
© 2018 OpenMP ARB 	 OMP1118-01-TSK

OpenMP 5.0 TASKING	 Page 1

OpenMP 5.0 API Reference Guide: Tasking

®

Directives and Constructs
An OpenMP executable directive applies to the succeeding structured block. A structured-block is an OpenMP construct or a block of executable statements with a single entry at
the top and a single exit at the bottom. OpenMP directives except SIMD and declare target directives may not appear in PURE or ELEMENTAL procedures.

Team management constructs
parallel [2.6] [2.5]
Forms a team of threads and starts parallel execution.

C/
C+

+ #pragma omp parallel [clause[[,]clause] ...]
structured-block

Fo
r !$omp parallel [clause[[,]clause] ...]

structured-block
!$omp end parallel

clause:
private (list), firstprivate (list), shared (list),
reduction ([reduction-modifier,] reduction-identifier: list)
proc_bind (master | close | spread)
allocate ([allocator :]list)

C/C++ if ([parallel :] scalar-expression)
C/C++ num_threads (integer-expression)
C/C++ default (shared | none)
For if ([parallel :] scalar-logical-expression)
For num_teams (scalar-integer-expression)
For default (shared | firstprivate | private | none)

single [2.8.2] [2.7.3]
Specifies that the associated structured block is executed
by only one of the threads in the team.

C/
C+

+ #pragma omp single [clause[[,]clause] ...]
structured-block

Fo
r !$omp single [clause[[,]clause] ...]

structured-block
!$omp end single [end_clause[[,]end_clause] ...]

clause:
private (list), firstprivate (list), allocate ([allocator:]list)

C/C++ nowait
end_clause: For

nowait

master [2.16] [2.13.1]
Specifies a structured block that is executed by the master
thread of the team.

C/
C+

+ #pragma omp master
structured-block

Fo
r !$omp master

structured-block
!$omp end master

Tasking constructs
task [2.10.1] [2.9.1]
Defines an explicit task. The data environment of the task
is created according to data-sharing attribute clauses on
task construct and any defaults that apply.

C/
C+

+ #pragma omp task [clause[[,]clause] ...]
structured-block

Fo
r !$omp task [clause[[,]clause] ...]

structured-block
!$omp end task

clause:
untied, mergeable
private (list), firstprivate (list), shared (list)
in_reduction (reduction-identifier: list)
depend ([depend-modifier,] dependence-type : locator-list)
priority(priority-value), allocate([allocator:]list)
affinity ([aff-modifier:] locator-list)
 - where aff-modifier is iterator(iterators-definition)
detach (event-handle)
 - where event-handle is of type omp_event_handle

C/C++ default (shared | none)
C/C++ if ([task :] scalar-expression)
C/C++ final (scalar-expression)
For default (private | firstprivate | shared | none)
For if ([task :] scalar-logical-expression)
For final (scalar-logical-expression)

taskloop [simd] [2.10.2-3] [2.9.2-3]
taskloop specifies that the iterations of one or more
associated loops will be executed in parallel using
OpenMP tasks. taskloop simd specifies that a loop can
be executed concurrently using SIMD instructions, and
that those iterations will also be executed in parallel using
OpenMP tasks.

C/
C+

+ #pragma omp taskloop [simd] [clause[[,]clause] ...]
for-loops

Fo
r !$omp taskloop [simd] [clause[[,]clause] ...]

do-loops
[!$omp end taskloop [simd]]

clause:
shared (list), private (list), firstprivate (list), lastprivate (list)
reduction ([default ,] reduction-identifier: list)
in_reduction (reduction-identifier: list)
grainsize (grain-size), num_tasks (num-tasks)
collapse (n), priority (priority-value)
untied, mergeable, nogroup, allocate ([allocator:]list)

C/C++ if ([taskloop :] scalar-expression)
C/C++ default (shared | none)
C/C++ final (scalar-expr)
For if ([taskloop :] scalar-logical-expression)
For default (private | firstprivate | shared | none)
For final (scalar-logical-expr)

taskyield [2.10.4] [2.11.2]
Specifies that the current task can be suspended in favor
of execution of a different task.

C/
C+

+

#pragma omp taskyield

Fo
r

!$omp taskyield

Synchronization constructs
taskwait [2.17.5] [2.13.4]
Specifies a wait on the completion of child tasks of the
current task.

C/
C+

+

#pragma omp taskwait [clause[[,] clause] ...]

Fo
r

!$omp taskwait [clause[[,] clause] ...]

clause:
depend ([depend-modifier,] dependence-type : locator-list)

taskgroup [2.17.6] [2.13.5]
Specifies a wait on the completion of child tasks of the
current task, and waits for descendant tasks.

C/
C+

+ #pragma omp taskgroup [clause[[,]clause] ...]
structured-block

Fo
r !$omp taskgroup [clause[[,]clause] ...]

structured-block
!$omp end taskgroup

clause:
task_reduction (reduction-identifier : list)
allocate ([allocator:]list)

depobj construct
depobj [2.17.10.1]
Stand-alone directive that initalizes, updates, or destroys
an OpenMP depend objects.

C/
C+

+

#pragma omp depobj (depobj) clause

Fo
r

!$omp depobj (depobj) clause

clause:
depend (dependence-type:locator)
destroy, update (dependence-type)

Cancellation constructs
cancel [2.18.1] [2.14.1]
Requests cancellation of the innermost enclosing region of
the type specified.

C/
C+

+

#pragma omp cancel construct-type-clause[[,] if-clause]

Fo
r

!$omp cancel construct-type-clause[[,]if-clause]
construct-type-clause: parallel, taskgroup
if-clause:
C/C++ if ([cancel :] scalar-expression)
For if ([cancel :] scalar-logical-expression)

cancellation point [2.18.2] [2.14.2]
Introduces a user-defined cancellation point at which tasks
check if cancellation of the innermost enclosing region of
the type specified has been activated.

C/
C+

+

#pragma omp cancellation point construct-type-clause

Fo
r

!$omp cancellation point construct-type-clause
construct-type-clause: Any accepted for

construct-type-clause by the cancel construct.

declare directive
declare reduction [2.19.5.7] [2.16]
Declares a reduction-identifier used in a reduction clause.

C/
C+

+ #pragma omp declare reduction (reduction-identifier :
typename-list : combiner) [initializer-clause]

Fo
r !$omp declare reduction (

reduction-identifier : type-list : combiner)
[initializer-clause]

type-list or typename-list: A list of type specifiers
initializer-clause: initializer (initializer-expr)

where initializer-expr is omp_priv = initializer or
function-name (argument-list

reduction-identifier: C/C++
A base language identifer (for C), or an id-expression
(for C++), or one of the following operators: +, -, *,
&, |, ^, &&, and ||

combiner: C/C++
An expression

reduction-identifier: For
A base language identifier, user defined operator, or
one of the following operators:
+, -, *, .and., .or., .eqv., .negv., or one of the following
intrinsic procedure names: max, min, iand, ior, ieor.

combiner: For
An assignment statement or a subroutine name
followed by an argument list.

openmp.org

The OpenMP® API gives parallel programmers
a simple and flexible interface for developing
portable, scalable parallel applicatons in C/C++
and Fortran.

The OpenMP tasking features are suitable for
complex applications that require to parallelize
irregular algorithms. OpenMP tasks are a modern
way of expressing concurrency and parallelism.

Functionality new/changed in OpenMP 5.0 is in this color, and in OpenMP 4.5 is in this color.
[n.n.n] Sections in the 5.0 spec. [n.n.n] Sections in the 4.5 spec. • Deprecated in the 5.0 spec. C/

C+
+

C/C++ content Fo
r

Fortran content

OpenMP 5.0 TASKING 	 Page 2

© 2018 OpenMP ARB 	 OMP1118-01-TSK

Clauses
All list items appearing in a clause must be visible according to the scoping rules of the base language. Not all of the clauses listed in this section are valid on all directives.

Allocate Clause [2.11.4]

allocate ([allocator:] list)
Specifies the memory allocator to be used to obtain
storage for private variables of a directive.
 allocator:

C/C++ An expression of type const omp_allocator_t*
For An integer expression of the omp_allocator_t kind

Data Sharing Attribute Clauses [2.19.4] [2.15.3]
Applies only to variables whose names are visible in the
construct on which the clause appears.

shared (list)
Declares list items to be shared by generated tasks.

private (list)
Declares list items to be private to a task or a SIMD lane.

firstprivate (list)
Declares list items to be private to a task, and initializes
each of them with the value that the corresponding
original item has when the construct is encountered.

lastprivate ([lastprivate-modifier:] list)
Declares one or more list items to be private to an implicit
task or SIMD lane, and causes the corresponding original
list item to be updated after the end of the region.
 lastprivate-modifier: conditional

Depend Clause [2.17.11] [2.13.9]
Enforces additional constraints on the scheduling of
tasks or loop iterations, establishing dependences only
between sibling tasks or between loop iterations.

depend ([depend-modifier,]dependence-type : locator-list)
 dependence-modifier: iterator (iterators-definition)
 dependence-type: in, out, inout, mutexinoutset, depobj

•	 in: The generated task will be dependent of all
previously generated sibling tasks that reference
at least one of the list items in an out or inout
dependence-type list.

•	 out and inout: The generated task will be dependent
of all previously generated sibling tasks that
reference at least one of the list items in an in, out,
or inout dependence-type list.

•	 mutexinoutset: If the storage location of at least one
list item matches that of one appearing in a depend
clause with an in, out, or inout dependence-type on
a construct from which a sibling task was previously
generated, then the generated task will be a
dependent task of that sibling. If the storage location
of at least one of the list items is the same as that
of a list item appearing in a depend clause with a
mutexinoutset dependence-type on a construct from
which a sibling task was previously generated, then
the sibling tasks will be mutually exclusive.

•	 depobj: The task dependences are derived from the
depend clause specified in the depobj constructs
that initalized dependences represented by the
depend objects specified on in the depend clause as
if the depend clauses of the depobj constructs were
specified in the current construct.

If Clause [2.15] [2.12]
For combined or composite constructs, it only applies to
the semantics of the construct named in the directive-
name-modifier if one is specified. If none is specified for
a combined or composite construct then the if clause
applies to all constructs to which an if clause can apply.

if ([directive-name-modifier :] scalar-expression) C/C++

if ([directive-name-modifier :] scalar-logical-expression) For

Reduction Clauses [2.19.5]

reduction ([reduction-modifier ,] reduction-identifier : list)
Specifies a reduction-identifier and one or more list items.
 reduction-modifier: inscan, task, default
 reduction-identifier: C++ Either an id-expression or one

of the following operators: +, -, *, &, |, ^, &&, ||
 reduction-identifier: C Either an identifier or one of the

following operators: +, -, *, &, |, ^, &&, ||
 reduction-identifier: For Either a base language

identifier, or a user-defined operator, or one of the
following operators: +, -, *, .and., .or., .eqv., .neqv.,
or one of the following intrinsic procedure names:
max, min, iand, ior, ieor.

task_reduction (reduction-identifier: list)
Specifies a reduction among tasks.
 reduction-identifier: Same as for reduction

in_reduction (reduction-identifier: list)
 reduction-identifier: Same as for reduction

Tasking Clauses [2.10] [2.9]

affinity ([aff-modifier:] locator-list)
A hint to execute closely to the location of the list items.
aff-modifier is iterator (iterators-definition).

allocate ([allocator:]list)
See Allocate Clause, page 9 of this guide.

collapse (n)
Constant positive integer expression specifying how many
loops are associated with the taskloop construct.

final (scalar-expression) C/C++
final (scalar-logical-expression) For
The generated task will be a final task if the final
expression evaluates to true.

firstprivate (list)
See Data Sharing Attribute Clauses, page 9 of this guide.

grainsize (grain-size)
Causes the number of logical loop iterations assigned to
each created task to be >= the minimum of the value of
the grain-size expression and the number of logical loop
iterations, but less than two times the value of the grain-
size expression.

 if ([task :] scalar-expression) C/C++
if ([task :] scalar-logical-expression) For
See If Clause, page 10 of this guide.

in_reduction (reduction-identifier: list)
See Reduction Clauses in this guide.

mergeable
Specifies that the generated task is a mergeable task.

nogroup
Prevents an implicit taskgroup region to be created.

num_tasks (num-tasks)
Create as many tasks as the minimum of the num-tasks
expression and the number of logical loop iterations.

priority (priority-value)
A non-negative numerical scalar expression that specifies
a hint for the priority of the generated task.

reduction ([default ,] reduction-identifier: list)
See Reduction Clauses in this guide.

untied
If present, any thread in the team can resume the task
region after a suspension.

Iterators

iterator [2.1.6]
Identifiers that expand to multiple values in the clause
on which they appear.

iterator (iterators-definition)
iterators-definition:

iterator-specifier [, iterators-definition]
iterators-specifier:

[iterator-type] identifier = range-specification
iterator-type: A type name or specifier.
identifier: A base language identifier.
range-specification: begin : end[: step]

begin, end: Expressions for which their types can be
converted to iterator-type

 step: An integral expression.

Copyright © 2018 OpenMP Architecture Review Board.
Permission to copy without fee all or part of this material is
granted, provided the OpenMP Architecture Review Board
copyright notice and the title of this document appear.
Notice is given that copying is by permission of the OpenMP
Architecture Review Board. Products or publications

based on one or more of the OpenMP specifications must
acknowledge the copyright by displaying the following
statement: “OpenMP is a trademark of the OpenMP
Architecture Review Board. Portions of this product/
publication may have been derived from the OpenMP
Language Application Program Interface Specification.”

®

parallel master [2.13.6]
Shortcut for specifying a parallel construct containing one
master construct and no other statements.

C/
C+

+ #pragma omp parallel master [clause[[,]clause] ...]
 structured-block

Fo
r !$omp parallel master [clause[[,]clause] ...]

 structured-block
$omp end parallel master

clause:
Any clause used for parallel or master.

master taskloop [simd] [2.13.7-8]
Shortcut for specifying a master construct containing a
taskloop [simd] construct and no other statements.

C/
C+

+ #pragma omp master taskloop [simd] [clause[[,]clause] ...]
 for-loops

Fo
r !$omp master taskloop [simd] [clause[[,]clause] ...]

 do-loops
[$omp end master taskloop [simd]]

clause:
Any clause used for master or taskloop [simd].

parallel master taskloop [simd] [2.13.9-10]
Shortcut for specifying a parallel construct containing a
master taskloop [simd] construct and no other statements.

C/
C+

+ #pragma omp parallel master taskloop [simd]\
 [clause[[,]clause] ...]
 for-loops

Fo
r !$omp parallel master taskloop [simd] [clause[[,]clause] ...]

 do-loops
[$omp end parallel master taskloop [simd]]

clause:
Any clause used for parallel or master taskloop
[simd] directives, except the in_reduction clause.

