PHYS:7729 Homework \#2

Due at the beginning of class, Thursday, February 9, 2023.

1. (6 pts) Show that the determinant of the matrix

$$
\left(\begin{array}{ccc}
S-n^{2} \cos ^{2} \theta & -i D & n^{2} \sin \theta \cos \theta \\
i D & S-n^{2} & 0 \\
n^{2} \sin \theta \cos \theta & 0 & P-n^{2} \sin ^{2} \theta
\end{array}\right)
$$

can be written in the form of the Booker Quartic

$$
A n^{4}-B n^{2}+C=0
$$

where

$$
\begin{gathered}
A=S \sin ^{2} \theta+P \cos ^{2} \theta \\
B=R L \sin ^{2} \theta+P S\left(1+\cos ^{2} \theta\right)
\end{gathered}
$$

and

$$
C=R L P
$$

2. (6 pts) Prove that the index of refraction for cold plasma waves (the solution of the Booker Quartic above) is either purely real or purely imaginary, but never complex. Hint: Show that the discriminant $B^{2}-4 A C$ is positive definite.
3. (10 pts) In the limit $\omega \rightarrow 0$, show that

$$
\begin{gathered}
R=L=S=1+\sum_{s} \frac{\omega_{p s}^{2}}{\omega_{c s}^{2}} \\
D=0
\end{gathered}
$$

and

$$
P=-\sum_{s} \frac{\omega_{p s}^{2}}{\omega^{2}}
$$

4. (9 pts) Assuming that the ions are infinitely massive, derive the equations for the following characteristic frequencies:
(a) The right-hand cutoff frequency, ω_{R}
(b) The left-hand cutoff frequency, ω_{L}
(c) The upper hybrid frequency, $\omega_{U H}$
5. Whistler Waves
(a) (6 pts) Assuming the wave frequency is sufficiently high that the ions do not move, that $\omega \ll \omega_{p}$, and that $\left|\omega_{c e}\right| \ll \omega_{p}$, show that the index of refraction for whistler waves with a wave vector at an angle θ with respect to the mean magnetic field is approximately

$$
n^{2}=\frac{\omega_{p}^{2}}{\omega\left(\left|\omega_{c e}\right| \cos \theta-\omega\right)}
$$

(b) (1 pt) Sketch $n(\theta)$ for $\omega \ll\left|\omega_{c e}\right|$ as a polar plot.
(c) (1 pt) Sketch $n(\theta)$ for $\omega=\left|\omega_{c e}\right| / 4$ as a polar plot.
(d) (1 pt) Sketch $n(\theta)$ for $\omega=\left|\omega_{c e}\right| / 2$ as a polar plot.

