I. Phenomenological Picture of Turbulence

A. Example: Mixing cream into coffee
 - 1. Unmixed
 - 2. Stir a couple of times
 - 3. Mixed

 Note: With just a couple of short stirs, the cream mixes rapidly to a smooth distribution.

B. Example: Mixing paint
 - 1. Unmixed
 - 2. Stir a couple of times
 - 3. Not well mixed.

⇒ The difference in results is due to turbulence!
Flow in the coffee is turbulent, in the paint is laminar.

How can we describe the action of turbulence?
A. Cartoon Picture of Turbulence

1. Cascade continues until some dissipative mechanism damps the turbulence.
 a. In a hydrodynamic fluid (i.e., water), viscosity dampens the turbulence.

2. Def: Reynolds's Number: \[R = \frac{LV}{V} \]
 a. \(\nu \) = viscosity
 b. Turbulence flows occur when \(R \geq 100 \).

II. Kolmogorov's Theory of Turbulence (1941)
A. Kolmogorov's Hypothesis
 1. The energy transfer in the inertial range is local in scale-space.
 2. Energy cascade rate through inertial range is constant.

B. Local Energy Transfer
 1. Transfer is dominated by interactions between eddies of similar scales.

 a. \(\ell \to \ell / 2 \)
 b. NOT \(\ell \to \ell / 16 \)

 \[\circ \Rightarrow \Box \]

 \[\circ \Rightarrow \circ \]

C. Cascade Cascade Rate
 1. In steady state, if cascade rate were not constant (a function of scale), energy would build up or diminish at some scale \(\Rightarrow \) Not a steady state

 \[\frac{\text{\(T_{in} > T_{up} \)}}{\ell / 2} \]

 \[\frac{\text{\(T_{in} < T_{up} \)}}{\ell / 4} \]
II. (Continued)

D. Energy Spectrum:

1. In general, a three dimensional fluctuation is a function of \(k = (k_x, k_y, k_z) \), so the energy is given by \(E(k_x, k_y, k_z) \).

2. This is the 3-dimensional energy spectrum \(E^{(3)}(k_x, k_y, k_z) \).

a. Total Energy

\[
E = \iiint d^3k \cdot E^{(3)}(k_x, k_y, k_z)
\]

3. If the distribution of energy is isotropic in \(k \)-space, we can use spherical coordinates so that

\[
E = \iiint k^2 \sin \theta d\theta d\phi \cdot E^{(3)}(k_x, k_y, k_z)
\]

a. Integrating over \(\theta \) and \(\phi \) angles, we are left with

\[
E = \int dk \cdot k^2 E^{(3)}(k) = \int dk \cdot E^{(1)}(k)
\]

b. This defines the 1-dimensional energy spectrum \(E^{(1)}(k) \).

4. Turbulence literature can be confusing because some authors quote 3-0 spectra, others 1-0 spectra.

a. \(E^{(3)} \) 3-0: \(E^{(3)} \propto k^{-5/3} \)

b. Here we will discuss 1-0 spectra only, so we'll drop the superscript "(1)".

c. 1-0 Energy Spectrum has units \(\left[\frac{E}{k} \right] \)
E. Inertial Range:

1. **DEF:** Inertial Range: The range of scales in turbulence unaffected by driving or dissipation (bounded by the driving and dissipation scales). In this range, the physics is assumed to be **Self-similar**.

2. Wave-number Energy Spectrum

 - **Kinetic Energy:** $\log(E_k)$
 - **Logarithm:** $\log(k)$

 - **Energy injected**
 - **Energy dissipated**

 - **Spectral Index p**: Slope of power-law (self-similar) spectrum on a log-log plot.

 - Self-similar physics yields power law behavior, giving a straight line on a log-log plot of E_k vs. k.

 - **Driving Scale, L**
 - **Viscous Scale, ν**
F. Eddy Turnaround Time

1. The local hypothesis suggests the timescale T for energy transfer at a given scale $l \sim \frac{1}{k}$ is determined only by the conditions at that scale.

2. This timescale in hydrodynamics is assumed to be the eddy turnaround time:

DEF: Eddy Turnaround Time: $T \sim \frac{l}{V}$

3. NOTE: In our scaling arguments, we drop all factors of order unity. Thus $\tau = \frac{\tau \sim l}{V}$

3. NOTE: In our scaling calculations, we will generally use wave number $k \sim \frac{1}{l}$ and frequency $\omega \sim \frac{1}{T}$.

a. Thus Eddy turnover frequency $\omega \sim kV$

b. Frequency of energy transfer from k to $2k$ is $\omega \sim kV_k$

C. Kolmogorov's Scaling Arguments:

1. Assuming a cascade energy transfer rate

\[\epsilon \sim \frac{\text{(energy)}}{\text{(time)}} \sim \frac{\text{(energy)}}{\text{(frequency)}} \sim V_k^2 (kV_k) \]

Here we assume an incompressible fluid, $\rho = \rho_0$. Thus $\frac{\epsilon}{\nu} = \frac{1}{2} \nu^2 \sim V^2$.

\[V_k = \nu (k) \]
2. Thus, a consequence energy transfer gives
\[E_0 = E = k V_k^3 \]
a. We can solve for \(V_k = V(k) \),
\[V_k = E_0^{\frac{1}{3}} k^{-\frac{1}{3}} \]
Thus \(V_k \propto k^{-\frac{1}{3}} \)

3. 1-D Energy Spectrum:
a. Energy spectrum \(E_k = E(k) \sim \text{Energy} \sim \frac{V_k^2}{k} \sim E_0^{\frac{2}{3}} k^{-\frac{5}{3}} \)
Therefore \(E_k \propto k^{-\frac{5}{3}} \) This is the famous Kolmogorov Spectrum.

4. Summary:
a. \(V_k \sim E_0^{\frac{1}{3}} k^{-\frac{1}{3}} \)
b. \(E_k \sim E_0^{\frac{2}{3}} k^{-\frac{5}{3}} \)
c. For driving \(V = V_0 \) at \(K \sim \frac{1}{L} = k_0 \), \(E_0 = k_0 V_0^3 \), thus
\[E_k \sim \frac{V_0^2}{k_0} \left(\frac{k}{k_0} \right)^{-\frac{5}{3}} \]
d. **Note**: Cascade time \(T_K \sim \frac{1}{\alpha k} \sim \frac{k}{k V_k} \sim \frac{k^5 k_0^3}{k_0^3} \propto k^{-\frac{2}{3}} \)

Since \(T_K \propto k^{-\frac{2}{3}} \), cascade time goes slower as turbulent motions go to smaller scale.
Lecture 4

II. (Continued)

H. Return to Hydrodynamic Equations

1. The Euler Equations for Hydrodynamics are

Continuity Eq: \(\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{u}) = 0 \)

Force Eq: \(\rho \left[\frac{\partial \mathbf{u}}{\partial t} + \mathbf{u} \cdot \nabla \mathbf{u} \right] = -\nabla p \)

Energy Eq: \(\rho T \frac{ds}{dt} = 0 \)

where Specific energy \(s = c_v \ln \left(\frac{P}{\rho_0} \right) \)

2. Focusing on the Force equation, \(\frac{\partial \mathbf{u}}{\partial t} + \mathbf{u} \cdot \nabla \mathbf{u} = -\frac{1}{\rho} \nabla p \)

a. If we Fourier transform in time and space, the above becomes

\(\mathbf{\omega} \cdot (k \cdot \mathbf{u}) \mathbf{u} = \frac{k^2}{\rho} p \)

Linear frequency of evolution, nonlinear frequency \(\text{freq} = k \nu \rightarrow \text{eddy turn around frequency}! \)

I. Testing the "Local Hypothesis"

1. Can big eddies shear apart small eddies before they cascade?

\(V_k = V_0 \left(\frac{K_0}{K} \right)^{\frac{1}{3}} \)

Shear \(\frac{V_0}{L} \sim k_0 V_0 \sim c_0 \)

\(\frac{c_0}{c} = \frac{k_0 V_0}{k V_k} = \frac{k_0 V_0}{k \left(V_0 \left(\frac{K_0}{K} \right)^{\frac{1}{3}} \right)} = \left(\frac{K_0}{K} \right)^{\frac{2}{3}} \ll 1 \Rightarrow \text{No} \)
2. Can small eddies diffuse the fluid across a larger eddy in a big eddy cascade time?

a. Diffusion coefficient due to eddy of size \(k \):
\[
D_k = \frac{L^2}{D_k} = \frac{C_k}{k^2} = \frac{K_k V_k}{k^2} = \frac{V_k}{k}
\]

b. Time to diffuse a distance \(L \):
\[
\tau_0 = \frac{L^2}{D_k} = \frac{1}{K_0 D_k} \sim \frac{1}{\omega_0}
\]

Thus \(\omega_0 = K_0^2 D_k = K_0^2 \left(\frac{V_k}{K} \right) = K V_k \left(\frac{K_0}{K} \right)^2 \)

c. Compare \(\omega_0 \) to eddy frequency at large scale \(\omega_0 = K_0 \omega_0 \)
\[
\frac{\omega_0}{\omega_0} = \frac{K V_k}{K_0 \omega_0} \left(\frac{k_0}{K} \right)^2 = \frac{X_0 (k_0)}{K} \left(\frac{k_0}{K} \right)^{\frac{1}{2}} \left(\frac{k_0}{K} \right)^{\frac{1}{3}} = \left(\frac{k_0}{K} \right)^{\frac{4}{3}} \ll 1 \Rightarrow \text{(No!)}
\]

\(V_k = V_0 \left(\frac{k_0}{K} \right)^{\frac{1}{2}} \)

3. We can compare the frequency of energy transfer at a given scale \(k_0 \).

\[
\omega_{k_0} \quad \omega_0
\]

- Shearing due to eddies of scale \(k \)
- Diffusion due to smaller eddies of scale \(k \)

"Local" energy transfer!

a. The peak occurs at \(k = k_0 \). Thus, it is the shearing/diffusion due to the local scale eddies with \(k \approx k_0 \) that dominates energy transfer from eddies at \(k_0 \) to smaller scales/higher wavenumbers, i.e., \(k_0 \approx 2k_0 \).
III. Trivishnikov-Kraichnan Theory of MHD Turbulence

A. How do we treat turbulence in a magnetized plasma?

1. Consider incompressible MHD:

\[
\frac{\partial \mathbf{V}}{\partial t} = -\mathbf{V} \cdot \nabla \mathbf{V} - \frac{1}{\rho_0} \nabla (p + \frac{\mathbf{V} \cdot \mathbf{B}^2}{2}) + \frac{\mathbf{B} \cdot \nabla \mathbf{B}}{\mu_0 \rho_0},
\]

\[
\frac{\partial \mathbf{B}}{\partial t} = \nabla \times (\mathbf{V} \times \mathbf{B}),
\]

\[
\nabla \cdot \mathbf{V} = 0, \quad \nabla \cdot \mathbf{B} = 0.
\]

2. Anisotropy: The presence of a magnetic field changes the dynamics in the directions perpendicular and parallel to the local magnetic field.

a. Kraichnan recognized that the presence of a mean magnetic field substantially changes the dynamics, unlike the presence of a mean flow.

1. A mean flow can be transformed away.
2. A mean magnetic field, however, introduces Alfvén waves into the system that causes perturbations to be carried away along the magnetic field.

b. At small enough scales, the large scale field of a magnetized plasma looks like a mean field, and so MHD turbulence can be thought of as a collection of Alfvén waves.
3. Nonlinear Interactions:
 a. The incompressible MHD equations can be written in terms of E"o"sser variables,
 \[\xi^\pm = \nu_\perp \pm \frac{8k_i}{\sqrt{4\pi\rho_0}} \]
 to give
 \[\frac{\partial \xi^\pm}{\partial t} + (v_\perp \cdot \nabla) \xi^\pm + (\xi^\mp \cdot \nabla) \xi^\pm = -\nabla p \] (1)
 where \(v_\perp = \frac{B_0}{\sqrt{4\pi\rho_0}} \)
 b. \(\xi^+ \) represents a wave travelling down \(B_0 \)
 c. \(\xi^- \) represents a wave travelling up \(B_0 \)
 c. \(\text{NOTE: Nonlinear term } (\xi^\mp \cdot \nabla) \xi^\pm \text{ is non-zero only when both } \xi^+ \neq 0 \text{ and } \xi^- \neq 0. \)
 d. \(\text{When } \xi^- = 0, \text{ for example, eq (1) simplifies to } \frac{\partial \xi^+}{\partial t} + v_\perp \cdot \nabla \xi^+ = 0 \)

\(\Rightarrow \text{Nonlinear interactions occur only between Alfvén waves travelling in opposite directions along the mean field} \)
\[\frac{\partial V_z^+}{\partial t} - V_z^+ \nabla^2 p = 0 \]

We can see this if we take \(V_z \) of eq (1):

Since \(\nabla^2 p = 0 \) (for incompressible MHD), then \(\nabla^2 p = 0 \).

Unless \(p \neq 0 \) at \(\infty \), when then see that pressure is constant everywhere, so \(\nabla p = 0 \), leaving our result:

\[\frac{\partial V_z^+}{\partial t} - V_z^+ \nabla^2 p = 0 \]

This describes a wave packet of arbitrary form and amplitude \(V_z^+ \) propagating in the \(-z \) direction.

This is an exact nonlinear solution, true when all Alfvén wave energy is moving in one direction.

6. Nonlinear interactions require \(V_z^+ \neq 0 \).

(a) In terms of Fourier modes, \(\bar{Z} = \bar{K}_z \bar{Z}_z \).

(c) Since \(\bar{Z} = \bar{V}_z + \frac{\bar{B}_z}{\sqrt{\mu_0 \rho}} \), it is in the perpendicular plane, so the \underline{nonlinear} frequency \(\omega \sim K_z \bar{Z}_z - K_z \bar{V}^{-} \).

(b) This if \(K_z^+ = K_z^\perp \), then it is the \underline{comparsion} \(\bar{Z} \)

(f) For an Alfvén wave with \(K_z^+ = K_z^\perp \), \(\bar{Z}_z^+ = \bar{Z}_z^\perp \).
B. Zrazhnikov-Kraichnan (IK) Spectrum

1. Assumes, like Kolmogorov's Hydrodynamical Theory, that the transfer of energy to small scales occurs isotropically in wave vector space.

2. a. Nonlinear interactions occur between Alven wave packers of parallel length \(k_1 \sim k \sim \frac{1}{k} \)

b. Interaction time is given by Alven wave crossing time:
\[
\tau \sim \frac{1}{k v_k} \sim \frac{1}{\omega}
\]

c. Perturbation occurring in a single collision at wavenumber \(k \):
\[
\frac{\delta v_k}{v_k} \sim \frac{\delta v_k(v_k)}{(k v_k) v_k} \sim \frac{v_k}{v_k} \frac{1}{k v_k} \sim \frac{v_k}{v_k^2}
\]
d. Thus, the fractional perturbation in one collision is

\[
\frac{\Delta v_k}{v_k} \sim \frac{v_k}{v_A}
\]

e. Assuming collisions are uncorrelated, each collision produces a random kick. The number of random kicks needed to produce an order unity change \(\Delta v_k \) is

\[
N \sim \left(\frac{v_A}{\Delta v_k} \right)^2 \sim \left(\frac{v_A}{v_k} \right)^2
\]

f. Therefore, the time to transfer all energy at \(K \) to \(2K \) is

\[
\tau \sim N \left(\frac{1}{k v_A} \right) \sim \left(\frac{v_A}{v_k} \right)^2 \frac{v_A}{k v_A} \sim \frac{v_A}{k v_k^2} \sim \frac{1}{t_{2K}}
\]

9. So, assuming a constant energy cascade rate

\[
E = E_0 = \frac{v_k^2}{T_k} = v_k^2 c_k = \frac{k v_k^4}{v_A}
\]

(Compare to hydrodynamics, \(\omega \sim k v_k^2 \))

b. Therefore, for \(E_0 = \frac{k_0 v_0^4}{v_A} \) for driving at \(k_0 \) with velocity \(v_0 \), we find

\[
v_k = v_0 \left(\frac{k}{k_0} \right)^{\frac{1}{4}}
\]

or

\[
v_k \propto k^{-\frac{1}{4}}
\]

3. Energy Spectrum:

\[
E_k \sim \frac{v_k^2}{K} \sim v_0^2 k^{\frac{1}{2}} \left(\frac{k}{k_0} \right)^{-\frac{3}{2}}, \quad \boxed{E_k \propto k^{-\frac{3}{2}}}
\]

This is referred to as the Inzhinskii–Kraichnan Spectrum.
4. **Weakening Turbulence:**
 a. Note the number of collisions, \(N \), required at a given \(k \):
 \[
 N \sim \left(\frac{v_k}{v_0} \right)^2 \sim \frac{V_k^2}{V_0^2} \left(\frac{k_0}{k} \right)^4 \text{ or } N \propto k^4
 \]
 The number of collisions required increases with \(k \), so the nonlinear interactions become weaker at smaller scales.

 b. Therefore, the theory formally has an infinite inertial range (until dissipation sets in).

IV Summary: Isotropic Turbulence Theories

A. **Hydrodynamic:**
 1. Kolmogorov Hypothesis:
 a. Local Energy Transfer
 b. Cascade Energy Cascade Rate
 2. Nonlinear energy transfer frequency \(\omega_k \sim k V_k \)
 3. 1-D Energy Spectrum \(E_k \propto k^{-5/3} \)

B. **MHD:**
 1. MHD Turbulence can be thought of as Alfvén waves travelling up and down a mean magnetic field
 2. Nonlinear interactions occur only between oppositely directed Alfvén waves
 3. ZK Theory:
 a. Isotropic Energy Transfer
 b. Nonlinear energy transfer frequency \(\omega_k \sim \frac{K V_k}{V_A} \)
 c. 1-D Energy Spectrum \(E_k \propto k^{-3/2} \)