Chap 2:

Motions of Earth and the Moon a. Celestial Sphere de Coordinates b. Time, Calendar, de Nasigation c. Longterm Climate Change

Chapter 2a:The Celestial Sphere

-The English word astronomy originated from Greek $\dot{\alpha} \sigma \tau \varrho \circ v o \mu i ́ \alpha$, where $\alpha \not \sigma \tau \varrho \circ v$ means astron, "star" and -vo $\mu i ́ \alpha$ means -nomia "law".

- "Star arrangements" on the sky changes as geological location and time changes
- Constellations - the arrangement of stars
- Celestial Sphere: (Alt-Az) \& (RA, Dec) coordinates

Diurnal motion caused by the spin of the Earth
Seasons caused by the orbit and tilt of the Earth
Moon phases and eclipses caused by relative angles between the Moon and the Sun, as Aristotle realized around 350 BC

Fine motion of the Earth - Precession of the Earth's spin axis

- Causes of Ice Ages (Could it also cause the climate change?)

Time Keeping, Celestial Navigation, and Astro Observations

- RA \& Dec of an object: predefined on sky charts
- Calendar \& Time

Geological location + Sky Position \Rightarrow Date \& Time

- Celestial navigation:

Time + Sky Position \Rightarrow Geological location

- Astronomical Observations

Time + Geological location \Rightarrow Sky Position

Chapter 2b:Time \& Calendar

- How do we keep time?
through astronomical observations
-What do A.M. \& P.M. mean?
Latin: ante/post meridiem (of Sol)
-How do we make calendar?
Originally for the purposes of agriculture and religious rituals
- How do we predict the position of objects on the sky?

Based on date, time, geological location, and celestial coordinates

- How do we navigate through the sea?

With astronomical observations and marine chronometer

The calendar we use today originated from this ancient city, what is it?

Riman Kingdom (753 $509 \mathrm{BC}^{5}$, Roman Republic

The Names of Months (from Romulus [753BC, Lunar]-Julian[63BC, Solar] Calendar)

1. March - Mars, the god of war
2. April - Latin aperio "to open"
3. May - Goddess Maia
4. June - Goddess Juno
5. July - Julius Caesar, Roman Emperor (renamed in 44 BC)
6. August - Augustus, Roman Emperor (renamed in 8 BC)
7. September - Latin 7th
8. October - Latin 8th
9. November - Latin 9th
10. December - Latin 10th
11. January - Janus, the Roman god of beginnings and transition
12. February - Februa, a festival for springtime cleaning and washing

The Days of a Week (invented by Babylonians of Akkadian Empire 2300 BC, renamed by Romans)

1. Monday - in Latin dies Lunae (Luna)
2. Tuesday - dies Martis (Mars)
3. Wednesday - dies Mercurili (Mercury)
4. Thursday - dies Jovis (Jupiter)
5. Friday - dies Veneris (Venus)
6. Saturday - dies Saturni (Saturn)
7. Sunday - dies Solis (Sol)

Italian - lunedi, martedi, mercoledi, giovedi, venerdi, sabato, domenica

Angular Coordinate

 Systems

Constellations on the celestial sphere

Constellations based on Greece-Roman Mythology

- The entire sky is broken up into 88 regions (48 original): constellations
- Stars within each region create arbitrary patterns
- Resulting myths from human imagination

The division of the celestial sphere is arbitrary: e.g., Lunar Mansions (East Asia)
vs. Zodiac Constellations (Europe)

- The stars along the path of the Moon are divided into four quadrants
- Azure Dragon of the East
- Black Tortoise of the North
- White Tiger of the West
- Vermilion Bird of the South
- Each quadrant has seven lunar mansions
- These 28 lunar mansions correspond to the 12 Zodiac constellations

Stars in the Same Constellation are not at the same distances to us. And brighter stars are not necessarily closer than fainter stars

Stars in a constellation are not related. e.g., see the Orion Constellation in 3D

Stars in the Same Constellation are not at the same distances to us. And brighter stars are not necessarily closer than fainter stars

Brighter stars are not necessarily closer than fainter stars, because they could have very different luminosities

<- direction to Earth

Where is Mt. Everest?

So what is a constellation?

A region of the sky with bright stars forming a projected pattern that evokes imaginations

These projected patterns change over time because stars move (proper motion)

These projected patterns are arbitrary (meaningless)

Angular Coordinates on the Celestial Sphere

Right Ascension and Declination (RA, Dec) are defined using an intuitive coordinate system

They do not change over decades for objects outside off the Solar system

> The celestial poles (both north and south) are directly above Earth's poles.

Stars appear fixed on the imaginary celestial sphere,
while the Sun, the Moon, and other Solar system objects move across the celestial sphere

RA \& Dec are similar to Longitude and Latitude

© Encyclopædia Britannica, Inc.

HW Q2: Predict the time difference between the local noon at lowa City and the local noon at Des Moines. Local noon is defined as the time when the Sun transits the local meridian. You are given the following information: (1) the radius of the Earth is measured to be 6350 km , (2) the distance between Iowa City and Des Moines is 115 miles according to Google Map, and (3) both Iowa City and Des Moines are at a latitude of $\mathbf{+ 4 2}$ degrees. Choose a sensible unit for your result.

Hint: If you didn't use the latitude, your solution is incorrect.

RA \& Dec are similar to Longitude and Latitude

Because stars, galaxies, and quasars appear to be fixed on the celestial sphere, it makes sense to give them fixed coordinates

We use two angles: right ascension (alpha) declination (delta)
celestial pole

The Sun and other solar system objects have time-varying coordinates, which are provided as tables called ephemeris

Still with two angles: right ascension (RA) declination (Dec)
but as functions of time

Ephemeris of Mars

https://ssd.jpl.nasa.gov/horizons/app.html\#/

** Date__(UT)__HR:MN R.A.___(ICRF)___DEC APmag
** \$\$SOE

2022-Aug-28	$00: 00$
$2022-A u g-29$	$00: 00$
$2022-A u g-30$	$00: 00$
$2022-A u g-31$	$00: 00$
$2022-S e p-01$	$00: 00$
$2022-S e p-02$	$00: 00$
$2022-S e p-03$	$00: 00$
$2022-S e p-04$	$00: 00$
$2022-S e p-05$	$00: 00$
$2022-S e p-06$	$00: 00$
$2022-S e p-07$	$00: 00$
$2022-S e p-08$	$00: 00$
$2022-S e p-09$	$00: 00$
$2022-S e p-10$	$00: 00$

04	09	22.40	+19	36	32.3	-0.040
04	11	40.08	+19	43	30.7	-0.052
04	13	56.83	+19	50	20.3	-0.061
04	16	$12.63+19$	57	01.2	-0.064	
04	18	27.45	+20	03	33.5	-0.075
04	20	41.27	+20	09	57.4	-0.102
04	22	54.06	+20	16	12.9	-0.123
04	25	$05.80+20$	22	20.1	-0.152	
04	27	$16.46+20$	28	19.2	-0.175	
04	29	$26.01+20$	34	10.4	-0.196	
04	31	34.43	+20	39	53.7	-0.195
04	33	$41.70+20$	45	29.2	-0.218	
04	35	47.78	+20	50	57.2	-0.244
04	37	$52.64+20$	56	17.7	-0.257	

A simplified ephemeris of the Sun

	RA	Dec	Notes
Spring Equinox (Mar 20)	$\mathbf{0} \mathbf{~ h r}$	$\mathbf{0}$ deg	Origin of Celestial sphere: aka, vernal equinox
Summer Solstice (Jun 21)	$\mathbf{6 ~ h r}$	$\mathbf{+ 2 3 . 5}$ deg	longest day in a year
Fall Equinox (Sep 22)	$\mathbf{1 2 ~ h r}$	$\mathbf{0 ~ d e g}$	equal day and night, same as Spring Equinox
Winter Solstice (Dec 21)	$\mathbf{1 8 ~ h r}$	-23.5 deg	longest night in a year

The ecliptic: the path of the Sun on

- The ecliptic is tilted 23.5 degrees from the celestial equator, because Earth's spin axis is tilted 23.5 degrees from the plane of its orbit around the Sun

Copyright © 2022 W. W. Norton \& Company, Inc.

Work out (RA, Dec) coordinates of the Sun on the four special dates

- Work out (RA, Dec) coordinates of the Sun on the four special dates

A simplified ephemeris of the Sun

	RA	Dec	Notes
Spring Equinox (Mar 20)	$\mathbf{0} \mathbf{~ h r}$	$\mathbf{0}$ deg	Origin of Celestial sphere: aka, vernal equinox
Summer Solstice (Jun 21)	$\mathbf{6 ~ h r}$	$\mathbf{+ 2 3 . 5}$ deg	longest day in a year
Fall Equinox (Sep 22)	$\mathbf{1 2 ~ h r}$	$\mathbf{0 ~ d e g}$	equal day and night, same as Spring Equinox
Winter Solstice (Dec 21)	$\mathbf{1 8 ~ h r}$	-23.5 deg	longest night in a year

Angular coordinates measured by an observer

Altitude and Azimuth (Alt, Az) are what we measure on the ground

They change all the time: $A l t(t), A z(t)$

From the perspective of an observer on the ground, each object's direction can be described by another two angles (Alt \& Az)

Measuring azimuth with a compass

Measuring altitude with your hand (this week's lab)

Measuring altitude with a sextant

Marine sextant

Illustration: How to use sextant to measure the altitude of the Sun

Illustration: How to use sextant to measure the altitude of the Sun

From the perspective of an observer on the ground, each object's direction can be described by another two angles (Alt \& Az)

Diurnal (Daily) motion of objects on the sky

The diurnal motion of objects on the sky is caused by Earth's daily spin around its poles

Spin of the Earth, animated for Summer Solstice (around June 20)

Evidence of Earth's Spin: Foucault's Pendulum

On the pole, Foucault pendulum completes one cycle in 23 h 56 m .

Why not 24h?

Foucault's pendulum in the Panthéon, Paris (200 ft, 60 lb)
(not the Pantheon in Rome built in 126 CE)

Sidereal Day vs. Solar Day

Directions of the diurnal motion of objects on the sky

north celestial pole

- As the Earth rotates, the sky appears to us to rotate in the opposite direction.
- Imagine you are at the North pole, which direction do stars rotate? CW or CCW? What about the South pole?

Views of the night sky vs. Latitude

Can you tell which place is at a higher latitude?

- The altitude of stars depend on its coordinates on the celestial sphere (RA $\&$ Dec), the latitude, and the local time of the observer
- From the diagram below, you can see that the altitude of the NCP (close to Polaris) equals the latitude and stars within 30 deg of the NCP never set.

View from $30^{\circ} \mathrm{N}$

NCP
NCP

- At Earth's pole, no stars rise and set.
- The celestial pole is at the zenith
- Observers can see half of the celestial sphere as it rotates.
- All visible stars are circumpolar stars

- At Earth's equator, all stars rise and set.
- The celestial poles are on the northern and southern horizons.
- Observers can see the whole celestial sphere as it rotates.
- All stars rise and set, no circumpolar stars

3 At the equator, all stars rise and set each day.

Equator

- At intermediate latitudes,
- Some stars are circumpolar (never sets); What's their Declination range?
- Some stars rise and set. What's their Declination range?
- Some stars are never visible. What's the Declination range?

In Iowa City $\left(42^{\circ} \mathrm{N}\right)$, which stars are circumpolar? Give their range in Declination.

If you're at the south pole, which stars are circumpolar? Give the ranges of RA \& Dec.

Recap:

- NCP, SCP, Equator,

Ecliptic -> (RA, Dec)

- Horizon, Zenith,

Meridian -> (Alt,Az)

Every distant object on the celestial sphere has a fixed "longitude \& latitude" called RA and Dec.

The celestial sphere of (RA \& Dec) is aligned with Earth's (Lon, Lat).

The two spheres rotate relative to each other because of Earth's spin, on a period called a sidereal day (shorter than a solar day by ~ 4 minutes)

RA \& Dec of a distant object does change significantly over centuries

A simplified ephemeris of the Sun

	RA	Dec	Notes
Spring Equinox (Mar 20)	$\mathbf{0}$ hr	$\mathbf{0}$ deg	Origin of Celestial sphere: aka, vernal equinox
Summer Solstice (Jun 21)	$\mathbf{6 ~ h r}$	$\mathbf{+ 2 3 . 5}$ deg	longest day in a year
Fall Equinox (Sep 22)	$\mathbf{1 2 ~ h r ~}$	$\mathbf{0}$ deg	equal day and night, same as Spring Equinox
Winter Solstice (Dec 21)	$\mathbf{1 8 ~ h r}$	-23.5 deg	longest night in a year

Separately from (RA, Dec), each object's direction

from the perspective of an observer on the ground are described with another two angles (Alt \& Az)

Latitude $60^{\circ} \mathrm{N}$

Simple Coordinate Conversion

for special locations or sources

How do we put the two sets of coordinates together? (RA, Dec) vs. [Alt $(\mathrm{t}), \mathrm{Az}(\mathrm{t})]$

Simple Coordinates Conversion: (Alt, Az) of NCP and SCP

- The altitude and azimuth of stars depend on its coordinates on the celestial sphere (RA \& Dec), your latitude, and the local sidereal time
- For example, from the diagram below, you can see that the altitude of the NCP (close to Polaris) equals the latitude and its Azimuth is always 0 deg.

Horizon

Perth is at a latitude of $32^{\circ} \mathrm{S}$. (RA, Dec) of SCP = (Undefined, -90 d) What is the altitude and azimuth of the south celestial pole (SCP)?

Perth is at a latitude of $32^{\circ} \mathrm{S}$.

What is the altitude and azimuth of the NCP?

Simple Coordinates Conversion: (RA, Dec) of Zenith

The RA \& Dec of Local Zenith

- (Alt, Az) of local Zenith $=(90 \mathrm{deg}, 0$ deg)
- What is the Declination of a star at Zenith?
- What is the Right Ascension of a star at Zenith?

Latitude $60^{\circ} \mathrm{N}$

Vega = alpha Lyra

RA: 18 h 36 m
Dec: +38d47'

Constellation:
Lyra

Practice: Estimate the altitude of Pleiades

- Pleiades cluster (M45) RA 3h47m, Dec $+24.1^{\circ}$
- Iowa City coordinates Long $=91.5^{\circ} \mathrm{W}$, Lat $=41.6^{\circ} \mathrm{N}$
- At LST = 03:47, estimate the Altitude of Pleiades

Ecliptic

Coordinate

Systems:
Summary

Full Coordinate Transformation Formulae: From (RA, Dec) to (Alt, Az)

- RA, Dec, Alt, Az, LST, HA, Latitude = $\alpha, \delta, a, A_{z}, t, h, \phi$
- $\left(a, A_{z}\right)$ varies with time, so we first convert the object's RA (α) to HA (h) at LST (t) : $h=(t-\alpha) \times 15^{\circ} / \mathrm{hr}=(t-\alpha) / 12 \mathrm{hr} \times \pi \mathrm{rad}$
- Next, with spherical trigonometry, we can derive:
$\sin a=\sin \phi \sin \delta+\cos \phi \cos \delta \cos h$ $\tan A_{z}=\sin h /(\cos h \sin \phi-\tan \delta \cos \phi)$
- Sanity check:
calculate $\left(a, A_{z}\right)$ for $h=0$, i.e., transit the meridian

Self-test Questions for Coordinate Systems

- Definitions \& Diagrams:
- NP+SP, Equator, Prime Meridian - (Longitude, Latitude)
- NCP+SCP, Equator, Ecliptic - (RA, Dec)
- Horizon, Zenith, Meridian - (Alt, Az)
- Simple Coordinate Transformation (at a given location):
- Calculate the altitude of the Sun at noon on a given date (e.g., June 20).
- Calculate the altitude of a star (e.g., Rigel) when it transits the meridian.
- Calculate the declination of a star for which you have measured the altitude when it transits the meridian.
- Navigation Part I: Latitude measurements
- Describe at least two astronomical methods; List the tools needed
- Calendar and Date
- How would you determine the length of a year?
- How would you determine the length of a day?

SOLAR DAY VS. SIDEREAL DAY

Why are there two different days?

Solar Day vs. Sidereal Day

- A (Mean) Solar Day = the time interval between two consecutive noons (averaged over a year)
- A Sidereal Day = the time interval between two consecutive transits of a distant star

Sidereal Day vs. Solar Day

Solar Day vs. Sidereal Day

12:00:00

11:56:04 12:00:00

23 h 56
a sidereal day

24h
a mean solar day

Motions of the Earth and Obliquity: The Causes of Earth's Seasons

Earth's Orbit

Daily Rotation: The Earth spins around its poles every sidereal day (23h56m), causing diurnal motions of objects in the sky

Spin of the Earth, animated for Summer Solstice (around June 20)

Yearly Revolution: Earth orbits around the Sun every year (365.2422 days), causing the 4 -minute longer solar day (24h) and the annual motion of the Sun along the ecliptic

Winter solstice

Vernal equinox

Earth's orbit

> Autumnal equinox

Summer solstice

Obliquity: Earth's spin axis is tilted from the pole of the ecliptic by 23.5 degrees, causing Earth's seasons

The combination of Earth's orbit and its obliquity results in the ephemeris of the Sun below

	RA	Dec	Notes
How will the ephemeris change if the obliquity changes from 23.5 degrees to 5 degrees?			
Spring Equinox (Mar 20)	0 hr	0 deg	Origin of Celestial sphere: aka, vernal equinox
Summer Solstice (Jun 21)	6 hr	+23.5 deg	longest day in a year
Fall Equinox (Sep 22)	12 hr	0 deg	equal day and night, same as Spring Equinox
Winter Solstice (Dec 21)	18 hr	-23.5 deg	longest night in a year

Season Factor I: The length of daytime increases with the Sun's declination

The Sun stays above the horizon longer as its declination increases

Season Factor II:

 The altitude of the Sun at noon increases with the Sun's Declination
The Solar Analemma

 over
Edmonton, AB

June 21, 2013 - June 2, 2014
 09:45 MT

Solar analemma from Sulmona, Italy

A compilation of images of the Sun taken at the same time (12pm) every ten days and at the same place

altitude of Sun at noon $=(90$ deg - latitude $)+$ declination of Sun

Analemma at: 4:45 p.m.
(Standard time)

Latest Sunset
02/07 $=$
$1907 . \quad 21 / 064: 45$

Chichen Itza - Temple of Kukulcan (800-1200 AD) side slope $=47 \mathrm{deg} \sim$ altitude of the Sun at Winter Solstice What's the latitude of Chichen Itza?

altitude of Sun at noon = (90 deg - latitude) + declination of Sun

The Slight Elliptical Orbit of the Earth

Earth's orbit around the Sun

Ellipticity cannot explain why the Northern \& the Southern hemisphere have opposite seasons

Solar Constant

All the energy per unit

 time that comes out of the Sun, must also come out of the sphere at 1 AU . This is required by conservation of energy.DJ Jeffery UNLV 2003

Altitudes of the Sun in the morning vs. noon cause ground temperature to change.

Noon

Early Morning

The key is to understand that how energy is distributed on the ground. At lower altitude, the solar energy is more spread out; at higher altitude, it is more concentrated.

Check out solar energy production

Daily Energy Production of My 4 kW Array

自 07/19/2022
$\gg \mid$

Solar Production

Monthly Production of My Solar Array

Month

Quarter
Year

Estimated

How does the altitude of the Sun affect ground temperature?

The key is to understand that how energy is distributed on the ground. At lower altitude, the solar energy is more spread out; at higher altitude, it is more concentrated.

Noon on Summer Solstice

Noon on Winter Solstice

Obliquity \& Seasons

Summer

Zenith Angle of the Sun in Summer vs. Winter

First day of northern summer
 June 21

First day of northern winter
December 22

First day of northern summer June 21

The Northern Arctic Circle

- Seeing the midnight sun in the arctic circle on summer solstice
- Magenta lines: direction towards the Sun at noon and midnight
- arctic circle:
latitude > +66.5d

The Southern Arctic Circle

First day of northern winter
December 22

Obliquity \& Seasons Animation

The axis of rotation of the Earth is not perpendicular to the plain of revolution around the Sun but is tilted 23.5°.

Summary: Obliquity \& Seasons

- The 23.5-deg obliquity has the following effects on Earth:
- The angle of sunlight is more direct in summer, thus the received solar energy is higher per unit surface area.
- The sun stays above the horizon longer in the summer, shorter in the winter, so the ground receives more energy on a summer day
- The ellipticity of the Earth's orbit has negligible effect on the seasons we experience.
- Southern Hemisphere experiences the opposite situation of the Northern Hemisphere.

Celestial Navigation

- To navigate through the sea, we need to know both our latitude and our longitude.
- To measure latitude, we can use the altitude of Polaris, the altitude of the Sun at noon given the date, or the declination of a star near zenith
- To measure longitude, we need a clock that measures the precise local time at a known geological location (home port). That local time could be either sidereal time (for nighttime navigation) or solar time (for daytime navigation).

LATITUDE:
 ALTITUDE OF NCP DECLINATION OF ZENITH ALTITUDE OF SUN

THE ASTRONOMICAL DEFINITION OF TIME

Time is the Hour Angle of Celestial Objects

To keep time, we use Hour Angle

- hour angle (h) is measured to the west from the local meridian to the hour circle passing through the object (Unit: hr or deg)
- hour circle: the great circle through a given object and the two celestial poles

Hour Angle is the angle measured to clockwise from the local meridian to the hour circle passing through the object. The diagram below shows that $\mathrm{HA}_{\text {obj }}=\mathrm{RA} A_{\text {meridian }}-\mathrm{RA} \mathrm{A}_{\mathrm{bj}}$, since both HA and RA are measured along the equator but measured in opposite directions.

Observer's Meridian

Practice: Hour Angle Calculation

- Quasar 3C 273 is at $R A=12 h 29 m$, Dec $=+02 \mathrm{~d}$
- Your Zenith is at $R A=7 h 40 \mathrm{~m}$ Dec $=+42 \mathrm{~d}$
- What is the hour angle of 3C 273?
- HA(Obj) = RA(Meridian) - RA(Obj)

Time is the Hour Angle of a reference celestial object:
If the object is the Sun, we have the Apparent Solar Time; If the object is the Vernal Equinox, we have Local Sidereal Time.

Longitude difference is time difference:

 make sure to compare the same kind of time$\lambda_{A}-\lambda_{B}=\left(\mathrm{LST}_{A}-\mathrm{LST}_{B}\right) \cdot 15^{\circ} / \mathrm{hr}$
$\lambda_{A}-\lambda_{B}=\left(\mathrm{MST}_{A}-\mathrm{MST}_{B}\right) \cdot 15^{\circ} / \mathrm{hr}$ $\lambda_{A}-\lambda_{B}=\left(\mathrm{AST}_{A}-\mathrm{AST}_{B}\right) \cdot 15^{\circ} / \mathrm{hr}$

Longitudes to the East of Greenwich are positive; to the West of Greenwich are negative.

Observer A's Meridian
$\mathrm{HA}=\mathrm{Oh} / 0^{\circ}$

Circle parallel to the equator

LLONGITUDE FROM \triangle SIDEREAL TIME

Local Sidereal Time (LST)

- Definition:

LST := Hour Angle of the Vernal Equinox
$=R A_{\text {Meridian }}-R A_{\text {Ver. Eq. }}$
\Rightarrow

$$
\text { LST }=\text { RA } \text { Meridian }
$$

- As shown on the Time Diagram, we can calculate the HA of any object using a local sidereal clock:

$$
\mathrm{HA}_{\text {obj }}=\text { RA }_{\text {Meridian }}-\mathrm{RA}_{\text {obj }}=\mathrm{LST}-\mathrm{RA}_{\text {obj }}
$$

- Rearranging the above relation, we realize that we can also measure the LST using any objects, not necessarily on the meridian:

$$
\mathrm{LST}=\mathrm{RA}_{\mathrm{obj}}+\mathrm{HA}_{\mathrm{obj}}
$$

Celestial Coordinates of the Local Zenith

Difference in Longitude = Difference in Sidereal Time $\times 15^{\circ} / \mathrm{hr}$

Celestial Navigation with Star at Zenith

- The simplest way is to find the (RA, Dec) of a star closest to the Zenith using a star chart
- You also need a sidereal clock that keeps the LST of a place A at a known longitude, often the GMST (Greenwich Mean Sidereal Time; $\lambda_{A}=0^{\circ}$).
- Your current location B's longitude (λ) and latitude (φ) can then be calculated as:

$$
\begin{aligned}
& \cdot \lambda(\mathrm{B})-\lambda(\mathrm{A})=[\operatorname{LST}(\mathrm{B})-\operatorname{LST}(\mathrm{A})] \times 15^{\circ} / \mathrm{hr} \\
&=[\text { RA(Zenith })-\operatorname{LST}(\mathrm{A})] \times 15^{\circ} / \mathrm{hr} \\
& \cdot \varphi(\mathrm{~B})=\operatorname{Dec}(\text { Zenith })=\operatorname{Alt}(\mathrm{NCP})
\end{aligned}
$$

- Positive $\Delta \lambda$ means B is to the East of A .

Practice: Celestial Navigation with Objects near Zenith

- At an unknown location, you saw Pleiades directly overhead. You then looked up its coordinates with a star chart you carried:
- Pleiades cluster (M45) RA 3h47m, Dec +24.1 ${ }^{\circ}$
- You also carried a sidereal clock calibrated to the LST of Iowa City at Longitude $=91.5^{\circ}$ W and Latitude $=41.6^{\circ} \mathrm{N}$. The sidereal clock reads
- LST of Iowa City = 23:17
- What are your geological coordinates?
- Latitude = ?
- Longitude = ?
- Equation:
- $\lambda(\mathrm{B})-\lambda(\mathrm{A})=[\operatorname{LST}(\mathrm{B})-\operatorname{LST}(\mathrm{A})] x$ $15 \mathrm{deg} / \mathrm{hr}$, where Positive $\Delta \lambda$ means B is to the East of A.

Celestial Navigation with Stars not on Zenith

- The more practical way is to measure the zenith angle of a bright star (ZA = 90 ${ }^{\circ}$-Alt), for which you know its (RA, Dec) from a chart
- You also need a sidereal clock that keeps the LST of a place A with a known longitude, often the GMST ($\lambda_{A}=0^{\circ}$).
- The (RA, Dec) of the star and GMST tell us the geological location of the place on Earth where the star is at its zenith:

$$
\begin{aligned}
& \text { - } \lambda=(\mathrm{RA}-\mathrm{GMST}) \cdot 15^{\circ} / \mathrm{hr} \\
& \text { - } \phi=\mathrm{Dec}
\end{aligned}
$$

- Your location must be along the circle centered on (λ, ϕ) with a radius of the Zenith Angle you measured.

WWII U.S. ARMY AIR FORCE TRAINING www.PeriscopeFilm.com

Celestial Navigation with Two Stars

- The more practical way is to measure the zenith angles of two bright stars (ZA = 90 ${ }^{\circ}$-Alt), for which you know their (RA, Dec) from a star chart
- You also need a sidereal clock that keeps the LST of a place A with a known longitude, often the GMST ($\lambda_{A}=0^{\circ}$).
- The (RA, Dec) of the stars and GMST tell us the geological locations of the two places on Earth where the two stars are at their zenith:

$$
\begin{aligned}
\cdot \lambda_{A} & =\left(\mathrm{RA}_{A}-\mathrm{GMST}\right) \cdot 15^{\circ} / \mathrm{hr} \\
\lambda_{B} & =\left(\mathrm{RA}_{B}-\mathrm{GMST}\right) \cdot 15^{\circ} / \mathrm{hr} \\
\cdot \phi_{A} & =\operatorname{Dec}_{A}, \phi_{B}=\mathrm{Dec}_{B}
\end{aligned}
$$

- You then draw two circles on the globe, each with a radius equal to the zenith angle you measured. The two circles intersect at two points, and you must be at one of the two positions.
- To break the ambiguity, you can observe the zenith angle of the third star, and draw the third circle.

LLONGITUDE FROM Δ SOLAR TIME

Apparent Solar Time vs. Local Sidereal Time

- Apparent Solar Time (AST):
- AST := 12h + Hour Angle of the Sun $=12 \mathrm{~h}+\left(\right.$ RA $_{\text {Meridian }}-$ RAsun $)$
- Local Sidereal Time (LST):
- LST := HA Ver.Eq. $=$ RA $_{\text {Meridian }}$
- Given the above two equations, we obtain:
- AST = LST - RAsun + 12h
- Homework Question: on which day, AST equals LST?

Apparent Solar Time vs. Local Sidereal Time DATE: FEBRUARY 6th

SOLAR CLOCK

SIDEREAL CLOCK

12 Midnight
Use the relation, AST = LST - RAsun $+12 h$, to check if the illustration is correct. Or given the illustration, estimate the date.

The Length of a Solar Day varies because of the elliptical orbit of the Earth

The Two Types of Local Solar Time

- Apparent Solar Time (AST)
- AST = 12 hrs + (HA of the Sun / 15 deg/hr)
- Length varies because of the elliptical orbit
- Mean Solar Time (MST)
- Duration defined as the average length of a solar day (this is the 24 hours we use daily)
- Tracks a theoretical mean Sun with a uniform motion along the celestial equator

Equation of Time: a diagram giving the difference between AST and MST as a function of date in a year

Solar analemma:

A compilation of pictures of the Sun taken at 12PM every ~ 10 days at the same location on Earth

Technical definition:

A diagram showing the position of the Sun in the sky as seen from a fixed location on Earth at the same mean solar time, over the course of a year.

Analemma at mean solar time noon from Greenwich Royal Observatory

Simple Celestial Navigation with the Sun

- Measure the Sun's altitude when it transits the meridian. At that moment, the apparent solar time is 12:00PM.
- At that moment, use the chronometer onboard to look up the mean solar time at a known longitude (A): e.g., Greenwich
- Given the date:
- Correct the 12:00PM Apparent Solar to Mean Solar Time with the Equation of Time
- Look up the Declination of the Sun from the ephemeris
- We can now calculate our current location (B):
- $\lambda(\mathrm{B})-\lambda(\mathrm{A})=[\operatorname{MST}(\mathrm{B})-\operatorname{MST}(\mathrm{A})] \times 15 \mathrm{deg} / \mathrm{hr}$
- $\varphi(\mathrm{B})=[90$ - Altitude(Sun)] + Dec(Sun)

What time do we use everyday? Standard Mean Solar Time at a Time Zone

- Mean solar time has a precise dependency on longitude, making it difficult to use (e.g., Des Moines is 8 min [2 deg] behind IC). So we all use Standard Time
- UTC/UT = mean solar time at Greenwich (0 deg longitude) EST, CST, MST, PST keeps the mean solar time at $\boldsymbol{\lambda}=75,90,105,120 \mathrm{deg} \mathrm{W}$
- CT = CST + $\mathbf{1} \mathbf{~ h r ~ (D a y l i g h t ~ S a v i n g) , ~ b e t w e e n ~ M a r c h ~} 12$ and November 5.

Summary of Time Conversions

- LST : = HAver:Eq. $=$ RA $_{\text {Meridian }}$
- AST := HAsun = LST - RAsun +12 h
- MST = AST - (AST-MST) Date [need to look up the Eq. of Time diagram]
- MST - ST $=\left(\lambda_{M S T}-\lambda_{S T}\right) /\left(15^{\circ} / \mathrm{hr}\right)$
[Western longitudes are negative]
- UTC, EST, CST, MST, PST, HST keeps the MST at $\lambda=\mathbf{0}^{\circ}, 75^{\circ} \mathrm{W}, 9 \mathbf{9 0}^{\circ} \mathrm{W}, 105^{\circ} \mathrm{W}, 120^{\circ} \mathrm{W}, 150^{\circ} \mathrm{W}$
- e.g., CST = UTC - 6hr, because $90^{\circ} \mathrm{W}$ means 6 hrs behind

Motions of the Moon

Phases of the Moon due to its orbit around Earth

The monthly orbit of the moon causes a monthly cycle of moon phases

Moon Phases fast-forwarded

Moon Phase Diagram

This diagram sets the observer above the ecliptic north pole, ignoring the 23.5° obliquity. From this

When viewed from Earth's North Pole, planetary orbits-as well as the rotation of most planets and the orbits of most moons-are counterclockwise.

angle, everything moves counterclockwise:

- Earth spins on its axis counterclockwise
- The orbit of the Earth around the Sun goes counterclockwise
- The orbit of the Moon around the Earth goes counterclockwise

Part 1: Earth's Spin and Apparent Solar Time

The Earth

The Sun

Sunrise

Midnight

Sunset

Sunrise \sim 6AM | Noon $\sim 12 P M \mid$ Sunset \sim 6PM | Midnight \sim 12AM

Part 2: The orbit of the Moon and moon phases

Chose eight representative positions along a orbit of the Moon.

These 8 positions represent 8 different moon phases because their Sun-Moon-Earth angles are different.

Note that the moon moves just slightly in an Earth day.

Part 3: The appearance of the Moon from Earth at each moon phase

About New
Waxing Crescent

Full

Waning Crescent

1st Quarter

Waning Gibbous

About New
Right side
West
(facing South)

New Moon

Waxing phases

Waxing crescent

First quarter

Waxing gibbous

Phases: the appearances of the Moon at the eight phases

Third quarter

Waning crescent

New Moon

Waxing phases

When the Moon is here in its orbit...

Waning gibbous

Full Moon

Moon Phase Diagram

- Apparent Solar Time
- Orbit of the Moon
- Appearance of the moon at 8 equally spaced positions in the orbit
- Names of the moon phases

When the Moon is
here in its orbit.
Waning gibbous

Moon Phase Diagram

- New Moon
- Waxing crescent
- First Quarter
- Waxing gibbous
- Full Moon
- Waning gibbous
- Third quarter
- Waning crescent

Which phase is the Moon in?

A. First quarter
B. Waxing gibbous
C. Waning gibbous
D. Third quarter
E. Waxing crescent

How to estimate

 apparent solar time from Moon phases?
Suppose

 today's moon phase is full, when'll it rise from the horizon?New Moon

New Moon

When the Moon is here in its orbit.

Waning gibbous

Waning
phases

Waxing phases

[^0]
How to estimate the apparent solar time when a given-phase moon rises, transits, and sets? For example, the full moon.

Note 1: Everywhere in the world sees the same moon phase, so for simplicity, just imagine yourself on the equator.

Note 2: This diagram is not to scale, and the moon is very far away than it appears on this diagram (no significant parallax)

Sunrise \sim 6AM | Noon ~ 12 PM | Sunset \sim 6PM | Midnight \sim 12AM

Draw green arrows that indicate the horizon at each time and use its direction to point at the east

Third quarter

When will a full moon rise?

New Moon

When the Moon is here in its orbit.

Waning crescent

 whases phases

Waning gibbous

...it looks like this.

Waxing phases

When will the full moon rise?

Direction to the Sun

Draw green arrows that indicate the horizon at each time and use its direction to point at the east

You saw a full

 moon directly to the South, what time is it?New Moon

When the Moon is here in its orbit.

Waning gibbous

...it looks like this.

Waning
phases

Waxing phases

When will the full moon transit?

The Sun

Draw green arrows that indicate the horizon at each time and use its direction to point at the east

When will a third quarter moon rise (from the horizon)?

You see a third

 quarter moon directly to the South, what time is it?

When the Moon is here in its orbit.

Waning crescent

New Moon

Waxing crescent

Waning gibbous

Earth's Fine Motions \& Climate Change
(a quick 15 min intro)

The Last Ice Age: 115-12 kyrs ago
Maximum Ice Coverage: 26-20 kyrs ago
Ice covered all of Canada, down to Missouri

The Spread of Homo Sapiens across the Continents

The Last Glacial Period: 115-12 kyrs ago
Europe \& Asia: 70-40 kyrs ago
North America: 12 kyrs ago

Australia: 50 kyrs ago

Short-term Cycles of Earth's Motions daily rotation \& yearly revolution

Seasons caused by changes in solar isolation

Solar Insolation on Summer Solstice at $65^{\circ} \mathrm{N}$

Long-term Cycles of Earth's Motions

eccentricity, obliquity, precession

Axial Precession (Wobble)

26,000-year cycles

climate.nasa.gov

- Because of the Earth's precession, the location of the Vernal Equinox moves along the ecliptic, changing the celestial coordinates (R.A. \& Dec) and messing up the zodiac of each month.
- Tropic of Cancer has now become Tropic of Taurus (the Sun's constellation on Summer Solstice),
- Tropic of Capricorn has now become Tropic of Sagittarius (the Sun's constellation on Winter Solstice)

Changes in Obliquity
 (Tilt)

41,000-year cycles

Changes in Eccentricity (Orbit Shape)

100,000-year cycles

*Changes in eccentricity exaggerated so
the effect can be seen. Earth's orbit
shape varies between 0.0034 (almost a perfect circle) to 0.058 (slightly elliptical).
climate.nasa.gov

Obliquity and eccentricity changes due to gravitational perturbations from other planets

Milankovitch Cycles \& Ice Ages

eccentricity, obliquity, precession

Milankovitch used changes in Earth's motion to explain its long-term climate changes

- Eccentricity
- 100,000 yr cycles
- range: 0.0034-0.058
- present val.: 0.017
- Obliquity
- 41,000 yr cycles
- range: 22.1-24.5 deg
- present val.: 23.4 deg
- Precession
- $26,000 \mathrm{yr}$ cycles

Predicting Solar Insolation on Summer Solstice at 65d N

Predicted Solar Insolation

Milankovitch calculated that Ice Ages occur either every 41 kyrs or 100 kyrs, following the obliquity cycle or the eccentricity cycle

Green: obliquity-caused variations

Red: total variations (obliquity+eccentricity+precession)

Time (in thousands of years)
Average solar irradiance (insolation) at latitude of $65 \mathrm{deg} N$ on summer solstice over the past million years

Where are we now in the Cycle?

Obliquity: Intermediate and decreasing, Northern Summer at Aphelion
-> Lower Insolation in N hemisphere -> Less snow melt in N . summer -> Colder climate

9000 years

How does the solar insolation curve compare with 1363 the temperature rise in the past century?

Solar Irradiance
Temperature

T source: GISTEMP 3.1
TSI source: SATIRE-T2 + PMOD

Longterm Climate Change \& Earth's Fine Motions

Short-term Cycles of Earth's Motions daily rotation \& yearly revolution

Winter solstice

Vernal equinox

Earth's orbit

Autumnal equinox

Summer solstice

- Obliquity and Seasons

First day of northern summer

First day of northern winter
June 21
December 22
(b)

The Last Ice Age: 115-12 kyrs ago
Maximum Ice Coverage: 26-20 kyrs ago
Ice covered all of Canada, down to Missouri

The Spread of Homo Sapiens across the Continents

The Last Glacial Period: 115-12 kyrs ago
Europe \& Asia: 70-40 kyrs ago
North America: 12 kyrs ago

Australia: 50 kyrs ago

Long-term Cycles of Earth's Motions

eccentricity, obliquity, precession

Axial Precession (Wobble)

26,000-year cycles

climate.nasa.gov

Tidal forces on Earth's Equatorial Bulge caused most of the precession

Earth's precession changes the celestial coordinates of distant objects

The ecliptic is the Sun's apparent annual path around the celestial sphere.

Stars all appear to lie on the celestial sphere, but really they lie at different distances.

The celestial equator is a projection of Earth's equator into space.

Precession: The Drift of Vernal Equinox \& the NCP

- Because of the Earth's precession, the location of the Vernal Equinox moves along the ecliptic, changing the celestial coordinates (R.A. \& Dec) and messing up the zodiac of each month.
- Tropic of Cancer has now become Tropic of Taurus (the Sun's constellation on Summer Solstice),
- Tropic of Capricorn has now become Tropic of Sagittarius (the Sun's constellation on Winter Solstice)

Changes in Obliquity
 (Tilt)

41,000-year cycles

Changes in Eccentricity (Orbit Shape)

100,000-year cycles

*Changes in eccentricity exaggerated so
the effect can be seen. Earth's orbit
shape varies between 0.0034 (almost a perfect circle) to 0.058 (slightly elliptical).
climate.nasa.gov

Gravitational perturbations from other planets

Milankovitch Cycles \& Ice Ages

eccentricity, obliquity, precession

How to make an ice age?

- The key is to reduce the amount of ice melting in the northern summer
- Northern Hemisphere: 40% land, 60% ocean
- Southern Hemisphere:
 20\% land, 80\% ocean
- milder summer in northern hemisphere -> less ice melt during the summer -> more reflection of sunlight -> colder average temperature

Solar Insolation on Summer Solstice at 65d N

Milankovitch use changes in Earth's motion to explain its long-term climate changes

- Eccentricity
- 100,000 yr cycles
- range: 0.0034-0.058
- present val.: 0.017
- Obliquity
- 41,000 yr cycles
- range: 22.1-24.5 deg
- present val.: 23.4 deg
- Precession
- 26,000 yr cycles

Recipe to make an Ice Age

- High eccentricity, while precession shifts Northern Summer to Aphelion
- Low obliquity: less solar radiation in the summer at high northern latitudes
- These cause milder summer in northern hemisphere -> less ice melt during the summer -> more reflection of sunlight -> colder global temperature

Predicted Solar Insolation

Milankovitch calculated that Ice Ages occur either every 41 kyrs or 100 kyrs, following the obliquity cycle or the eccentricity cycle

Green: obliquity-caused variations

Red: total variations (obliquity+eccentricity+precession)

Time (in thousands of years)
Average solar irradiance (insolation) at latitude of $65 \mathrm{deg} N$ on summer solstice over the past million years

Where are we now in the Cycle?
Obliquity: Intermediate and decreasing, Northern Summer at Aphelion
-> Lower Insolation in N hemisphere -> Less snow melt in N summer -> Colder climate

Milankovitch calculated that Ice Ages occur either every 41 kyrs or 100 kyrs, following the obliquity cycle or the eccentricity cycle, and we are currently on a cooling trend that started 6000 years ago

Ice Age \& Glacial Ice Age \& Interglacial No Ice Age or Glacial

50,000 years later

present

9000 years ago

Milankovitch Cycles \& Recent Global Warning

Glaciers on Tian Shan Mountains

'Impossible To Save': Scientists Are Watching China's Glaciers Disappear

October 21, 2017 6:39 AM ET

Weather stations across the world record temperatures of air, land, and ocean

Where are we now in the Cycle?
Obliquity: Intermediate and decreasing, Northern Summer at Aphelion
-> Lower Insolation in N hemisphere -> Less snow melt in N summer -> Colder climate

If we zoom in onto the past 100 years of the Milankovitch insolation curve, no significant change in insolation is predicted

$\underset{\text { YEARS }}{50}$

NOW

Temperature vs Solar Activity

Greenhouse Effect

GLOBAL TEMPERATURE \& CO_{2}

\circ
$+1.1^{\circ}\left(1.98^{\circ}\right)$
$+0.9^{\circ}$
$+0.7^{\circ}$
$+0.5^{\circ}$
$+0.3^{\circ}$
$+0.1^{\circ}$
-0.1°
-0.3°

Global temperature anomalies averaged and adjusted to early industrial baseline (1881-1910)

CO2 Level in the past 800 kyrs

[^0]: First quarter

