Do Galaxy Mergers Trigger AGN?

Hai Fu

University of Iowa Physics & Astronomy

Sep 24, 2019

in 7 billion years

Coming next ...

- What are active galactic nuclei (AGN)?
- How are AGN triggered? Black holes need to be fed with "food".
- What do we observe in the nearby universe with SDSS/MaNGA?
- Do observations agree with expectations from simulations?

A Zoo of Galaxies

various shapes of normal galaxies

A Small Fraction of Galaxies Host Active Galactic Nuclei (AGN)

 $\lambda = 600 \text{ nm}$

Accreting SMBHs as the powering source was first suggested for quasars by Hoyle et al (1964), Lynden-Bell (1969)

 $\lambda = 1.3$ mm

 $\begin{array}{l} {\sf Dist} = 16.8 \; {\sf Mpc} \\ (1 \; {\sf parsec} = 3.26 \; {\sf lyr}) \\ {\sf M}_{\sf stellar} = 10^{12} \; {\sf M}_{\sf sun} \\ {\sf M}_{\sf BH} = 6.5 \times 10^9 \; {\sf M}_{\sf sun} \end{array}$

700 AU in diameter

The EHT Collaboration 2019

Feeding SMBHs is difficult because of their tiny sphere of influence

 BH sphere of influence, the Bondi radius (1952):

$$R_{\rm B} = \frac{2GM_{\bullet}}{c_s^2}$$
$$\simeq 17 \,\mathrm{pc} \,\left(\frac{M_{\bullet}}{10^8 \,M_{\odot}}\right) \,\left(\frac{0.5 \,\mathrm{keV}}{kT}\right)$$

Angular momentum $\mathbf{L} = \mathbf{r} \times \mathbf{p}$

Shcherbakov et al. 2014

tidally-induced stellar bars can drive rapid gas inflows

How to efficiently remove the angular momentum of the gas?

Caveat #1: BH Feeding Zone Barely Resolved

Typical resolution is ~10 pc in simulations. The black hole's sphere of influence is barely resolved.

$$R_{\rm B} = \frac{2GM_{\bullet}}{c_s^2}$$
$$\simeq 17 \,\mathrm{pc} \,\left(\frac{M_{\bullet}}{10^8 \,M_{\odot}}\right) \,\left(\frac{0.5 \,\mathrm{keV}}{kT}\right)$$

Shcherbakov et al. 2014

Caveat #2: Uncertain self-regulation mechanisms

Kim+11

AGN show similar galaxy morphologies as non-AGN

X-ray-selected AGN at 1.5 < z < 2.5 (Kocevski+12)

The stochastic feeding baseline: AGN in non-interacting galaxies

Giroletti & Panessa 2010

AGN Triggering Mechanisms: Merger-Driven vs. Stochastic Feeding

- Simulations indicate merger is important
- An observational test will require
 - a spectroscopic galaxy survey that have:
 - an interacting sample: close galaxy pairs
 - a non-interacting control sample
 - and quantifiable selection biases
 - counting AGN in both pair sample and control sample and correcting for sample biases
 - a comparison between observed and expected AGN volume densities in close galaxy pairs

Galaxy Mergers in MaNGA

Fu, Steffen, Gross, et al. (2018) ApJ 856 93 (Paper I - AGN activity) Steffen, Fu, et al. (2019) in prep. (Paper II - Star Formation & Metallicity)

Josh Steffen (UI grad)

Arran Gross (UI grad)

Jacob Isbell (UI UG, now at MPIA)

SDSS 2.5-meter Telescope Apache Point Observatory New Mexico

Photo by David Kirkby

MaNGA Plate 7443 David Law

Law

3 degrees or 32 inches in diameter, patterned with 1500 holes to plug fibers

60

all is

MaNGA Integral-Field Spectroscopy

SDSS-IV MaNGA: Mapping Nearby Galaxies at APO

Fall 2014 to Spring 2020

 17 science IFUs per plate: 5/2/4/4/2 of 127/91/61/37/19-fibers (2"-diameter fibers)

10,000 galaxies
at 0.01 < z < 0.15
(2,772 in DR14)
(6,142 in DR16)

R ~ 2000
 Exptime ~ 3 hours

Bundy+15

1. Selection of pairs that are fully covered by single IFUs

- DR14 Main Galaxy Sample: 2,618 unique datacubes
- 105 kinematic pairs in the final sample (~4%):
 - $M_1/M_2 < 10:1$, dV < 600 km/s, 1 kpc < Sep < 30 kpc

8083–9101	8987-9102	7443–12703	8943–9101	7975-12704	8256-9101	8717–6103	7495–12703	8716–12705	7975–6104
8239-12701	8315-12701	8612-12705	8601-12704	8943-12704	8329-6102	8319–9102	8481-6103	8717–1902	8613-9102
8566–9102	8134–3701	8720–12703	8241–6103	8591–9101	8939–6104	8133–12704	8329-12705	8244–1901	8250-12704
8448–3703	7975–12702	8257–6104	8726–12704	8317–12701	8317–12702	8725–6101	8939–9101	8140–3704	8945–12703
8597–9101	8156-6103	9049-12701	8333-12701	8952-12702	8481-3704	8156–9101	9042-12705	8458-12703	8721-12703
8330-12702	8332–12704	8146–12704	8566–12701	8131-12702	8567–12705	8601-12701	8465–6101	8600–9101	8256-12704
8454–6102	8239–6103	8613–12704	8946–12705	8447–9102	8464–9101	9041–12705	8939–12702	8253–12705	8262–12705

1

I

2. AGN Identification

ionization mechanism

A Spectrum of a Narrow-Line AGN (continuum removed)

Fu & Stockton (2006)

Emission-line Classification: BPT + WHAN diagrams

The AGN branch includes Seyferts, LINERs, and Composites Based on nuclear spectra extracted with **2.6 kpc**-diameter apertures

Fu et al. (2018)

3. Correcting for MaNGA Sample Biases

A Volume-Limited Sample of Galaxies

"The history of astronomy is a history of receding horizons" –EDWIN HUBBLE

Distance = $c z H_0$, where z is the redshift

A volume-limited sample

A total sample on the order of 10,000 galaxies

Correcting a MaNGA sample to a volume-limited one

The volume density of a galaxy population can be estimated from an observed sample as:

$$n(\mathcal{M}_{\min}, \mathcal{M}_{\max}) \simeq \sum_{j=1}^{N_{obs}} W_j / 10^6 \text{ Mpc}^3$$

where the dimensionless weight (W_j) is calculated for each galaxy as:

$$W_j \equiv \frac{N_{\text{tiled}}}{N_{\text{obs}}} \frac{10^6 \text{ Mpc}^3}{V_{\text{tiled}}[z_{\min}(\mathcal{M}_j), z_{\max}(\mathcal{M}_j)]}$$

so instead of **counting the number of galaxies**, we shall sum their **M**_i-dependent volume-density weights.

4. Setting the stochastic AGN baseline in close pairs

we need probabilities of stochastic AGN

 $f_{AGN}(M, z)$

calculated from the AGN fractions in the non-interacting **control sample.**

First, the expected volume density of pairs that host at least one AGN can be calculated as:

$$m_{\text{eagn}}^{\text{exp}} = \sum_{j=1}^{N_{\text{pair}}} W_j \ f_{\text{agn}}(M_j^p, z_j)$$
 Primary as AGN
+ $\sum_{j=1}^{N_{\text{pair}}} W_j \ f_{\text{agn}}(M_j^s, z_j)$ Secondary as AGN
- $\sum_{j=1}^{N_{\text{pair}}} W_j \ f_{\text{agn}}(M_j^p, z_j)$ Avoid Double Counting
- $\sum_{j=1}^{N_{\text{pair}}} W_j \ f_{\text{agn}}(M_j^p, z_j) \ f_{\text{agn}}(M_j^s, z_j)$

where the stochastic AGN probabilities is from the control sample:

$$f_{\rm AGN}^{\rm mod}(M,z) = 22\% \exp\left[-\left(\frac{\log M/M_{\odot} - 10.6}{2 \times 0.54}\right)^2\right](1+z)^4$$

Observed volume densities agree with expectations from random pairing of stochastic AGNs

Secondly, the expected volume density of pairs that host two AGN (i.e., binary AGN) can be calculated as:

$$n_{\text{bagn}}^{\text{exp}} = \sum_{j=1}^{N_{\text{pair}}} W_j f_{\text{agn}}(M_j^p, z_j) f_{\text{agn}}(M_j^s, z_j)$$

Assume Random Pairing of Stochastic AGNs

where the stochastic AGN probabilities is from the control sample:

$$f_{\rm AGN}^{\rm mod}(M,z) = 22\% \exp\left[-\left(\frac{\log M/M_{\odot} - 10.6}{2 \times 0.54}\right)^2\right](1+z)^4$$

The Excess of Binary AGNs

5. Combining the Results

The vol. density of pairs that host at least one AGN agrees with expectation from stochastic feeding

However, there is a significant excess of binary AGN Primaries

Assuming Random Pairing of Stochastic AGN

Primaries

Random Pairing of Stochastic AGN + Merger-Induced AGN

Summary

- The virtual reality of galaxy mergers:
 - ✓ tidally induced torques drive inflows, which may trigger BH accretion in both galaxies
 - sub-grid models for accretion rate and BH feedback
 - stochastic feeding not properly modeled yet
- The MaNGA reality of galaxy pairs:

 ✓ AGN duty cycle is similar in close pairs as in isolated galaxies; stochastic feeding dominates over merger-driven accretion even among merging galaxies

✓ Mergers seem to induce additional AGN, especially at close separations; but one of the AGN has to be triggered by stochastic processes in the first place