Chap 1. Ancient Greek Astrenomy

 and Scientific Method

 and Scientific Method}

A main fragment of the Antikythera mechanism ($\sim 150 \mathrm{BC}$)

The scope of the known Universe

10^{17} Solar Masses, 10^{5} Member Galaxies, 520 million light years across

Chapter 1 Lecture Outline

- Ancient Greek Astronomy \& the Scientific Method
- How did they use Math and the scientific method to understand the natural world?
- How did they measure the size of the Earth, the distance to the Moon, and the distance to the Sun over 2000 years ago?
- How did they use scientific method to reject the idea that the Earth spins and the Earth orbit around the Sun?

What did Athens look like in 350 BC ?

Parthenon on the Acropolis of Athens
built 100 years ago between 447-432 BC, in the middle of the Golden Age of Greece

An 19th-century reconstruction of the Acropolis, including the Parthenon. Leo von Klenze.

Acropolis of Athens Today, 2400 years later

Parthenon Today, 2400 years later

Expansion of Alexander the Great from Macedonia (334-323 BC)

Empire of Alexander the Great (323 BC)

Average People's Life in Ancient Greece

Terrace farming

The Marketplace

Ancient Greek Astronomy 350 BC to 130 BC
 Classical Period to Hellenistic Period

- The spherical shape of Earth \& Moon: Aristotle, ~ 350 BC
- Radius of the Earth: Eratosthenes, $\sim 240 \mathrm{BC}$
- Relative distances of the Sun and the Moon: Aristarchus, $\sim 250 \mathrm{BC}$
- Distance to the Moon: Hipparchus, ~130 BC

Aristarchus of Samos

Aristotle (384-322 BC)

"The Earth must be a sphere!"

Aristotle's inference of the spherical shape of the Earth : the Sun and the Moon have circular shapes, all the time

Aristotle's confirmation of the sphere hypothesis

Total Lunar Eclipse
always full moon, always midnight

Eratosthenes of Cyrene (276-195 BC)

Eratosthenes ($\sim 240 \mathrm{BC})$

- Measured the circumference of the Earth within 10% of the modern value
- Simultaneous measurements of the Zenith angle of the Sun at two locations in Egypt on Summer solstice
- Syene - directly at zenith, the Sun casts no shadow.
- Alexandria - the sun is 7 degrees from zenith, by measuring the shadow and height of an obelisk.

Syene is almost directly south of Alexandria, so their local noons occur simultaneously

Eratosthenes's Method for Finding the Circumference of the Earth

Note that the two cities in Egypt are on the same meridian (i.e, same longitude), so their local noon occurs simultaneously

$$
\begin{aligned}
1 / 50 \text { of a circle } & \leftrightarrow 5000 \text { stadia }(\sim 800 \mathrm{~km}) \\
\therefore 1 \text { circle } \leftrightarrow & 50 \times 5000 \text { stadia } \\
& =250000 \text { stadia }(\sim 40000 \mathrm{~km})
\end{aligned}
$$

Angle from lengths of the pole and its shadow: $1 / 50$ of a circle

Pole's shadow Alexandria

Well at Syene (Aswan)

Center of the Earth angles are equal

Alternate interior

Eratosthenes' Method of Measuring Earth radius (240 BC)

What are known?

1. distance between Alexandria \& Syene (AS) is 5000 stadia (1 stadion $=$ circumference of a stadium $=160$ meters)
2. the angle between the two cities seen from the center of the Earth is 7 deg (theta)

> What need to be solved?

The radius of the Earth (R)
What formula to use?

Radian: The Natural Unit of Angles

> | $360 \mathrm{deg}=2 \pi$ radian |
| :---: |
| so $1 \mathrm{deg}=1 / 57.3$ radian |

arc length on a circle $=$ radius of the circle $\times \theta$

Small angle approximation, θ must be in unit of radian and $\theta \ll 1$:

$$
\sin \theta \approx \tan \theta \approx \theta
$$

Geometric illustration: $O \sim s$ when $\theta \ll 1$

Small Angle Approximation: Graphical Illustration

Recap:
Astronomy as a Science in Ancient Greece

Aristotle's inference of the spherical shape of the Earth

Total Lunar Eclipse
always full moon, always midnight

Eratosthenes ($\sim 240 \mathrm{BC})$

- Noon at Syene - the Sun was directly at zenith, the Sun casts no shadow.

Ancient Greek Astronomy ~ 350 BC to ~ 130 BC

Classical Period to Hellenistic Period

- The spherical shape of Earth \& Moon: Aristotle, ~ 350 BC
- Radius of the Earth: Eratosthenes, $\sim 240 \mathrm{BC}$
- Relative distances of the Sun and the Moon: Aristarchus, ~ 250 BC
- Distance to the Moon: Hipparchus, ~130 BC

Distance to the Moon

Hipparchus of Nicaea (190-120 BC); Claudius Ptolemy (100-170 AD)

Geological survey method has been used to determine distances before Hipparchus' time

Castillo de San Marcos in St Augustine, Florida. Completed in 1695

Geological Survey Method: Distance Measurements

need to know the baseline length $(l=A B)$ and the two angles (α, β)

$$
\begin{array}{lr}
\ell=d\left(\frac{\cos \alpha}{\sin \alpha}+\frac{\cos \beta}{\sin \beta}\right) & \text { therefore: } \\
\ell=d \frac{\sin (\alpha+\beta)}{\sin \alpha \sin \beta} & d=\ell \frac{\sin \alpha \sin \beta}{\sin (\alpha+\beta)}
\end{array}
$$

The solar eclipse of March 14, 190 BC

- The eclipse happened the year when Hipparchus was born, so he used historical record instead of his own observations
- It was recorded that the sun is fully covered by the moon (total eclipse) in Hellespont (40 N in today's Turkey), when the Romans were preparing for war in the area
- The same eclipse was also recorded in Alexandria (31 N , in Egypt), where the Sun was obscured $4 / 5$ by the moon at the maximum
- The two cities have roughly the same longitude (i.e., along the same meridian)

Hipparchus' method is called Parallax, it uses

 the same concept as our stereoscopic visionSeen by left eye Total Eclipse at Hellespont

Seen by right eye
Partial Eclipse at Alexandria

The solar eclipse of March 14, 190 BC

seen in Hellespont (100\% obscured)

seen in Alexandria (80% obscured)

Both the Sun and the Moon has an angular size of ~ 0.5 deg in diameter, how much has the moon's direction shifted relative to the direction to the Sun?

The Simple Geometry of Parallax

$$
D_{\text {moon }}=\text { baseline length } / \text { parallax angle in radian }=l / p
$$

we have used the small angle approximation above

The solar eclipse of March 14190 BC it was near the Spring Equinox, so the Sun and the Moon are both near the celestial equator

Sine \& Cosine rule for a general triangle

Sine Rule:
$\frac{a}{\sin (A)}=\frac{b}{\sin (B)}=\frac{c}{\sin (C)}$

Cosine Rule:
$c^{2}=a^{2}+b^{2}-2 a b \cos (C)$

The solar eclipse of March 14, 190 BC

 The date was near the Spring Equinox, so the Sun and the Moon were both near the celestial equator

Hipparchus' measurement of lunar distance (the first parallax based method)

In triangle AHE: AH = 2 R $\sin (\mathbf{\delta} / 2)$
In triangle AHM: AH/sin $\boldsymbol{\mu}=\mathbf{D}^{\prime} / \mathbf{s i n} \boldsymbol{\theta}$
Our goal is to solve for $\mathbf{D}^{\prime} / \mathbf{R}$, which is the lunar distance in unit of Earth's radius

For comparison, the modern day measurements show
D/R = 56-64 (elliptical orbit)

Parallax of the Moon using background stars

- Regulus
- Moon

Simultaneous observations of the Moon at two locations

Selsey, UK

On May 23, 2007, at Athens, the moon appears closer to the bright star (Regulus) by 18 arcmin compared to the image taken in Selsey. The separation of the two locations is 2360 km . This difference seen in the direction of the moon against distance stars is the parallax.

Let's draw a Geometric Diagram of the Experiment

 $A C=A S \sin (\theta)=2360 \mathrm{~km} \sin (\theta), \theta=60 \mathrm{deg}$ $\mu=18$ arcminDistance to the Moon $=\mathrm{AM}=\mathrm{AC} / \mu$
$\mathrm{AM}=\mathrm{AC} / \mu=2360 \mathrm{~km} \sin (60 \mathrm{deg}) /[(18 / 60) / 57.3]=3.9 \mathrm{e} 5 \mathrm{~km}$ (actual value: 3.8 e 5 km)

When Alexander the Great met Diogenes ...

- Alexander the Great came to visit the philosopher Diogenes of Sinope. Alexander wanted to fulfill a wish for Diogenes and asked him what he desired.

Diogenes replied "Stand out of the sun."

Alexander later said, "If I were not Alexander, I wish I were Diogenes."

- Evidence of Diogenes' disregard for authority, political power, and decorum

Recap:
Astronomy as a Science in Ancient Greece

$$
\begin{aligned}
1 / 50 \text { of a circle } & \leftrightarrow 5000 \text { stadia }(\sim 800 \mathrm{~km}) \\
\therefore 1 \text { circle } \leftrightarrow & 50 \times 5000 \text { stadia } \\
& =250000 \text { stadia }(\sim 40000 \mathrm{~km})
\end{aligned}
$$

Angle from lengths of the pole and its shadow: $1 / 50$ of a circle

Pole's shadow Alexandria

Well at Syene (Aswan)

Center of the Earth angles are equal

Alternate interior

The Simple Geometry of Parallax

$$
D_{\text {moon }}=\text { baseline length } / \text { parallax angle in radian }=l / p
$$

we have used the small angle approximation above

Ancient Greek Astronomy ~ 350 BC to ~ 130 BC

Classical Period to Hellenistic Period

- The spherical shape of Earth \& Moon: Aristotle, ~ 350 BC
- Radius of the Earth: Eratosthenes, $\sim 240 \mathrm{BC}$
- Relative distances of the Sun and the Moon: Aristarchus, ~ 250 BC
- Distance to the Moon: Hipparchus, ~130 BC

Relative distances of the Sun and the Moon this distance ratio: $\mathrm{D}_{\text {sol }} / D_{\text {luna }}$ Aristarchus of Samos 310-230 BC

Moon Phases

At the quarter moon phase, the Sun-Moon-Earth system forms a right-angle triangle, and the angular separation between the Moon and the Sun at that moment gives the ratio between their distances

Aristarchus' Timing Method

Suppose the time between first and last quarter moon is 15 days and the time between the last and the first quarter moon is 14 days, what is the angle ϕ ?

First Quarter

Aristarchus found the angle ϕ to be 87 deg (so $\theta=3 \mathrm{deg}=0.052$ radian), giving Solar distance/Lunar distance $=S / L=19.1$ (actual value 390)

Modern method to measure AU

- By observing the transit of Venus at two locations on Earth, one can measure the distance to Venus using the measured parallax and the distance between the two locations.
- Assuming Venus and Earth are both on circular orbits around the Sun, the greatest elongation angle of Venus tells us its orbit has a radius of 0.7 AU.
- Since the Earth's orbit has a radius of 1 AU , the measured parallax distance of Venus during its transit across the Sun equals 0.3 AU.

The Scientific Method

The scientific method is a formal procedure used to test the validity of scientific hypotheses and theories.

How did ancient Greek astronomers reject the hypothesis the Earth orbit around the sun?

- Observation: The Sun moves against background stars on the celestial sphere
- Hypothesis: The Earth moves around the Sun (which is much larger)
- Experiment: Measuring the expected motion of bright stars due to Earth's orbital motion around the Sun (i.e., parallax)
- Result: no such yearly motion is detected for any bright stars
- Updated Hypothesis: The Earth is stationary and the Sun moves around the Earth

Rejection of the updated Hypothesis "The Earth is not orbiting around the Sun", first by Copernicus in 1543 AD (51 years after the discovery of the "New World")

"The Three-Body Problem": α Centauri Triple Star System

Parallax of Proxima Centauri

Parallax of Proxima Centauri as observed simultaneously from New Horizons at Pluto's orbit and the

How did ancient Greek astronomers reject the hypothesis that the Earth is spinning with a period of 24 hrs ?

- Observation: Stars rise from the east, drift across the night sky, and set in the west
- Hypothesis: The Earth spins on its poles every 24 hours
- Experiment: Measuring the expected motion of air flow caused by this fast spin ($1700 \mathrm{~km} / \mathrm{h}$ on the equator)
- Result: no such strong wind is seen.
- Updated Hypothesis: The Earth is not spinning

Rejection of the updated Hypothesis
 "The Earth is not spinning" by Foucault in 1951

Foucault's pendulum in the Panthéon, Paris (200 ft, 60 lb)

Not the Pantheon in Rome built in 126 AD

"Room-temperature Superconductor" - LK-99

- Low temperature superconductivity (few Kelvin) was discovered in 1911 by Heike Onnes. In 1986, high-temperature superconductors were discovered to have critical T above 90 Kelvin.
- Hypothesis: The compound "LK-99" was claimed to be a room-temperature superconductor by a group of scientists in Korea in 2023.
- Experiment: Based on the recipe given in the preprints, multiple research groups in the world attempted to replicate the compound in their labs so that they can test its properties
- Result: LK-99 is not a superconductor at any temperature, it's actually an insulator in pure form. The observed resistivity drop and repulsion to magnetic field is mainly caused by the copper-sulfide impurities in small samples.

Chapter 1 Summary

- Astronomy as a Science in Ancient Greece
- The size of the Earth - Zenith Angles of the Sun
- The distance to the Moon - Parallax of the Moon
- The distance ratio between the Sun and the Moon - Timing of Quarter Moons.
-The Scientific Method
- Hypothesis must be testable
- Experiments must be carried out, in attempts to reject the hypothesis, indefinitely
- Conclusions must be based on experimental data
- Scientific method does not guarantee correct results, but it has a mechanism to self-correct, because it is a process that relies on independent thinkers

