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Kinetic Turbulence

Gregory G. Howes

Abstract The weak collisionality typical of turbulence in many diffuse astrophysi-
cal plasmas invalidates an MHD description of the turbulentdynamics, motivating
the development of a more comprehensive theory of kinetic turbulence. In particu-
lar, a kinetic approach is essential for the investigation of the physical mechanisms
responsible for the dissipation of astrophysical turbulence and the resulting heating
of the plasma. This chapter reviews the limitations of MHD turbulence theory and
explains how kinetic considerations may be incorporated toobtain a kinetic theory
for astrophysical plasma turbulence. Key questions about the nature of kinetic tur-
bulence that drive current research efforts are identified.A comprehensive model of
the kinetic turbulent cascade is presented, with a detaileddiscussion of each compo-
nent of the model and a review of supporting and conflicting theoretical, numerical,
and observational evidence.

1 Introduction

The study of turbulence in astrophysical plasmas has almostexclusively employed
a magnetohydrodynamic (MHD) description of the turbulent dynamics, treating the
magnetized plasma as a single fluid, an approximation valid for large-scale, low-
frequency dynamics in the strongly collisional limit. Yet,the plasmas in a wide va-
riety of turbulent astrophysical environments often violate one or more of the condi-
tions required by the MHD approximation, particularly on the small scales at which
dissipation mechanisms act to damp the turbulent fluctuations, ultimately leading to
heating of the plasma. The study of the turbulent dynamics atsmall scales and of
the physical mechanisms responsible for the dissipation ofthe turbulence generally
requires a kinetic treatment. Thus, it is necessary to leavebehind the comfortable
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surroundings of the theory of MHD turbulence and enter the uncharted territory of
the evolving theory ofkinetic turbulence.

1.1 Quantitative Characterization of Plasma Turbulence

Turbulent systems are typically described theoretically by a spectral decomposi-
tion of the broadband spatial fluctuations into a sum of planewave modes, each
characterized by its three dimensional wavevector, phase,and amplitude. An en-
ergy spectrum of the turbulent fluctuations therefore provides a useful quantitative
description of the turbulent system. In a magnetized plasma, the three-dimensional
wavevector space can be reduced to two dimensions by assuming axial symmetry
about the direction of the equilibrium magnetic field, requiring only the specification
of the turbulent power with respect to the cylindrical components of the wavevec-
tor, k⊥ and k‖. The nature of the dynamics in the different ranges of the kinetic
turbulent cascade can be quantitatively characterized by two properties: (1) theone-
dimensional magnetic energy spectrum in perpendicular wavenumber,EB(k⊥); and
(2) thewavevector anisotropy, or the distribution of turbulent power in wavevec-
tor space. HereEB(k⊥) is defined such that the total magnetic energy is given by
EB =

∫

dk⊥EB(k⊥). For Alfvénic turbulence that is driven isotropically at the outer-
scale wavenumberk0, the conjecture of critical balance implies that the turbulent
power fills a region of the cylindrical wavevector space satisfying k‖ . k1−q

0 kq
⊥.

Specification of the scaling of the boundary of this region,k‖ ∝ kq
⊥, is sufficient to

completely characterize the anisotropic distribution of turbulent power.

1.2 Limits of MHD Treatment of Astrophysical Turbulence

The limitations of an MHD treatment of astrophysical turbulence can be illumi-
nated by considering the domain of applicability of MHD turbulence theory within
the broader context of plasma turbulence. Beginning with the general theory of the
turbulent cascade of kinetic energy in hydrodynamic systems, we consider the modi-
fications required to describe the turbulent energy cascadein the magnetized plasma
systems relevant to astrophysical environments.

1.2.1 From Fluid to Kinetic Models of the Turbulent Cascade

The limitations of MHD turbulence theory can be illustratedmost clearly by a qual-
itative comparison of the features of nonlinear cascade of energy in hydrodynamic
turbulence, MHD turbulence, and kinetic turbulence.

In hydrodynamic systems, turbulent motions are driven at some large scaleL,
denoted the driving or energy injection scale. Nonlinear interactions serve to trans-
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fer the turbulent kinetic energy to motions at ever smaller scales, until reaching a
small scalelν at which dissipation via viscous damping is sufficient to terminate the
turbulent cascade. For typical hydrodynamic systems, a large dynamic range exists
between the driving and dissipation scales,L/lν ≫ 1. In that case, one may define
an inertial range of scalesl within which the effects of the driving and dissipa-
tion are negligible,L ≫ l ≫ lν . Within the inertial range, there exists no particular
characteristic length scale, so the dynamics of the turbulence in the inertial range
is found to be self-similar, and a simple application of dimensional analysis is suf-
ficient to describe accurately the steady-state hydrodynamic turbulent cascade of
energy (Kolmogorov, 1941). A qualitative diagram of the kinetic energy wavenum-
ber spectrum for the hydrodynamic turbulence cascade is shown in Figure 1(a).

In magnetohydrodynamic systems, the turbulence theory must be modified in
three important ways. First, the dynamics of two turbulent fields, the velocity and
the magnetic field, must be described, so the cascade of both kinetic and magnetic
energy is mediated by nonlinear turbulent interactions. Second, fluctuations of the
two turbulent fields are dissipated by distinct mechanisms,viscosity for the veloc-
ity and resistivity for the magnetic field. The characteristic length scales of viscous
dissipationlν and resistive dissipationlη need not be equal, and their ratio is char-
acterized by the magnetic Prandtl number Prm ≡ lν/lη . Third, the magnetic field
in the plasma establishes a preferred direction, leading todistinct dynamics in the
direction parallel to the magnetic field and in the plane perpendicular to the mag-
netic field. In addition, the magnetic tension provided by the magnetic field supports
a type of linear wave, the Alfvén wave, which has no counterpart in the hydrody-
namic case, transforming the nature of the turbulent motions from hydrodynamic
vortices to magnetohydrodynamic waves. This third complication is the most sig-
nificant change from hydrodynamic turbulence, and leads to the inherent anisotropy
of MHD turbulence, where turbulent energy is transferred more rapidly to small
perpendicular scalesl⊥ than to small parallel scalesl‖. Nonetheless, despite these
significant differences, the overall qualitative picture of the turbulent energy cascade
in MHD turbulence bears a striking resemblance to the hydrodynamic case.

Consider, in particular, the simplified case of MHD turbulence in a Prm = 1
plasma, so there exists a single dissipation scaleld = lν = lη . One may define an
MHD inertial range,L ≫ l⊥ ≫ ld , directly analogous to the hydrodynamic case.
Due the anisotropy of the turbulent energy transfer, the turbulent dynamics are op-
timally described with respect to the perpendicular scalel⊥. The evolution of the
parallel scale is determined in terms of the perpendicular scale by the condition
of critical balance (Goldreich and Sridhar, 1995), so thatl‖ ∝ lq

⊥. The exponent
q describes thescale-dependent anisotropy of the MHD turbulent cascade, where
q= 2/3 in the Goldreich-Sridhar model (Goldreich and Sridhar, 1995), andq= 1/2
in the Boldyrev model (Boldyrev, 2006). Similar to the hydrodynamic case, in the
MHD inertial range, there exists no characteristic length scale, so the dynamics of
MHD turbulence is found to be self-similar as well. Therefore, for the Prm = 1 case,
the MHD turbulence theory appears nearly the same as the hydrodynamic turbu-
lence theory, with a few minor changes: (1) the turbulent cascade is described by
the perpendicular scalel⊥ rather than an isotropic scalel; (2) there exists a scale-
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Fig. 1 (a) Wavenumber spectrum for kinetic energy in hydrodynamicturbulence, from the driving
scale,L, through the inertial range, to the viscous dissipation scale, lν . (b) Perpendicular wavenum-
ber spectrum for total energyE =Ek +EB in MHD turbulence with Prm = 1, from the driving scale,
L, through the inertial range, to the viscous and resistive dissipation scale,ld = lν = lη .
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dependent anisotropy due to the parallel scalingl‖ ∝ lq
⊥; and (3) the exponentp in

the self-similar power law solution for the one-dimensional energy spectrumE ∝ kp
⊥

may differ quantitatively from the hydrodynamic solution.But the general quali-
tative picture—a self-similar MHD turbulent cascade of energy from the driving
scaleL, through an inertial range, to the dissipative scaleld—remains essentially
the same as the hydrodynamic cascade, as is evident by comparing the diagram
of the wavenumber spectrum for total energyE = Ek +EB in the MHD turbulent
cascade in Figure 1(b) to the hydrodynamic case in Figure 1(a).

In kinetic plasma systems, this simple qualitative model ofthe turbulent cascade
changes dramatically due to the existence of three characteristic length scales and
new physics associated with each of these scales. The three characteristic length
scales that come into play in typical conditions for turbulent astrophysical plasmas
are the ion mean free pathλi, the ion Larmor radiusρi, and the electron Larmor
radiusρe. The MHD approximation requires the following four conditions:

1. Nonrelativistic conditions,vts/c ≪ 1
2. Strongly collisional conditions,λi/l ≪ 1
3. Large-scale motions,ρi/l ≪ 1
4. Low-frequency dynamics,ω/Ωi ≪ 1

Herevts =
√

2Ts/ms is the thermal velocity1 of speciess, ω is the typical frequency
of the turbulent fluctuations, andΩi is the ion cyclotron frequency. It is clear that, in
the MHD approximation, all three of the characteristic scales above are assumed to
be infinitesimal compared to the typical scale of the turbulent motions,l. However,
in astrophysical plasmas of interest, the turbulent dynamics frequently violate con-
ditions (2) and (3) above2. Therefore, it is important to examine more closely how
these characteristic scales enter into the dynamics of the turbulent cascade in astro-
physical plasmas, leading to a violation of the MHD approximation and requiring
the transition to a kinetic description of the turbulent dynamics.

1.2.2 Violation of the MHD Approximation

Spacecraft measurements of turbulence in the solar wind provide invaluable guid-
ance for the construction of a theoretical model that describes the energy spectrum
of the kinetic turbulent cascade. Recent measurements of solar wind turbulence with
unprecedented temporal resolution enable us to probe the turbulent dynamics down
to the scale of the electron Larmor radius (Sahraoui et al., 2009; Kiyani et al., 2009;
Alexandrova et al., 2009; Chen et al., 2010; Sahraoui et al.,2010; Alexandrova et al.,
2012). Therefore, we now have a fairly complete observational picture of the ki-
netic turbulent cascade in the solar wind over a dynamic range of 106 from the
the large energy injection scale atL ∼ 106 km down to the scale of the electron

1 HereTs is expressed in units of energy, absorbing the Boltzmann constant.
2 Note that condition (4) is not generally independent of condition (3). For MHD Alfvén waves,
the conditionω ≪ Ωi may be alternatively writtenρi/l‖ ≪

√

βi, where the ion plasma beta is

βi = 8πniTi/B2. Thus, if
√

βi ∼ O(1), then condition (4) is roughly equivalent to condition (3).
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Larmor radius atρe ∼ 1 km. From the large body of turbulence measurements in
the solar wind (Sahraoui et al., 2009; Kiyani et al., 2009; Alexandrova et al., 2009;
Chen et al., 2010; Sahraoui et al., 2010; Alexandrova et al.,2012), we can construct
a general diagram for the perpendicular wavenumber spectrum of the magnetic en-
ergy in turbulent astrophysical plasmas, shown in Figure 2(a). It is important to
emphasize here that, although the general form of the magnetic energy spectrum
is well established from observations, the interpretationof this spectrum in terms
of the characteristic plasma scales requires significant input from plasma kinetic
theory, and many of the features of Figure 2(a) remain topicsof active research.

In Figure 2(a), the plasma turbulence is driven at some largescaleL ≫ ρi. It is
generally assumed, in the absence of arguments to the contrary, that the turbulence is
driven isotropically with respect to the magnetic field, so that the perpendicular and
parallel components of the driving wavevectork0 are equal,k‖0 ∼ k⊥0 ∼ k0 ∼ 1/L.
If the plasma conditions at the driving scale satisfy the MHDapproximation, then
the large scale end of the turbulent cascade is described by MHD turbulence theory.
Although the turbulent fluctuations in an MHD plasma may, in general, be com-
posed of a mixture fast, Alfvén, and slow waves, observational and numerical evi-
dence suggests that Alfvén waves dominate the turbulent dynamics in typical astro-
physical plasmas (this point is discussed further below). For the Alfvénic turbulent
cascade, the one-dimensional magnetic energy spectrum as afunction of perpen-
dicular wavenumberk⊥ scales asEB ∝ kp

⊥, where the spectral index isp = −5/3
in the Goldreich-Sridhar model (Goldreich and Sridhar, 1995) or p = −3/2 in the
Boldyrev model (Boldyrev, 2006). The wavevector anisotropy of the anisotropic
Alfvénic cascade scales ask‖ ∝ kq

⊥, where the values forq are given in§1.2.1; this
anisotropic cascade of energy through wavevector space is depicted in Figure 2(b).

As the MHD turbulent cascade transfers energy to smaller scales (higher wavenum-
ber), it eventually reaches the one of the characteristic length scalesλi, ρi, or ρe, at
which point the MHD approximation is violated. Here we focuson exploring how
these length scales enter into the model for kinetic turbulence and what effect they
have on the turbulent dynamics. For typical conditions in astrophysical plasmas, the
characteristic length scales are ordered byλi > ρi > ρe, so the ion mean free pathλi

is usually reached first.
The ion mean free pathλi characterizes the collisionality for the motion of

plasma particles parallel to the magnetic field3, so it must be compared to the par-
allel wavenumberk‖. Fork‖λi ≪ 1, the plasma is strongly collisional; fork‖λi ≫ 1,
the plasma is weakly collisional. Fluid approximations, such as hydrodynamics or
MHD, break down for plasma conditionsk‖λi & 1, so kinetic theory is formally re-
quired to describe the plasma dynamics in moderately to weakly collisional regimes.

3 The Lorentz force limits the perpendicular motion of plasmaparticles to the particle Larmor
radius. Since typical astrophysical conditions yieldρi ≪ λi, the plasma is essentially always colli-
sionless in the perpendicular direction. Note, however, that because plasma particles cannot move
beyond the Larmor radius in the perpendicular direction from the magnetic field, this embodies the
large-scaleperpendicular motions,l⊥ ≫ ρi, with a fluid-like behavior, even under weakly colli-
sional conditions.
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Fig. 2 (a) Perpendicular wavenumber spectrum for magnetic energyin kinetic turbulence, from
the driving scale,L, through the MHD inertial range to the ion Larmor radiusρi, where the turbu-
lent cascade enters the kinetic dissipation range, and downto the electron Larmor radiusρe. The
transition from collisional to collisionless dynamics occurs atk⊥c. (b) Wavevector anisotropy in

kinetic turbulence, scaling askq
⊥ in the MHD inertial range,k1/3

⊥ in the kinetic dissipation range,
andk0

⊥ (no parallel cascade) beyond electron scales. The transition from collisional to collisionless
dynamics occurs atk‖ρi ∼ 1.
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As depicted in Figure 2(b), at some point in the MHD inertial range, the parallel
scales may reach the scale of the ion mean free path,k‖λi ∼ 1, marking the transition
from collisional dynamics that is well described by MHD atk‖λi ≪ 1 to collisionless
dynamics that requires a kinetic description atk‖λi ≫ 1. The condition of critical
balance determines the relation between the parallel and perpendicular wavenum-
bers of strong MHD turbulence (Goldreich and Sridhar, 1995), so we may define the
perpendicular wavenumberk⊥c that corresponds to the transition of collisionality at
k‖λi ∼ 1. This transition in the perpendicular wavenumber spectrum typically oc-
curs at perpendicular scales larger than the ion Larmor radius,k⊥cρi < 1, as shown
in Figure 2(a). For perpendicular wavenumbersk⊥ ≪ k⊥c, the strongly collisional
dynamics is well described by MHD, and fork⊥ ≫ k⊥c the weakly collisional dy-
namics require a kinetic description, as depicted in Figure2(a).

For the weakly collisional rangek⊥ ≫ k⊥c, it has been shown rigorously from
kinetic theory that the Alfvénic turbulent fluctuations remain essentially fluid in
nature (Schekochihin et al., 2009). The Alfvénic turbulent cascade continues to be
accurately described by the equations of reduced MHD (Strauss, 1976) and remains
undamped down to the perpendicular scale of the ion Larmor radius, k⊥ρi ∼ 1
(Schekochihin et al., 2009). Therefore, although the MHD approximation is for-
mally violated at scalesk⊥ & k⊥c, the MHD description of the anisotropic Alfvénic
cascade remains applicable, regardless of whether the dynamics is collisional or col-
lisionless, for all scales larger than the ion Larmor radius, k⊥ρi ≪ 1. Therefore, we
denote the range of scalesL ≫ l⊥ ≫ ρi in thekinetic turbulent cascade as theMHD
inertial range.

MHD Inertial Range: The range of perpendicular scales from the large scale
of energy injection to the scale of the ion Larmor radius,L ≫ l⊥ ≫ ρi, includ-
ing both collisional and collisionless regimes.

On the other hand, compressible turbulent fluctuations associated with the MHD
fast and slow waves in the MHD inertial range require a kinetic description at all
moderately to weakly collisional scales,k‖λi & 1 or k⊥ & k⊥c. These modes are
damped both collisionally by ion viscosity atk‖λi ∼ 1 (Braginskii, 1965) and col-
lisionlessly by ion Landau damping atk‖λi ≫ 1 (Barnes, 1966). Therefore, it is
expected that the damped compressible modes will play at most a subdominant role
relative to the undamped Alfvénic fluctuations in turbulent astrophysical plasmas.
In the weakly collisional solar wind, for example, compressible fluctuations gen-
erally contribute less than 10% of the turbulent magnetic energy (Tu and Marsch,
1995; Bruno and Carbone, 2005) in the MHD inertial range. Therefore, we turn our
attention back to the dynamics of the dominant Alfvénic turbulent fluctuations.

When the Alfvénic turbulent cascade reaches the perpendicular scale of the ion
Larmor radius,k⊥ρi ∼ 1, the MHD description of the Alfvénic fluctuations breaks
down completely for two reasons. First, finite Larmor radiuseffects lead to a decou-
pling of the ions from the turbulent electromagnetic fluctuations at perpendicular
wavenumbersk⊥ρi &1. The result is that the non-dispersive Alfvén wave in the limit
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k⊥ρi ≪ 1 transitions to the dispersive kinetic Alfvén wave in the limit k⊥ρi ≫ 1. The
dispersive nature of the Alfvénic fluctuations accelerates the rate of the turbulent
nonlinear energy transfer, leading to a steepening of the magnetic energy spectrum,
with a break in the spectrum at thek⊥ρi ∼ 1, as shown in Figure 2(a). Second,
collisionless damping of the electromagnetic fluctuationsoccurs due to the Landau
resonance with the ions, with a peak in the ion damping rate aroundk⊥ρi ∼ 1. In
addition, electron Landau damping can also contribute significantly for all scales
k⊥ρi & 1. The combined effect of the ion and electron collisionlessdamping can
lead to a further steepening of the spectrum for scalesk⊥ρi & 1 (Howes et al.,
2011; Howes et al., 2011). Finally, the cascade reaches the perpendicular scale of
the electron Larmor radius,k⊥ρe ∼ 1, where collisionless damping becomes suffi-
ciently strong to terminate the turbulent cascade, leadingto an exponential drop off
of the magnetic energy spectrum (Terry and et al., 2012; Alexandrova et al., 2012;
TenBarge et al., 2013). MHD turbulence theory cannot describe the dispersive wave
behavior or the dissipation that occurs via kinetic mechanisms at scalesk⊥ρi & 1.
Therefore, we denote the range of scalesl⊥ . ρi in the kinetic turbulent cascade as
thekinetic dissipation range.

Kinetic Dissipation Range: The range of perpendicular scales at or below the
scale of the ion Larmor radius,l⊥ . ρi, where wave dispersion and collision-
less dissipation play important roles.

1.3 Importance of Kinetic Turbulence

Of fundamental importance in the study of astrophysical turbulence is to determine
the pathway by which the energy of turbulent motions is ultimately converted to
plasma heat. Astrophysical turbulence is generally drivenby violent events or insta-
bilities at large scales, but fluctuations are dissipated strongly only at scales of order
or smaller than the ion Larmor radius. A kinetic turbulent cascade arises to trans-
fer energy via nonlinear couplings from the large energy injection scales, through
the MHD inertial range, down to the scale of the ion Larmor radius. The turbulent
fluctuations begin to be damped when the cascade reaches the scale of the ion Lar-
mor radius, marking the entry into the kinetic dissipation range. Since the dynamics
within the kinetic dissipation range is typically weakly collisional, the dissipation
of the turbulent electromagnetic fluctuations must be accomplished via collision-
less mechanisms governed by plasma kinetic theory. The energy thus removed from
the turbulent fluctuations ultimately leads to thermal heating of the protons, elec-
trons, and minority ions in the plasma. The observational signature of astrophysical
objects depends strongly on the nature of the plasma heating, so to interpret obser-
vational data requires a detailed characterization of the small-scale, kinetic plasma
turbulence.
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For example, as matter in an accretion disk spirals slowly into a black hole, it
converts a tremendous amount of gravitational potential energy into heat. Several
physical mechanisms contribute to this process. First, themagnetorotational insta-
bility (Balbus and Hawley, 1991; Balbus and Hawley, 1998) taps free energy from
the differential rotation of the accretion disk to drive turbulence on the scale height
of the disk,L ∼ H. The turbulence effectively transports angular momentum out-
ward in the disk, enabling accretion disk plasma to fall downthe gravitational poten-
tial and mediating the conversion of gravitational potential energy into kinetic and
magnetic energy of the MHD turbulent fluctuations. The high temperatures charac-
teristic of the plasma in a black hole accretion disk lead to acollisional mean free
pathλi ∼ H, so the turbulent dynamics is weakly collisional. A kineticturbulent
cascade is responsible for the transfer of turbulent energythrough the MHD inertial
range down to the scale of the ion Larmor radius, where the turbulent electromag-
netic fluctuations are damped via collisionless mechanismsin the kinetic dissipation
range. An entropy cascade ultimately mediates the final conversion of this turbulent
free energy into plasma heat. Therefore, the radiation thatis emitted from the hot,
magnetized plasma is a strong function of the black hole properties and of the char-
acter of the small-scale plasma fluctuations, where the plasma heating occurs. To
interpret observational data from the Chandra X-ray Observatory, for example, one
must unravel the details of the kinetic turbulent cascade.

Developing a mature model of the kinetic turbulent cascade is critical to under-
standing the turbulent dynamics of the kinetic dissipationrange, the physical mech-
anisms responsible for the damping of the turbulent fluctuations, and the resulting
heating of the plasma species. The ultimate goal is to develop a predictive capabil-
ity to estimate accurately the heating of the protons, electrons, and minority ions in
the plasma based on the plasma parameters and the characteristics of the turbulent
driving.

2 Key Questions about Kinetic Turbulence

The unprecedented availability of high temporal resolution solar wind turbulence
measurements from current spacecraft missions has enabledthe observational char-
acterization of the kinetic turbulent cascade from the large scales of energy injection
down to the scale of the electron Larmor radius. This has spurred the heliospheric
physics community to engage actively the topic of the turbulence in the dissipa-
tion range of the solar wind, and has engendered considerable controversy about a
number of significant issues related to the fundamental character of kinetic turbu-
lence. In particular, the nature of both the turbulent fluctuations in this regime and
the physical mechanisms responsible for their dissipationremains highly contested
within the scientific community. Four key questions relevant to the study of the dis-
sipation range of solar wind turbulence are identified and are discussed at length in
a forthcoming review (Howes, 2015):
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1. What are the limits of validity of using a fluid descriptionof the turbulence in the
dissipation range, and which aspects of the turbulence require a kinetic descrip-
tion?

2. Are the linear plasma wave properties relevant to the turbulent fluctuations of the
dissipation range?

3. What are the characteristic dynamics of the dissipation range fluctuations?
4. What physical mechanisms are responsible for the dissipation of the turbulent

fluctuations and the ultimate conversion of their energy to plasma heat?

Although these significant questions about the nature of kinetic turbulence re-
main controversial, a promising model of the kinetic turbulent cascade (Howes,
2008; Howes et al., 2008a; Schekochihin et al., 2009; Howes et al., 2011) has been
developed that appears to be broadly consistent with most observations of solar wind
turbulence. This model involves an anisotropic cascade of Alfvénic fluctuations be-
ginning as a cascade of Alfvén waves in the MHD inertial range and transitioning
to a cascade of kinetic Alfvén waves subject to collisionless damping in the kinetic
dissipation range. Yet the cascade of energy from large to small scales described
by this kinetic turbulence model may not explain all of the fluctuations observed in
the solar wind. For example, fluctuations can be generated bythe action of kinetic
temperature anisotropy instabilities (Bale et al., 2009) that are driven by the spheri-
cal expansion of the solar wind, an effect beyond the scope ofthis model. Plausible
arguments exist that suggest some of these additional effects may coexist peacefully
with the kinetic turbulence, proceeding without being significantly affected by or
significantly affecting the kinetic turbulent cascade. Theremainder of this chapter
aims to describe in detail the model of the kinetic turbulentcascade and to discuss
the supporting and conflicting theoretical, observational, and numerical evidence.

3 A Model of the Kinetic Turbulent Cascade

A basic theoretical model of the kinetic turbulent cascade in astrophysical plasmas
has been developed with the aim to describe completely the flow of energy from
the large driving scales of the turbulence to its ultimate fate as thermal heat of the
plasma (Howes, 2008; Howes et al., 2008a; Schekochihin et al., 2009; Howes et al.,
2011). We present here a brief outline of this model, before delving into a detailed
description of each component of the model and a discussion of supporting and
conflicting evidence.

Violent events or instabilities first drive turbulent fluctuations of the magnetic
field and plasma at some large scale, generating a mixture of finite amplitude fast,
Alfvén, and slow waves. If the fluctuations are driven isotropically with velocities
approximately equal to the Alfvén velocity in the plasma, acascade of strong com-
pressible MHD turbulence will mediate the transfer of the turbulent kinetic and
magnetic energy to smaller scales. The fast waves cascade tosmaller scales isotrop-
ically, while the critically balanced Alfvén wave cascadeproduces an anisotropic
distribution of Alfvén and slow wave fluctuations in this collisional part of the MHD
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inertial range. The parallel scales of the turbulent fluctuations eventually reach the
ion collisional mean free path, marking the transition fromstrongly to weakly colli-
sional dynamics. The compressible fast and slow wave fluctuations suffer collisional
damping at the moderately collisional scale of the transition, and collisionless damp-
ing at the smaller, weakly collisional scales. The incompressible Alfvénic fluctua-
tions remain undamped through this transition, so the damped fast and slow waves
are expected to contribute subdominantly to the turbulencecompared to the Alfvén
waves. The Alfvén waves continue their cascade undamped through the collision-
less remainder of the MHD inertial range until their perpendicular scales reach the
ion Larmor radius, marking the transition to the kinetic dissipation range.

The anisotropic Alfvénic fluctuations at this transition transfer energy into a cas-
cade of kinetic Alfvén waves at perpendicular scales belowthe ion Larmor radius.
In addition, collisionless wave-particle interactions via the Landau resonance with
the ions lead to a peak in the ion kinetic damping at the ion Larmor radius, dissi-
pating some fraction of the turbulent electromagnetic fluctuation energy. The un-
damped remainder of the turbulent energy continues as a cascade of kinetic Alfvén
waves to smaller perpendicular scales, forming the kineticdissipation range at all
scales below the ion Larmor radius. Throughout this range, electron Landau damp-
ing may cause significant collisionless damping of the turbulent fluctuations, with
the strength of the damping increasing as the perpendicularscale decreases. At the
perpendicular scale of the electron Larmor radius, the electron Landau damping be-
comes sufficiently strong to terminate the cascade, leadingto an exponential decay
of the turbulent energy spectrum at the electron scale.

Thermodynamically, the transfer of free energy from the kinetic and magnetic
energy of the turbulent electromagnetic fluctuations to free energy in velocity space
structure of the particle distribution functions is not equivalent to irreversible ther-
mal heating of the plasma. Irreversible plasma heating, andthe associated increase
of entropy, ultimately requires collisions. This is accomplished in a weakly colli-
sional plasma by the ion and electron entropy cascades, dualcascades in physical
and velocity space that drive fluctuations to small enough velocity-space scales that
arbitrarily weak collisions are sufficient to achieve irreversibility. This final process
marks the thermodynamic end of the kinetic turbulent cascade, completing the con-
version of large-scale turbulent fluctuation energy to thermal heat of the plasma.

This model of the kinetic turbulent cascade implies certainanswers to the ques-
tions posed in§2, so we elucidate those answers here:

1. A fluid description is applicable for all turbulent fluctuations at scales larger than
the collisional transition, and for the Alfvénic dynamicsat all scales larger than
the ion Larmor radius. The dynamics and kinetic damping of the compressible
fluctuations at all moderately to weakly collisional scales, and of the Alfvénic
fluctuations at the scales of the ion Larmor radius and below,require a kinetic
description.

2. The properties of the turbulent fluctuations at scales sufficiently below the driving
scale are related to the characteristics of the linear kinetic plasma waves.

3. The dissipation range fluctuations are kinetic Alfvén waves.
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4. Ion and electron Landau damping are the physical mechanisms by which the
turbulent electromagnetic fluctuations are damped, and theion and electron en-
tropy cascades mediate the irreversible transition of freeenergy in the particle
distribution functions to thermal heat.

In the following sections, we describe in detail all of the facets of this model of
the kinetic turbulent cascade, providing supporting theoretical, observational, and
numerical evidence and reviewing findings in conflict with this model. A general
diagram of the magnetic energy spectrum and the distribution of turbulent power in
wavevector space is shown in Figure 3.

3.1 MHD Inertial Range: From Driving Scales to the Collisional
Transition

The turbulence in astrophysical environments is typicallydriven by some external
mechanism, often a violent event or large-scale instability, that generates plasma
motions at some large scale,L ≫ ρi. This energy injection scale, often denoted the
outer scale of the turbulence, is an important characteristic of any turbulent astro-
physical system, and is conveniently parameterized by the wavenumber,k0 ∼ 1/L.
For the investigation of kinetic turbulence, a convenient dimensionless measure of
the driving scale is thedriving wavenumber, k0ρi, wherek0ρi ≪ 1 indicates that the
turbulence is driven at large scale compared to the ion Larmor radius. It is generally
assumed, in the absence of arguments to the contrary, that the turbulence is driven
isotropically with respect to the magnetic field, so that theperpendicular and parallel
components of the driving wavevector are equal,k‖0 ∼ k⊥0 ∼ k0.

If the MHD approximation is satisfied for the turbulent dynamics of the plasma at
the driving scale, then the large scale section of the MHD inertial range is described
by MHD turbulence theory (Sridhar and Goldreich, 1994; Goldreich and Sridhar,
1995; Galtier et al., 2000; Lithwick and Goldreich, 2001; Boldyrev, 2006). If the
amplitude of the driven turbulent velocities are comparable to the Alfvén velocity
in the magnetized plasma, then a cascade of strong MHD turbulence arises to trans-
fer energy nonlinearly to higher wavenumbers; for smaller amplitudes, weak MHD
turbulence will be generated (Sridhar and Goldreich, 1994;Goldreich and Sridhar,
1995). Since most turbulent astrophysical environments are believed to be driven
strongly, and weak turbulence eventually transitions to strong turbulence as the
cascade progresses (Sridhar and Goldreich, 1994), we focushere on the case of
strong MHD turbulence. In general, the finite-amplitude turbulent fluctuations may
be considered to be a mixture of the three propagating MHD wave modes, the in-
compressible Alfvén waves and compressible fast and slow waves, as well as the
non-propagating entropy mode. The nature of the turbulent cascades of these var-
ious characteristic fluctuations have been elucidated by numerical simulations of
MHD turbulence: the fast waves cascade isotropically in wavevector space, while
the Alfvén waves, slow waves and entropy mode fluctuations cascade anisotrop-
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ically according to the condition of critical balance (Maron and Goldreich, 2001;
Cho and Lazarian, 2003).

The fast wave cascade produces an isotropic one-dimensional magnetic energy
spectrumEB(k) ∝ k−3/2, as observed in simulations (Cho and Lazarian, 2003). Two
competing models exist that describe the nature of strong MHD turbulence for
Alfvén waves, the Goldreich-Sridhar model (Goldreich andSridhar, 1995) and the
Boldyrev model (Boldyrev, 2006). The magnetic energy spectrum of the Alfvénic
turbulent cascade is predicted to scale asEB ∝ kp

⊥, where the spectral index isp =
−5/3 in the Goldreich-Sridhar model (Goldreich and Sridhar, 1995) andp =−3/2
in the Boldyrev model (Boldyrev, 2006). The anisotropy of the Alfvénic cascade,
for isotropic driving at wavenumberk0, is given byk‖ = k1−q

0 kq
⊥, whereq = 2/3

in the Goldreich-Sridhar model (Goldreich and Sridhar, 1995), andq = 1/2 in the
Boldyrev model (Boldyrev, 2006). The slow waves and entropymodes are pas-
sively cascaded by the Alfvén waves, and therefore adopt the same spectrum and
anisotropic distribution of power as the Alfvén waves (Maron and Goldreich, 2001;
Lithwick and Goldreich, 2001). For anisotropic turbulent fluctuations withk⊥ ≫ k‖,
the frequencies of the fast wave fluctuations, which scale asω ∝ k, are generally
much higher than the frequencies of the Alfvén and slow wavefluctuations, which
scale asω ∝ k‖, so the dynamics of the fast wave cascade are expected to decouple
from the dynamics of the Alfvén and slow wave cascades (Lithwick and Goldreich,
2001; Howes et al., 2012).

The turbulent cascade transfers energy nonlinearly to higher wavenumber fluc-
tuations, as dictated by the MHD turbulence theory, until the parallel wavenum-
ber reaches the transition from collisional to collisionless dynamics,k‖λi ∼ 1.
The perpendicular wavenumber,k⊥c, that corresponds tok‖λi ∼ 1, differs for the
anisotropic Alfvén wave cascade and the isotropic fast wave cascade. For the
anisotropic Alfvénic cascade, the perpendicular wavenumber of this transition is
given byk⊥c ∼ k0(k0λi)

−1/q, whereas, for the isotropic fast wave cascade, it is given
by k⊥c ∼ k0(k0λi)

−1, or more simplyk⊥cλi ∼ 1. Sinceq < 1, this means that the fast
wave cascade reaches the collisional transition first, at a smaller wavenumber than
the Alfvén wave cascade.

For many astrophysical plasmas, the transition for both fast and Alfvén waves
occurs within the MHD inertial range,k⊥cρi < 1. The compressible fast waves,
slow waves, and entropy modes undergo strong collisional damping by ion viscosity
(Braginskii, 1965) in the moderately collisional conditions atk⊥ ∼ k⊥c. Any energy
in the compressible turbulent fluctuations that passes through this transition is ex-
pected to be transferred nonlinearly to the kinetic counterparts of the MHD fast and
slow waves (Klein et al., 2012) in the weakly collisional conditions at wavenum-
bersk⊥ ≫ k⊥c (Schekochihin et al., 2009). The Alfvén waves are incompressible,
involving no motions parallel to the magnetic field, so they are essentially unaffected
by the transition in collisionality, and the Alfvén wave cascade continues unabated
to higher wavenumbers,k⊥ ≫ k⊥c.
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3.2 MHD Inertial Range: From the Collisional Transition to the
Ion Larmor Radius

Critical balance predicts a scale-dependent wavevector anisotropy given byk⊥/k‖ =
(k⊥/k0)

1−q, whereq < 1 for either the Goldreich-Sridhar or Boldyrev models.
Therefore, at perpendicular wavenumbers within the MHD inertial range suffi-
ciently higher than the driving wavenumber,k⊥ ≫ k0, the Alfvénic fluctuations
become anisotropic in the sense thatk⊥ ≫ k‖. In the limit of the MHD inertial
rangek⊥ρi ≪ 1, the kinetic dynamics of these anisotropic Alfvénic fluctuations is
described rigorously by the equations of reduced MHD (Strauss, 1976), and the
Alfvén wave cascade remains undamped down to the perpendicular scale of the ion
Larmor radius,k⊥ρi ∼ 1 (Schekochihin et al., 2009). It has also been shown that
the slow wave and Alfvén wave cascades do not exchange energy in the MHD iner-
tial range (Schekochihin et al., 2009), and the fast waves likewise are not expected
to exchange energy with the Alfvén waves due to the mismatchin frequency, as
discussed in§3.1. Therefore, the dynamics of the Alfvénic cascade throughout the
MHD inertial range is correctly described by the MHD turbulence theory, even at
the weakly collisional scales,k⊥ ≫ k⊥c.

The magnetic energy spectrum in the solar wind seems to bear this out. Space-
craft measurements in the super-Alfvénic solar wind are generally interpreted by
assuming the Taylor hypothesis (Taylor, 1938), that frequency of measured tempo-
ral fluctuations is directly related to the wavenumber of spatial variations that are
swept past the spacecraft. At the frequenciesf . 0.4 Hz, corresponding to spatial
scales larger than the ion Larmor radius, the magnetic energy spectrum in the solar
wind has a spectral index of approximately−5/3 (Goldstein et al., 1995), appar-
ently consistent with the prediction of the Goldreich-Sridhar theory for strong MHD
turbulence. It is worth noting, however, that the velocity spectrum was found have a
spectral index closer to−3/2 (Podesta et al., 2007), in conflict with the Goldreich-
Sridhar model. Recent work on the evolution of the residual energy,Er = Ek−EB, in
MHD turbulence, however, suggests that these spectral indices may indeed be con-
sistent with the Boldyrev theory, and that the difference inthe spectral indices of the
kinetic and magnetic energy spectra is an inherent propertyof the MHD turbulent
cascade (Boldyrev et al., 2011, 2012).

The cascade of compressible turbulent fluctuations that passes through the col-
lisional transition will suffer moderate to strong collisionless damping by the Lan-
dau resonance with the ions (Barnes, 1966) at all higher wavenumbers,k⊥ ≫ k⊥c.
The damping of the compressible fluctuations in the moderateto weakly collisional
regimes atk⊥ & k⊥c leads to the theoretical prediction that compressible fluctuations
will play a subdominant role relative to the undamped Alfvénic fluctuations in tur-
bulent astrophysical plasmas. Studies of interstellar scintillation (Armstrong et al.,
1981, 1995) show evidence for a power-law spectrum of density fluctuations over 12
orders of magnitude in the interstellar medium, suggestingthat compressible fluc-
tuations are not entirely damped. But it is not possible fromremote astrophysical
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observations to deduce the relative contributions of compressible and incompress-
ible components of the turbulence.

In situ spacecraft measurements of turbulent fluctuations in the solar wind, how-
ever, allow a direct determination. The entire turbulent cascade in the solar wind,
including the driving scales, is weakly collisional,λi/L ≫ 1, so spacecraft measure-
ments constrain role of compressible fluctuations in collisionless conditions,k⊥ ≫
k⊥c. Measurements show that the turbulent fluctuations in the MHD inertial range
appear to be dominantly incompressible (Tu and Marsch, 1995; Bruno and Carbone,
2005), where the incompressible motions have been shown to be Alfvénic in
nature (Belcher and Davis, 1971). The compressible fluctuations generally con-
tribute less than 10% of the turbulent magnetic energy (Tu and Marsch, 1995;
Bruno and Carbone, 2005). These compressible fluctuations have typically been in-
terpreted as a possible mixture of fast MHD waves and pressure balanced struc-
tures (PBSs) (Tu and Marsch, 1995; Bruno and Carbone, 2005),where the latter are
equivalent to non-propagating slow mode fluctuations withk‖ = 0 (Tu and Marsch,
1994; Kellogg and Horbury, 2005). Note, however, that a recent study using a novel
method of synthetic spacecraft data (Klein et al., 2012) suggests that these com-
pressible fluctuations are not associated with the kinetic counterpart of the fast MHD
wave, but rather consist of an anisotropic distribution of kinetic slow wave fluctua-
tions (Howes et al., 2012). Clearly, more investigation of the kinetic physics of com-
pressible turbulent fluctuations in astrophysical environments, including their damp-
ing via collisional and collisionless mechanisms and the resulting plasma heating, is
needed. Nonetheless, since only a small fraction of the turbulent energy appears to
be associated with the compressible fluctuations, we focus our attention henceforth
on the dominant Alfvénic turbulent fluctuations, as they reach the perpendicular
scale of the ion Larmor radius,k⊥ρi ∼ 1.

3.3 Transition at the Ion Larmor Radius

Spacecraft measurements of turbulence in the solar wind demonstrate that the−5/3
scaling of the magnetic energy spectrum in the MHD inertial range breaks at a fre-
quency aroundf ∼ 0.4 Hz, leading to a steeper spectrum at higher frequencies
in the kinetic dissipation range. Numerous observational studies have attempted
to correlate the position of the break with a characteristicplasma time or length
scale, such as the ion cyclotron frequency, the ion Larmor radius, or the ion iner-
tial length (Goldstein et al., 1994; Leamon et al., 1998, 1999; Leamon et al., 2000;
Smith et al., 2001; Perri et al., 2010; Smith et al., 2012; Bourouaine et al., 2012),
but contradictory results have been found. Establishing a convincing correlation has
likely been elusive because three competing effects may contribute to the dynam-
ics at this transition between the MHD inertial range and kinetic dissipation range:
(1) the transition from non-dispersive to dispersive linear wave physics as the ions
decouple from the turbulent electromagnetic fluctuations;(2) a peak in the ion ki-
netic damping; and (3) the possible role of kinetic instabilities, such as tempera-
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ture anisotropy instabilities (Bale et al., 2009), in generating electromagnetic fluc-
tuations at this scale.

Based on theoretical considerations of the kinetic plasma physics, the kinetic tur-
bulence model presented here predicts that the transition between the relatively well
understood MHD inertial range and the significantly more controversial kinetic dis-
sipation range occurs at the perpendicular scale of the ion Larmor radius,k⊥ρi ∼ 1
(Howes, 2008; Howes et al., 2008a; Schekochihin et al., 2009; Howes et al., 2011).
The boundary conditions (in wavevector space) for the nonlinear transfer of energy
into the kinetic dissipation range are given by the nature ofthe turbulent fluctuations
at the end of the MHD inertial range. At this transition atk⊥ρi ∼ 1, the wavevec-
tor anisotropy of Alfvénic turbulent fluctuations is givenby k⊥/k‖ ∼ (k0ρi)

q−1, so
for a sufficiently large MHD inertial range,k0ρi ≪ 1, this impliesk⊥ ≫ k‖ since
q < 1 (Goldreich and Sridhar, 1995; Boldyrev, 2006). This significant wavevector
anisotropy at the transition is supported by multi-spacecraft measurements of tur-
bulence in the near-earth Solar wind (Sahraoui et al., 2010). It follows that, beyond
this transition, the characteristic wavevector of the fluctuations satisfiesk⊥ρi &1 and
k‖ρi ≪ 1; the Alfvénic solution of linear kinetic theory with sucha wavevector is the
kinetic Alfvén wave (Hasegawa and Sato, 1989; Stix, 1992).Therefore, the Alfvén
waves of the MHD inertial range are predicted to transfer their energy, via nonlinear
interactions at the transitionk⊥ρi ∼ 1, to kinetic Alfvén waves (Leamon et al., 1998;
Gruzinov, 1998; Leamon et al., 1999; Quataert and Gruzinov,1999; Howes et al.,
2008a; Schekochihin et al., 2009). Nonlinear gyrokinetic simulations of this transi-
tion appear to support this hypothesis (Howes et al., 2008b), reproducing the quali-
tative changes in the electric and magnetic field energy spectra measured in the solar
wind at the scale of the spectral break (Bale et al., 2005).

Another important effect that occurs at the transition atk⊥ρi ∼ 1 is a peak in the
collisionless damping rate of the electromagnetic fluctuations due to the Landau res-
onance with the ions (Leamon et al., 1998, 1999; Leamon et al., 2000; Howes et al.,
2008a; Howes, 2008; Schekochihin et al., 2009; Howes et al.,2011). This ion ki-
netic damping becomes increasingly strong as the ion plasmabeta increases, and
is generally non-negligible for plasmas with beta of order unity or larger,βi & 1,
leading to a significant fraction of the dissipated turbulent energy heating the ions
(Howes, 2010, 2011), in approximate agreement with empirical estimates of the
plasma heating in the solar wind (Cranmer et al., 2009; Breech et al., 2009). Some
measurements of the magnetic energy spectrum in the dissipation range of the solar
wind show a significant steepening to a slope of approximately −4 at the ion scales,
flattening to−2.8 spectrum further into the dissipation range (Sahraoui et al., 2010),
evidence suggesting significant ion kinetic damping.

In a steady-state kinetic turbulent cascade, the turbulentenergy reaching the tran-
sition atk⊥ρi ∼ 1 that is not damped at that scale will carry on, launching a turbulent
cascade of kinetic Alfvén waves in the kinetic dissipationrange atk⊥ρi & 1. Al-
though the Alfvén and slow wave cascades do not exchange energy in the MHD in-
ertial range, they may exchange energy at this transition (Schekochihin et al., 2009),
so it is possible that the kinetic Alfvén wave cascade can gain energy that is trans-
ferred nonlinearly from compressible fluctuations in the MHD inertial range.
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3.4 Kinetic Dissipation Range: Between the Ion and Electron
Larmor Radius

Although direct spacecraft measurements of the kinetic dissipation range of tur-
bulence in the near-Earth solar wind have been possible for more than a decade,
the nature of the turbulent fluctuations in this regime remains a controversial topic.
Characterizing these fluctuations is one of the key goals in heliospheric physics to-
day, especially because the relevant physical dissipationmechanisms that ultimately
lead to heating of the plasma depend strongly on the nature ofthe turbulent fluctua-
tions themselves.

Many early investigations of the dissipation range in solarwind turbulence im-
plicitly assumed that the turbulent fluctuations in the dissipation range are related
to the linear wave modes in the plasma. Two main hypotheses have been proposed,
that the turbulence is composed of either kinetic Alfvén waves (Leamon et al., 1998;
Gruzinov, 1998; Leamon et al., 1999; Quataert and Gruzinov,1999; Howes et al.,
2008a; Schekochihin et al., 2009) or whistler waves (Stawicki et al., 2001; Gary et al.,
2010; Narita and Gary, 2010). Although these two possibilities generally remain
the leading candidates, several other possibilities have been suggested: ion Bern-
stein waves (Sahraoui et al., 2012), ion cyclotron waves (Jian et al., 2009), non-
propagating pressure balanced structures (PBSs), or inherently nonlinear structures,
particularly highly intermittent coherent structures andcurrent sheets (Servidio et al.,
2011).

Direct spacecraft measurements of turbulence in the solar wind at the frequen-
cies f & 1 Hz, corresponding to the kinetic dissipation range, provide important
constraints on the nature of the turbulent fluctuations. A number of recent stud-
ies employing high temporal resolution spacecraft measurements have found a
nearly power-law scaling of the magnetic energy spectrum between the ion and
electron scales with a spectral index of approximately−2.8 (Sahraoui et al., 2009;
Kiyani et al., 2009; Alexandrova et al., 2009; Chen et al., 2010; Sahraoui et al., 2010).
These observations of the turbulence over the dissipation range scales raise two
important questions that any model for kinetic turbulence must answer: (1) What
causes the magnetic energy spectrum to steepen in the dissipation range; and (2)
Does significant dissipation of the turbulent fluctuations occur between the ion and
electron scales?

In the model of the kinetic turbulent cascade, the boundary conditions in wavevec-
tor space determined by the anisotropic Alfvénic cascade through the MHD inertial
range suggest that the turbulent energy is transferred nonlinearly to a cascade of
kinetic Alfvén waves in the kinetic dissipation range, as discussed in§3.3. Here we
describe the properties of the kinetic Alfvén wave cascadeat perpendicular scales
below the ion Larmor radius,k⊥ρi & 1.

Although MHD Alfvén waves are non-dispersive, kinetic Alfvén waves become
dispersive due to the averaging of the ion response over the finite ion Larmor radius,
a physical effect that increasingly decouples the ions fromthe electromagnetic fluc-
tuations with wavevectors satisfyingk⊥ρi & 1 (Hollweg, 1999; Schekochihin et al.,
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2009). A useful formula combining the linear frequency in the Alfvén and kinetic
Alfvén wave regimes Howes et al. (2006); Schekochihin et al. (2009) is given by

ω = k‖vA

√

1+
(k⊥ρi)2

βi +2/(1+Te/Ti)
(1)

In addition, the kinetic Alfvén wave is significantly compressible, generating a non-
zero parallel magnetic field fluctuation,δB‖, particularly in the limit of low to mod-
erate plasma beta,βi . 1 (Hollweg, 1999; TenBarge et al., 2012).

The model for kinetic turbulence predicts the quantitativescaling of the mag-
netic energy spectrum and the wavevector anisotropy for thekinetic Alfvén wave
cascade. The Kolmogorov hypothesis—that the energy transfer rate is constant due
to local (in wavenumber space) nonlinear interactions—canbe used to predict the
magnetic energy spectrum for the kinetic Alfvén wave cascade in the absence of
significant dissipation. Fork⊥ρi ≫ 1, the linear wave frequency increases due to
dispersion, yielding a scalingω ∝ k‖k⊥. This leads to more rapid nonlinear en-
ergy transfer, steepening the magnetic energy spectrum to apredicted scalingEB ∝
k−7/3
⊥ when dissipation is neglected (Biskmap et al., 1999; Cho andLazarian, 2004;

Krishan and Mahajan, 2004; Shaikh and Zank, 2005; Galtier, 2006; Howes et al.,
2008a; Schekochihin et al., 2009). Extending the concept ofcritical balance—
that the linear wave frequency and nonlinear energy transfer frequency remain
in balance—to the kinetic Alfvén wave regime leads to a predicted wavevec-

tor anisotropy given byk‖ ∝ k1/3
⊥ (Cho and Lazarian, 2004; Howes et al., 2008a;

Schekochihin et al., 2009).
In addition to the effects of wave dispersion, collisionless damping via wave-

particle interactions can also play an important role in kinetic turbulence for all
scalesk⊥ρi & 1. In addition to the peak in ion Landau damping atk⊥ρi ∼ 1 dis-
cussed in§3.3, electron Landau damping may also play a significant rolefor all
scalesk⊥ρi & 1, becoming increasingly strong as the perpendicular wavenumber
increases (Howes et al., 2008a). Although early models of the turbulent energy cas-
cade in the kinetic dissipation range suggested that such strong collisionless Lan-
dau damping would lead to an exponential cutoff of the spectrum before reach-
ing the perpendicular scale of the electron Larmor radius,k⊥ρe ∼ 1 (Howes et al.,
2008a; Podesta et al., 2010), subsequent solar wind observations called this pre-
diction into question (Sahraoui et al., 2009; Kiyani et al.,2009; Alexandrova et al.,
2009; Chen et al., 2010; Sahraoui et al., 2010) and recent kinetic numerical simula-
tions have demonstrated that this idea is incorrect (Howes et al., 2011).

In addition to collisionless damping via the Landau resonance, if the kinetic
Alfvén wave frequency reaches the ion cyclotron frequency, ω → Ωi, collision-
less damping may occur via the cyclotron resonance with the ions. However, the
very large MHD inertial range typical of astrophysical plasma turbulence leads to
highly anisotropic fluctuations at small scales,k‖ ≪ k⊥, so the kinetic Alfvén wave
frequency typically remains very small compared to the ion cyclotron frequency,
ω ≪ Ωi. Therefore, ion cyclotron damping is not predicted to play astrong role in
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the dissipation of astrophysical turbulence (Howes et al.,2008a), with a few excep-
tions, such as the inner heliosphere (Howes, 2011).

There is significant evidence accumulating in support of a kinetic Alfvén wave
cascade at the perpendicular scales between the electron and ion Larmor radius,
but there also remains observational evidence that appearsto be unexplained by
this model. The scaling predictions for the kinetic Alfvénwave cascade in the ab-
sence of dissipation have been corroborated by simulationsusing electron MHD,
a fluid limit which describes the dynamics of kinetic Alfvénwaves in the limit
k‖ ≪ k⊥, but does not resolve the physics of collisionless dissipation. Specifically,

these simulations reproduce the predicted magnetic energyscaling,EB ∝ k−7/3
⊥

(Biskmap et al., 1999; Cho and Lazarian, 2004, 2009; Shaikh and Zank, 2009), and

wavevector anisotropy,k‖ ∝ k1/3
⊥ (Cho and Lazarian, 2004, 2009). The magnetic en-

ergy spectrum from these fluid simulations, however, is not consistent with the ob-
served spectral index of approximately−2.8 (Sahraoui et al., 2009; Kiyani et al.,
2009; Alexandrova et al., 2009; Chen et al., 2010; Sahraoui et al., 2010).

It has been recently suggested that the combined effects of collisionless dissipa-
tion and nonlocal energy transfer can lead to a further steepening of the magnetic

energy spectrum beyondk−7/3
⊥ for scalesk⊥ρi & 1 (Howes et al., 2011). For a hy-

drogenic plasma of protons and electrons, the dynamic rangebetween the ion and
electron Larmor radius for unity temperature ratio isρi/ρe ≃ 43, so there is little
room for an asymptotic range of perpendicular scales satisfying the requirements
1/ρi ≪ k⊥ ≪ 1/ρe. Therefore, it should come as no surprise that a self-similar
spectrum with a spectral index of−7/3 is not observed—throughout the range of
perpendicular scales between the ion and electron Larmor radius, the transition at
k⊥ρi ∼ 1 and strong kinetic dissipation atk⊥ρe ∼ 1 may significantly affect the
turbulent dynamics.

Nonlinear gyrokinetic simulations of turbulence in the kinetic dissipation range
seem to bear this out. A simulation over the entire range of scales from the ion
to the electron Larmor radius, which resolves the physics ofcollisionless ion and
electron damping, produces a nearly power-law magnetic energy spectrum with a
spectral index of−2.8, in remarkable quantitative agreement with the solar wind
measurements (Howes et al., 2011). Additional gyrokineticsimulations support the

predicted scaling of the wavevector anisotropy,k‖ ∝ k1/3
⊥ (TenBarge and Howes,

2012; TenBarge et al., 2013).
Direct spacecraft measurements of dissipation range turbulence in the solar wind

have yielded other lines of evidence in support of or in conflict with the model of a
kinetic Alfvén wave cascade. Ak-filtering analysis of multi-spacecraft data from the
Cluster mission establishes that the plasma-frame fluctuation frequencies are consis-
tent with linear dispersion relation of the kinetic Alfvénwave and inconsistent with
that of the whistler wave (Sahraoui et al., 2010). A study combining measurements
of the ratio of electric to magnetic field fluctuation amplitudes and of the magnetic
compressibility have shown that the small-scale fluctuations agree well with pre-
dictions for kinetic Alfvén waves and are inconsistent with that for whistler waves
(Salem et al., 2012). An examination the compressibility ofturbulent fluctuations in
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the weakly collisional plasma in the MHD inertial range findsevidence of negligi-
ble energy in the fast wave mode, suggesting that all large-scale turbulent energy is
transferred, via the anisotropic Alfvénic cascade, to kinetic Alfvén waves, with little
energy coupling to whistler waves (Howes et al., 2012; Kleinet al., 2012). Investi-
gations of the magnetic helicity of turbulent fluctuations as a function of the angle
of the wavevector with respect to the local magnetic field direction finds a broad re-
gion of positive helicity at oblique angles (He et al., 2011;Podesta and Gary, 2011),
as expected for kinetic Alfvén waves (Howes and Quataert, 2010), but a small re-
gion corresponding to nearly parallel wavevectors that is consistent with either ion
cyclotron waves or whistler waves (He et al., 2011; Podesta and Gary, 2011).

The presence of either ion cyclotron or whistler waves with nearly parallel
wavevectors is not explained by the model for kinetic Alfvén wave turbulence, but
these fluctuations may be driven by the action of kinetic temperature anisotropy
instabilities in the spherically expanding solar wind (Bale et al., 2009). These insta-
bilities typically generate relatively isotropic fluctuations (with respect to the local
mean magnetic field direction), having wavevector components k⊥ρi ∼ k‖ρi ∼ 1.
Since the anisotropic Alfvénic cascade produces fluctuations with k‖ ≪ k⊥, and
since Alfvénic frequencies in equation (1) scale linearlywith the parallel com-
ponent,ω ∝ k‖, these anisotropy-driven fluctuations are expected to havea much
higher frequency and to occupy a different regime of wavevector space than turbu-
lent fluctuations of the turbulent cascade. Therefore, it isreasonable to expect that
any kinetic-instability-driven fluctuations may persist without significantly affect-
ing, or being significantly affected by, the turbulent fluctuations of the anisotropic
Alfvénic cascade.

In conclusion, although the nature of the kinetic turbulence at the perpendic-
ular scales between the electron and ion Larmor radius has not been established
conclusively, there appears to be significant evidence for an anisotropic cascade of
kinetic Alfvén waves in the kinetic dissipation range. Collisionless dissipation via
the Landau resonance with the electrons appears to be play a non-negligible role
in steepening the magnetic energy spectrum beyond the dissipationless prediction.
But this damping is not strong enough to halt the cascade, so the kinetic turbulence
continues down to the perpendicular scale of the electron Larmor radius, at which
point strong kinetic dissipation can effectively terminate the turbulent cascade.

3.5 Kinetic Dissipation Range: Termination at Electron Larmor
Radius

Ultimately, the kinetic turbulent cascade reaches the perpendicular scale of the elec-
tron Larmor radius,k⊥ρe ∼ 1. At this scale, the linear collisionless damping rate due
to electron Landau damping reaches a valueγ/ω ∼ 1, sufficiently strong that the tur-
bulent magnetic energy cascade is terminated. A simplified analytical treatment of
the turbulent cascade undergoing this dissipation suggests the spectrum will develop
an exponential fall-offEB ∝ k−2.8

⊥ exp(−k⊥ρe) setting in at the perpendicular scale
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of the electron Larmor radius,k⊥ρe ∼ 1 (Terry and et al., 2012). As the amplitudes
of the turbulent fluctuations are diminished by damping, thestrong kinetic Alfvén
wave turbulence eventually drops below critical balance and becomes weak dissi-
pating kinetic Alfvén wave turbulence (Howes et al., 2011). It has been conjectured
that the transition back to weak turbulence leads to an inhibition of the parallel
cascade, so the parallel number of the fluctuations remains constant (Howes et al.,
2011), as shown in in Figure 2(b).

A recent study of a sample of 100 solar wind magnetic energy spectra at the
electron scales shows that all of these spectra may be fit by anempirical form
EB ∝ kα

⊥exp(−k⊥ρe), where−2.5≥ α ≥ −2.8 (Alexandrova et al., 2012). A non-
linear gyrokinetic simulation of the turbulence over the range 0.12≤ k⊥ρe ≤ 2.5
yields an energy spectrum demonstrating an exponential fall-off that is quantita-
tively fit by EB ∝ k−2.8

⊥ exp(−k⊥ρe), further supporting the model of the kinetic
turbulent cascade (TenBarge et al., 2013). A refined model ofthe turbulent cascade
(Howes et al., 2011)—incorporating the weakening of the nonlinear turbulent en-
ergy transfer due to dissipation, the effect of nonlocal energy transfer, and the linear
collisionless damping via the Landau resonance—fits the shape of the spectrum
well. This provides compelling evidence that collisionless damping is the dominant
mechanism for the dissipation of the kinetic turbulent cascade, marking the end of
the kinetic dissipation range (TenBarge et al., 2013).

A number of recent works have suggested instead that dissipation in current
sheets is the dominant dissipation mechanism for plasma turbulence, based on fluid
simulations using MHD (Dmitruk et al., 2004; Servidio et al., 2009, 2010, 2011)
and Hall MHD (Dmitruk and Matthaeus, 2006), hybrid simulations with kinetic
ions and fluid electrons (Parashar et al., 2009, 2010; Markovskii and Vasquez, 2011;
Servidio et al., 2012), and observational studies of large-scale discontinuities in the
solar wind (Osman et al., 2011, 2012). However, all the numerical work upon which
this conclusion has been based employ a fluid description of the electrons which
does not resolve the dominant collisionless dissipation mechanism of Landau damp-
ing. In a collisionless plasma, current sheets supporting small-scale reconnection
with a guiding magnetic field are expected to form at the perpendicular scale of the
electron Larmor radius,k⊥ρe ∼ 1 (Birn and Priest, 2006). A recent gyrokinetic sim-
ulation over the range of electron scales 0.12≤ k⊥ρe ≤ 2.5, which resolves both col-
lisionless electron Landau damping and the formation of current sheets atk⊥ρe ∼ 1,
finds dissipation via current sheets to be sub-dominant compared to linear collision-
less damping (TenBarge and Howes, 2013).

These results establish fairly secure observational and numerical grounds that
the electromagnetic fluctuations of the kinetic turbulent cascade are dissipated at
the perpendicular scale of the electron Larmor radius,k⊥ρe ∼ 1. Further work is on-
going to identify the dominant physical mechanisms for the dissipation of these tur-
bulent electromagnetic fluctuations. Although this dissipation terminates the kinetic
dissipation range of electromagnetic fluctuations at electron scales, there remains
the final matter of identifying the physical mechanism mediating the conversion
of this turbulent fluctuation energy irreversibly to thermodynamic heat in a weakly
collisional astrophysical plasma.
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3.6 Irreversible Heating Via the Ion and Electron Entropy
Cascades

At the perpendicular scales of the ion and electron Larmor radius, collisionless
wave-particle interactions via the Landau resonance damp the turbulent electromag-
netic fluctuations. In the absence of collisions, this process conserves a general-
ized energy, generating nonthermal structure in velocity space of the correspond-
ing plasma particle distribution functions (Howes, 2008; Schekochihin et al., 2009;
Plunk et al., 2010). Boltzmann’sH-theorem dictates that, in a kinetic plasma, col-
lisions are required to increase the entropy and therefore achieve irreversible ther-
modynamic heating (Howes et al., 2006). In the weakly collisional plasmas of as-
trophysical environments, anentropy cascade—a nonlinear phase mixing process
(Dorland and Hammett, 1993) that drives a dual cascade in physical and veloc-
ity space—mediates the transfer, at sub-Larmor radius scales, of the nonthermal
free energy in the particle distribution functions to sufficiently small scales in ve-
locity space that arbitrarily weak collisions can manifestirreversibility, increasing
the entropy and thermodynamically heating the plasma (Schekochihin et al., 2009;
Plunk et al., 2010). This inherently kinetic physical mechanism represents the final
element of the kinetic turbulent cascade, governing the final transition of the turbu-
lent energy to its ultimate fate as plasma heat.

The ion entropy cascade in two-dimensional plasma systems (in the plane per-
pendicular to the local mean magnetic field) has been thoroughly examined theo-
retically (Schekochihin et al., 2009; Plunk et al., 2010) and verified in gyrokinetic
numerical simulations (Tatsuno et al., 2009; Plunk and Tatsuno, 2011). In the inher-
ently three-dimensional system of Alfvénic plasma turbulence (Howes et al., 2011),
the effects of the ion entropy cascade in generating structure in the perpendicular
component of velocity space (Howes, 2008) and in manifesting ion heating at phys-
ical scales well below the peak in the collisionless ion damping (Howes et al., 2011)
have been identified numerically. Yet, a thorough analysis of the ion and electron en-
tropy cascades in kinetic turbulence remains to be undertaken.

4 Conclusion

Turbulence is found ubiquitously throughout the universe,playing a governing role
in the conversion of the energy of large-scale motions to astrophysical plasma heat.
Extending our understanding of astrophysical turbulence from the limited theory
of MHD turbulence to the more comprehensive theory of kinetic turbulence opens
up the possibility of ultimately achieving a predictive capability to determine the
plasma heating due to the dissipation of turbulence. This chapter has outlined a
theoretical model of the kinetic turbulent cascade describing the flow of energy from
the large driving scales, through the MHD inertial range, tothe transition at the ion
Larmor radius, and into the kinetic dissipation range, where the energy is ultimately
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converted to plasma heat. Although significant progress hasalready been made,
much research remains to be done to refine the kinetic turbulence model and test its
predictions using numerical simulations and observational data.

Since kinetic turbulence includes a number of the physical processes that are in-
herently kinetic—such as collisionless wave-particle interactions and the entropy
cascade—kinetic numerical simulations will play an essential role in testing the
predictions of this model. The higher dimensionality of kinetic systems—in gen-
eral, requiring three dimensions in physical space and three dimensions in velocity
space—demands a huge investment of computational resources to perform numer-
ical simulations. It is tempting to reduce the dimensionality in physical space to
two-dimensions to lower the computational costs, but doingso fundamentally lim-
its the applicability of the results to turbulent astrophysical plasmas. The reason is
because the anisotropic Alfvénic turbulence dominating the kinetic turbulent cas-
cade is inherently three-dimensional in physical space: the dominant nonlinearity
responsible for the turbulent cascade requires both dimensions perpendicular to the
magnetic field, and Alfvénic fluctuations require variation in the parallel dimension
(Howes et al., 2011). Therefore, kinetic simulation results can only be directly com-
pared to astrophysical systems if physical space is modeledin three dimensions.

Observational tests of the kinetic turbulence model shouldexploit intuition
from kinetic plasma theory to unravel the dependence of the turbulent proper-
ties on the plasma parameters. The suitably normalized MHD linear dispersion
relation depends only on two dimensionless parameters,ω̂MHD = ω/(kvA) =
ω̂MHD(β ,θ ): the plasma betaβ , and the angle between the wavevector and the
magnetic fieldθ (Klein et al., 2012). In contrast, the linear physics of Vlasov-
Maxwell kinetic theory depends on five dimensionless parameters,ω̃VM =ω/Ωi =
ω̃VM (k‖ρi,k⊥ρi,βi,Ti/Te,vti/c): the normalized parallel wavenumberk‖ρi, the nor-
malized perpendicular wavenumberk⊥ρi, the ion plasma betaβi, the ion-to-electron
temperature ratioTi/Te, and the ratio of the ion thermal velocity to the speed of
light vti/c (Stix, 1992; Howes et al., 2006).4 The dynamical behavior of the kinetic
plasma—for example, the frequencies, collisionless damping rates, and eigenfunc-
tions of the fluctuations—varies as these dimensionless parameters are changed.
Therefore, since the kinetic plasma physics depends on these parameters, observa-
tional investigations of kinetic turbulence should striveto analyze measurements
in terms of the ion plasma betaβi, the ion-to-electron temperature ratioTi/Te, and
length scales normalized to a characteristic plasma kinetic length scale, such as the
ion Larmor radius or ion inertial length.

Finally, we conclude this chapter on kinetic turbulence with a schematic diagram
that depicts the salient features of the kinetic turbulent cascade, as shown in Fig-
ure 3 for the case of turbulence in the near-Earth solar wind (the relevant panel is
noted in parentheses in the description below). The turbulence is driven isotropi-
cally at a large scale, corresponding to a normalized wavenumberk0ρi ∼ 10−4 (a,b).

4 In the limit that the turbulent astrophysical fluctuations satisfy the gyrokinetic approxima-
tion, k‖ ≪ k⊥ and ω ≪ Ωi (Frieman and Chen, 1982; Howes et al., 2006; Schekochihin etal.,
2009), the linear physics depends on only three dimensionless parameters,ωGK = ω/(k‖vA) =
ωGK(k⊥ρi,βi,Ti/Te) (Howes et al., 2006).
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Nonlinear interactions serve to transfer the energy from this low driving wavenum-
ber to higher wavenumber through the MHD inertial range, generating a magnetic
energy spectrum scaling asEB ∝ kp

⊥, wherep = −5/3 or −3/2 (a). This cascade
is anisotropic in wavevector space, such that turbulent fluctuations fill the shaded
region belowk‖ ∝ kq

⊥, whereq = 2/3 or 1/2 (b). The Alfvénic turbulence transi-
tions from the MHD inertial range to the kinetic dissipationrange at a perpendicular
wavenumberk⊥ρi ∼ 1, a scale at which collisionless ion Landau damping peaks (a).
The energy transferred via wave-particle interactions to the ion distribution function
feeds the ion entropy cascade at wavenumbersk⊥ρi & 1, a dual cascade in physical
and velocity space that mediates the transfer of nonthermalstructure to sufficiently
small scales in velocity space that weak collisions can thermalize the energy (a). The
remaining turbulent energy that is not collisionlessly damped atk⊥ρi ∼ 1 is trans-
ferred nonlinearly to a kinetic Alfvén wave cascade in the kinetic dissipation range,
k⊥ρi & 1, leading to a magnetic energy spectrumEB ∝ k−2.8

⊥ (a) and a wavevector

anisotropyk‖ ∝ k1/3
⊥ (b). In addition, electron Landau damping becomes strongeras

the wavenumber increases over the entire rangek⊥ρi & 1 (a). Finally, electron Lan-
dau damping becomes sufficiently strong to terminate the kinetic turbulent cascade,
leading to an exponential fall-off of the magnetic energy spectrum atk⊥ρe ∼ 1 (a),
inhibiting the transfer of energy to higher parallel wavenumber (b), and possibly
launching an electron entropy cascade (not shown).

Acknowledgements I would like to thank Steve Cowley, Bill Dorland, and Eliot Quataert for
their invaluable guidance, steering my career toward the study of turbulence in kinetic astrophysi-
cal plasmas. Alex Schekochihin, Tomo Tatsuno, Ryusuke Numata, and Jason TenBarge have con-
tributed tremendously to my efforts to understand kinetic turbulence. Financial support has been
provided by NSF grant PHY-10033446, NSF CAREER Award AGS-1054061, and NASA grant
NNX10AC91G.

References

O. Alexandrova, J. Saur, C. Lacombe, A. Mangeney, J. Mitchell, S.J. Schwartz, P. Robert, Uni-
versality of Solar-Wind Turbulent Spectrum from MHD to Electron Scales. Phys. Rev. Lett.
103(16), 165003 (2009). doi:10.1103/PhysRevLett.103.165003

O. Alexandrova, C. Lacombe, A. Mangeney, R. Grappin, M. Maksimovic, Solar Wind Turbu-
lent Spectrum at Plasma Kinetic Scales. Astrophys. J.760, 121 (2012). doi:10.1088/0004-
637X/760/2/121

J.W. Armstrong, J.M. Cordes, B.J. Rickett, Density power spectrum in the local interstellar
medium. Nature291, 561–564 (1981)

J.W. Armstrong, B.J. Rickett, S.R. Spangler, Electron density power spectrum in the local inter-
stellar medium. Astrophys. J.443, 209–221 (1995). doi:10.1086/175515

S.A. Balbus, J.F. Hawley, A powerful local shear instability in weakly magnetized disks. i. linear
analysis. Astrophys. J.376, 214–222 (1991)

S.A. Balbus, J.F. Hawley, Instability, turbulence, and enhanced transport in accretion disks. Re-
views of Modern Physics70, 1–53 (1998)



Kinetic Turbulence 27

S.D. Bale, P.J. Kellogg, F.S. Mozer, T.S. Horbury, H. Reme, Measurement of the Electric Fluctua-
tion Spectrum of Magnetohydrodynamic Turbulence. Phys. Rev. Lett. 94(21), 215002 (2005).
doi:10.1103/PhysRevLett.94.215002

S.D. Bale, J.C. Kasper, G.G. Howes, E. Quataert, C. Salem, D.Sundkvist, Magnetic Fluctua-
tion Power Near Proton Temperature Anisotropy InstabilityThresholds in the Solar Wind.
Phys. Rev. Lett.103, 211101 (2009). doi:10.1103/PhysRevLett.103.211101

A. Barnes, Collisionless Damping of Hydromagnetic Waves. Phys. Fluids9, 1483–1495 (1966)
J.W. Belcher, L. Davis, Large-Amplitude Alfvén Waves in the Interplanetary Medium, 2. J. Geo-

phys. Res.76, 3534–3563 (1971)
J. Birn, E.R. Priest,Reconnection of Magnetic Fields (Cambridge: Cambriodge University Press,

???, 2006)
D. Biskmap, E. Schwarz, A. Zeiler, A. Celani, J.F. Drake, Electron magnetohydrodynamic turbu-

lence. Phys. Plasmas6, 751–758 (1999)
S. Boldyrev, Spectrum of Magnetohydrodynamic Turbulence.Phys. Rev. Lett.96(11), 115002

(2006). doi:10.1103/PhysRevLett.96.115002
S. Boldyrev, J.C. Perez, Y. Wang, Residual Energy in Weak andStrong Mhd Turbulence, inNumer-

ical Modeling of Space Plasma Slows (ASTRONUM 2011), ed. by N.V. Pogorelov, J.A. Font,
E. Audit, G.P. Zank Astronomical Society of the Pacific Conference Series, vol. 459, 2012, p.
3

S. Boldyrev, J.C. Perez, J.E. Borovsky, J.J. Podesta, Spectral Scaling Laws in Magnetohydro-
dynamic Turbulence Simulations and in the Solar Wind. Astrophys. J. Lett.741, 19 (2011).
doi:10.1088/2041-8205/741/1/L19

S. Bourouaine, O. Alexandrova, E. Marsch, M. Maksimovic, OnSpectral Breaks in the Power
Spectra of Magnetic Fluctuations in Fast Solar Wind between0.3 and 0.9 AU. Astrophys. J.
749, 102 (2012). doi:10.1088/0004-637X/749/2/102

S.I. Braginskii, Transport Processes in a Plasma. Rev. Plasma Phys.1, 205 (1965)
B. Breech, W.H. Matthaeus, S.R. Cranmer, J.C. Kasper, S. Oughton, Electron and proton heating

by solar wind turbulence. Journal of Geophysical Research (Space Physics)114(A13), 9103
(2009). doi:10.1029/2009JA014354

R. Bruno, V. Carbone, The Solar Wind as a Turbulence Laboratory. Living Reviews in Solar
Physics2, 4 (2005)

C.H.K. Chen, T.S. Horbury, A.A. Schekochihin, R.T. Wicks, O. Alexandrova, J. Mitchell,
Anisotropy of Solar Wind Turbulence between Ion and Electron Scales. Phys. Rev. Lett.
104(25), 255002 (2010). doi:10.1103/PhysRevLett.104.255002

J. Cho, A. Lazarian, Compressible magnetohydrodynamic turbulence: mode coupling, scaling rela-
tions, anisotropy, viscosity-damped regime and astrophysical implications. Mon. Not. Roy. As-
tron. Soc.345, 325–339 (2003). doi:10.1046/j.1365-8711.2003.06941.x

J. Cho, A. Lazarian, The Anisotropy of Electron Magnetohydrodynamic Turbulence. Astro-
phys. J. Lett.615, 41–44 (2004). doi:10.1086/425215

J. Cho, A. Lazarian, Simulations of Electron Magnetohydrodynamic Turbulence. Astrophys. J.
701, 236–252 (2009). doi:10.1088/0004-637X/701/1/236

S.R. Cranmer, W.H. Matthaeus, B.A. Breech, J.C. Kasper, Empirical Constraints on Pro-
ton and Electron Heating in the Fast Solar Wind. Astrophys. J. 702, 1604–1614 (2009).
doi:10.1088/0004-637X/702/2/1604

P. Dmitruk, W.H. Matthaeus, Test particle acceleration in three-dimensional Hall MHD
turbulence. Journal of Geophysical Research (Space Physics) 111(A10), 12110 (2006).
doi:10.1029/2006JA011988

P. Dmitruk, W.H. Matthaeus, N. Seenu, Test Particle Energization by Current Sheets and
Nonuniform Fields in Magnetohydrodynamic Turbulence. Astrophys. J.617, 667–679 (2004).
doi:10.1086/425301

W. Dorland, G.W. Hammett, Gyrofluid turbulence models with kinetic effects. Phys. Fluids B5,
812–835 (1993)

E.A. Frieman, L. Chen, Nonlinear gyrokinetic equations forlow-frequency electromagnetic waves
in general plasma equilibria. Phys. Fluids25, 502–508 (1982)



28 Gregory G. Howes

S. Galtier, Wave turbulence in incompressible Hall magnetohydrodynamics. J. Plasma Phys.72,
721–769 (2006). doi:10.1017/S0022377806004521

S. Galtier, S.V. Nazarenko, A.C. Newell, A. Pouquet, A weak turbulence theory for incompressible
magnetohydrodynamics. J. Plasma Phys.63, 447–488 (2000)

S.P. Gary, S. Saito, Y. Narita, Whistler Turbulence Wavevector Anisotropies: Particle-in-cell Sim-
ulations. Astrophys. J.716, 1332–1335 (2010). doi:10.1088/0004-637X/716/2/1332

P. Goldreich, S. Sridhar, Toward a Theery of Interstellar Turbulence II. Strong Alfvénic Turbulence.
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