instrumentation code can be automatically generated or inserted by hand

• Two types of performance data:
-Profile: Summation of events over time
-Trace file: Sequence of events over time



Tools for Profiling
• You’ll want to look at the system you are running on to see what profiling 
tools are installed

• Example Software tools for profiling on Moffett
- Valgrind: Useful for serial or multi-threaded (not MPI parallel) codes
- Intel VTune: Profiling tool for Intel Compilers
- PAPI: Measures general application performance
- MpiP: Measure’s MPI Performance
- HPCToolKit: Event based sampling and profiling related to source code
- TAU (Tuning and Analysis Utilities)
- Vampir from ParaTools
- GPTL (General Purpose Timing Library): Timers and counters
- IOex: Measure I/O statistics
- Pfmon: Performance monitor
- Oprofile: Single-node statistical profiler

• Many of the tools above are available on many different platforms



Profiling Using PAPI and MpiP
• For the remainder of this talk, we do some profiling using the tools 

PAPI and MpiP

• On the following pages, we will look at metrics derived by PAPI and the load 
balance and MPI statistics from MpiP.



PAPI Results on HYDRO
Total Computational Speed:

Floating-point vs. non-floating-point Instructions:

Floating-point instructions to compute your answer:

Computational Intensity and Cache Misses:



PAPI Results on HYDRO
Memory Stall:

Measured and Estimated Stall:
\

Ideal MFLOPS:

Parallel Communication Overhead:



PAPI Results on HYDRO
Memory Usage per Processor:



MpiP Results on HYDRO
MPI Time and Load Balance:


