Understanding Galaxy Evolution with Massive Starburst Galaxies

Hai Fu University of Iowa

May 22, 2019

© ESA/AOES Medialab

Galaxy 101: The Andromeda Galaxy

Dark Matter Halo

Optical \rightarrow Stars

It is made of stars, gas, & dust

- Stellar Mass: 1.3x10¹¹ M₀
- Molecular Gas Mass: 4x10⁸ M₀

molecular gas is mostly H₂ but is traced by CO
 Dust Mass: 8x10⁷ M₀
 dust obscures optical light but glows in infrared

• Its star formation rate (SFR) is 1 M_☉ per year

- It lives in a dark matter halo
 - ▶ Halo Mass: 1.2x10¹² M_☉

>10x greater than the visible mass

Galaxy 101: Color Bimodality -Galaxies are either blue or red

Hubble's Galaxy Classification Scheme

Galaxy 101: Color Bimodality: Galaxies are either blue or red

Red Sequence: Old Ellipticals

Hai Fu, University of Iowa

Rapid build-up of red sequence

Red Galaxy Formation

- Early Completion: Most of the stellar mass in the red sequence is already in place by z = 1
- Rapid Build-Up: Stellar mass density increased more than 10 times in just 2 billion years (1 < z < 2).

Hai Fu, University of Iowa

Outline

- Galaxies show two main flavors -- blue or red -- in the past 10 Gyrs (or 70% of the universe's life), and red galaxies formed early and rapidly.
- A model of galaxy formation & evolution:
 ✓ the evolution in global star formation level
 ✗ why galaxies are either blue or red?
 ✗ dusty galaxies with tremendous star formation rates
- Why dusty galaxies are key to understand the divide between the blue and red galaxies?
- Prospects of a physical understanding of galaxy evolution with future observations

Physical Processes in Galaxy Evolution

Feedback: Ejecting gas

> Star Formation: Converting gas into stars

Gas accretion

© ESA/AOES Medialab

The "Bathtub" Model Gas return from: - stellar evolution G_{as accretion} - stellar feedback from halo star formation D gas ejection Gas reservior in MS SFGs

The "Bathtub" Model

Kennicutt-Schmidt Star Formation Relation

Stars form because of gravitational collapse of gas clouds, hence:
SFR = €sF/tsF Mgas
€sF: fraction of mol. gas involved in SF tsF: SF timescale
The data on the left show for normal SFGs:

t_{SF}/e_{SF} ~ 1.5 Gyr (e_{SF} ≈ 0.01 for t_{SF} = 15 Myr)

The Cold Gas Accretion Efficiency

The Cold Gas Accretion Efficiency

Tacchella+2015, Dekel & Birnboim 2006

When all the gas come in hot: drain the tub SFR declines exponentially with a 2-3 Gyr e-folding time $\begin{cases} \frac{dM_{\text{gas}}}{dt} = \epsilon_{\text{cold baryon}} \frac{dM_{\text{halo}}}{dt} - (1 - f_{\text{recycle}} + f_{\text{outflow}}) \text{SFR} \\ \text{SFR} = \epsilon_{\text{SF}} \frac{M_{\text{gas}}}{\tau_{\text{cold baryon}}} \text{ (Kennicutt - Schmidt law)} \end{cases}$ when $\epsilon_{cold} = 0$ we have : $\frac{dSFR}{dt} = -\frac{\epsilon_{SF}(1 - f_{recycle} + f_{outflow})}{\tau_{dyn}}SFR$ Solving this equation, we get an exponentially declining SFR : SFR $\propto \exp(-\frac{t}{\tau})$ and $\tau = \frac{\tau_{\text{dyn}}}{\epsilon_{\text{SF}}(1 - f_{\text{recycle}} + f_{\text{outflow}})}$

Predicted Star Formation History

Grey region: efficient cold gas accretion 10¹¹ < M_{Halo} < 10^{12.3} M_☉

• Gas accretion history of a $10^{12.6}$ M_{\odot} halo (mass at z = 0)

Star formation history from the continuity equation:

 Once the halo crosses the minimum mass (10¹¹ M_☉), the SFR rapidly rises to reach a steady state;

2. As the halo mass reaches $10^{12.3}$ M_{\odot}, cold gas accretion is choked and the SFR starts to decline with an *e*-folding time of 2-3 Gyr (=2 TSF/ESF).

Bouche+2010,Cattaneo+2006 Dekel & Birnboim 2006

The Cosmic Star Formation History

Cosmic star formation

- peaked when the universe was only 3 billion years old.
- declined by 10x in the second half of the universe' life

SFR = Star Formation Rate

The Decline of Molecular Gas Fraction

Isbell, Xue, Fu 2018: Using Tully-Fisher Relation to Measure Gas Fractions

Challenge I: Rapid build-up of the red sequence

Red Sequence Formation

• Early Completion:

Most of the stellar mass in the red sequence is already in place by z = 1

• Rapid Build-Up:

Stellar mass density increased more than $20x (= e^3)$ in just 2.5 Gyr (1 < z < 2). So the e-folding time for the mass growth is 1 Gyr.

Color bimodality at high-redshift requires rapid quenching

The rapid built-up of the **red sequence** requires rapid decline of SFR:

Red-sequence e-folding timescale of ~**1 Gyr** indicates an SFR e-folding time ~**0.2 Gyr**, because SFR must decline by 100 times (~5 e-folding, *e*⁵ = **150**) for a galaxy to cross the green valley

This is **10x** shorter than the gas exhaustion time (~**2 Gyr**)! **This is not draining, but quenching!**

Challenge II: Submillimeter Galaxies (SMGs)

Challenge II: Submillimeter Galaxies (SMGs)

• SMG = Submillmeter Galaxies

Grey region: efficient cold gas accretion in halos with $10^{11} < M_{Halo} < 10^{12.3} M_{\odot}$

Green region: star formation tracks of all halos

The SFRs of SMGs appear too high for any halos at their observed epoch.

How do we solve these problems?

Better and more observations :)

Submm Surveys with Herschel

2010, Herschel, 16 deg² in 16 hours

Size of the Moon

2010 Herschel

1998, JCMT, 50 hours

Brightest Submillimeter Sources are Either Extremely Luminous or Lensed

Multi-wavelength Follow-up Observations

Herschel

Probing Stars: previous star formation (SF)

High-Resolution Imaging & Spectroscopy

Dust: current SF

 $CO \rightarrow Molecular Gas:$ fuel of SF

High-Res Imaging w/ Keck Adaptive Optics (AO)

Observations of a Strongly Lensed SMG: G12v2.30

Source Plane Morphologies: Molecular Gas, Dust, and Stars

ALMA Long Baseline Campaign: SDP.81 (z = 3.04)

ALMA Partnership 2015 Dye+2015 (23mas=180 pc)

HXMM01: A Hyper-Luminous SMG Merger at z=2.3

A Declination (arcmin)

Fu, et al. 2013

SMG reproduced by cosmological zoom-in simulations (Narayanan+16)

Deep ALMA Observation of HXMM01

0.2" spatial resolution, 40 km/s spectral resolution, 240 GHz, 2.6 hr on-source

Xue, Fu, et al. 2018

Kennicutt-Schmidt Relation

 Stars form because of gravitational collapse of gas clouds, therefore:

 $\Sigma_{SFR} = \varepsilon_{SF}/t_{SF} \Sigma_{gas}$

or:

SFR = **C**SF/tSF Mgas

 The data on the left show for normal SFGs: tsr/esr ~ 1.5 Gyr for starbursts: tsr/esr ~ 0.1 Gyr

Fu+13, Daddi+09, Genzel+10, Hodge+12

Solutions to the "SMG" Problem

✗: Efficient cold gas accretion continues in 10¹³ M_☉ halos.

disagrees w/ hydro-dynamical simulations and over-produce massive galaxies and SMGs

 ✓: Burst: Star formation efficiency increases 10x in
 10¹³ M_☉ halos. most likely

✗: Burst: Star formation
 efficiency increases 10x in
 10¹² M_☉ halos

disagrees w/ clustering results

Starburst as a Universal Phase in Massive Galaxy Evolution

- Suppose SMGs live in dark matter halos with 12.5 < log(M_{halo}/M_☉) < 13.5 and 2 < z < 3, the space density of such halos is 1.1 x 10⁻⁴ Mpc⁻³
- Average lifetime of the SMG phase is ~200 Myr (the gas exhausting timescale, 2 Mgas/SFR)
- Universe aged by 1.2 Gyr between 2 < z < 3

 So if every such halo goes through an SMG phase, the expected space density of SMGs is:

 $1.8 \times 10^{-5} \text{ Mpc}^{-3} = 1.1 \times 10^{-4} \times (200/1,200)$ agreeing with the observed space density of SMGs: $2 \times 10^{-5} \text{ Mpc}^{-3}$ at 2 < z < 3

- SMGs have ~10x higher SF efficiency than normal galaxies, i.e., they are massive starbursts
- Starbursts can stop star formation by rapidly exhausting the gas reservoir, providing a quenching mechanism to turn blue starforming galaxies into red passive galaxies.
- Starbursts are a universal phase in the formation of massive red galaxies. All galaxy formation models should be able to reproduce this important phase.
- What triggers the high star formation efficiency? Why every massive galaxy goes through a burst phase?

How do we solve the remaining problems?

Better and more observations :)

Future IR/Submm Telescopes

Power of Lensing + JWST/TMT

Take-Home Messages

- Massive starbursts are critical for our understanding of galaxy evolution: they likely represent a transitional phase between blue starforming galaxies and red dead galaxies
- Herschel and existing facilities have revolutionized this field, and its legacy will be carried on by ALMA and future observatories like the JWST.
- In the next decade, observations will address the nature of starbursts by resolving star-forming regions and tracing gas accretion through the cosmic web (in both absorption and emission)