Chap 3: The Heliocentric Model of the Solar System
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Chapter 3: The Hehocentric Model of the Solar System

Heliocentric Model vs. Geocentric Model
Retrograde motion of Mars, Phases of Venus (Galileo)
Geometric configurations of inner and outer planets
Conjunctions, Greatest Elongations, Quadratures
Copernicus’ method of measuring sidereal periods of planets
From Synodic Periods of Planets and the Moon to Sidereal Periods
Copernicus’ method of measuring heliocentric distances of planets
Inner planets (Greatest elongation)
Outer planets (time between quadrature and opposition)
Kepler’s Laws (1610-1619 AD) [Empirical Laws of Planetary Motion]
Elliptical orbits, Equal area law, Period-Distance relation

Kepler’s triangulation method in determining Mars’ elliptical orbit



Part I: Geocentric vs. Heliocentric models

Moon Earth Venus  Sun Mars




How did ancient Greek astronomers reject the
hypothesis the Earth orbit around the sun?

Observation: The Sun moves against
background stars on the celestial
sphere

Hypothesis: The Earth moves around PARALLAX
the Sun (which is much larger) AND

Experiment: Measuring the expected [IERESEES
motion of bright stars due to Earth’s
orbital motion around the Sun (i.e.,
parallax)

Result: no such yearly motion is
detected for any bright stars

Updated Hypothesis: The Earth is
stationary and the Sun moves around
the Earth

1 parsec (3.26 light-years)
T



Aristotle’s Geocentric Model in 350 BC

Moon Earth  Venus Sun  Mars

Note: six of the eight planets known since 2000 BC, so this illustration is incomplete



Celestial Sphere is a Geocentric Point of View

The Sun constantly moves eastwards on the celestial sphere,
causing the 4-min longer solar day than the sidereal day
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But planets show retrograde motions
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Ptolemy’s Geocentric Model in ~150 AD:

Only the Sun and the Moon show no retrograde motion
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Think about this: how did they put the distances of the planets in order?




Aristarchus’ Heliocentric Model in ~250 BC

According to Archimedes’ book “The _f ‘4« Ll 1 B
Sand Reckoner’: TE !

You ['you' being the King] are now
aware that the "universe" is the
name given by most astronomers to
the sphere the centre of which is the
centre of the earth.

But Aristarchus has brought out a
book consisting of certain hypotheses.
His hypotheses are that the fixed
stars and the sun remain unmoved,
that the earth revolves about the sun
on the circumference of a circle, the
sun lying in the middile of the orbit.




I 300 years after Ptolemy ...

What a great hiatus! you don’t want to be a scientist living
in that gap of progress



Copernicus’s Heliocentric Model in 1543 AD

Resume: doctoral degree in canon law. A physician, a translator, a

diplomat, a governor, and an economist. Lived in Poland.



Copernicus’s Heliocentric Model in 1540 CE
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In a given time interval, the Earth will
move farther in its orbit than the planet!
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The planet is observed projected in a starry background


https://www.youtube.com/watch?v=72FrZz_zJFU

How to explain retrograde motion of Mars
in a Heliocentric Model? (Demo)

Why Mars appears the brightest during retrograde motion?




Inner planets (Venus and Mercury) also show
retrograde motion like outer planets (e.g., Mars)
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Which model is superior?

Ockham’s Razor (1300 CE)
but similar ideas from Aristotle and Ptolemy

“We may assume the superiority ceteris paribus [other
things being equal] of the demonstration which derives
from fewer postulates or hypotheses” - Aristotle

“With all things being equal, the simplest explanation tends
to be the right one.” - Ockham



Which model is superior?

Although Ockham’s Razor (1300 CE)
favors heliocentric model because it is much simpler

A true experimental test of the two hypotheses is
needed to decide which one is more correct.

To do this test, Astronomers would need better
observations than simply recording the positions of
planets as a function of time, which they had done
for millenniums.



The utilization of telescopes marked the beginning of
modern astronomy

g Galileo Galilei
(1564 - 1642 CE)

o~

Following the
invention of telescope
| in 1608 by eyeglass
 maker

~ Lippershey,

~. Galileo was the first

~ person who used

the tool in astronomy.

1 400 years later, we are
still using exactly the
same tool!



First, Galileo’s discovery of Jupiter’s largest
moons showed that there are objects orbiting
around Jupiter instead of the Earth
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Design an experiment with a high discrimination power

Geocentric Hypothesis: .

Objects, including the Sun, Deferent of Sun
orbit around the Earth |
Prediction: Viewed from

Earth, Venus should never be Epicycle of
more than half illuminated: Venus

i.e., no Gibbous phases

da

Heliocentric Hypothesis:
Objects, including the Earth,
orbit around the Sun

Prediction: Venus should
show all phases, like the

Moon '
Deferent

_ of Venus
Experiment: Telescope (revolves at
observations of Phases of same rate as
Venus (Galileo 1610 CE) deferent of Sun)




Heliocentric Model: all phases of Venus - from crescent to full
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With the help of his telescope, Galileo
saw all phases of Venus in 1610 AD
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Now in the 21st century, can you think of other
observational method to reject the geocentric model?
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Transit of Venus (first observed in 1639 AD)

Transit of Venus on 5-6 June
North

Times are BST on 6 June
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First parallax measurement of a distant star:

1838 CE by Bessel, 61 Cygni, mu=0.314 arcsec for a
baseline of Earth’s orbit (1 Astronomical Unit)

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

20 04:33 UIC
»

® 0°01’

proper motion of 61 Cygni A+B




Hubble Space Telescope = WFC3 /UVIS

Proxima Centauri




Aberration of starlight (1727 AD by James Bradley)
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Geometric Configurations
of Inner and Outer Planets:

These are special locations of planets
on their orbit relative to Earth



Elongation: the angle between the Sun and the planet as
seen from the Earth




Inner/Inferior Planets: Inferior/Superior Conjunctions, Greatest Elongations

Orbit of either
Venus or
Mercury

Superior

Conjunction Or Venus a
greatest
elongation?

Greatest Greatest
Eastern §) (4 Western
Elongation Elongation

Inferior
Conjunction

Earth
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Outer/Superior Planets: Opposition, Conjunction, Quadratures
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What are the elongations at these four positions?



Configurations of Planets in
Heliocentric Model

Superior-planet Conjunction
orbit

Earth's orbit\‘

Inferior-planet
orbit

Superior conjunction

Eastern quadrature Western quadrature

Opposition



Part 1I: How Copernicus determined the heliocentrice

distances and sidereal periods of planets




Copernicus’ Method of
Heliocentric Distances:

a. Inner Planets



Copernicus’ Heliocentric
Distances vs. Modern Values

TABLE 3.1 Distances of Planets from the Sun

PLANET COPERNICUS MODERN
Mercury 0.38 0.387
Venus 0.72 0.723
Earth 1.00 1.00
Mars 1.52 1.52
Jupiter 5.22 5.20

Saturn 9.17 9.54




Inner Planets: Inferior/Superior Conjunctions, Greatest Elongations

Orbit of either
Venus or
Mercury

Superior

Conjunction of Venus at the
greatest
elongation?

Greatest Greatest
Eastern §) (4 Western

Elongation Elongation || A0
deg, what is the

Inferior radius of its orbit

Earth gl around the Sun?

Express in unit of

EVENING SKY MORNING SKY




Copernicus’ method of determining the
heliocentric distance of inner planets

Inner Planets: Rav = sin(Max Elongation)

Greatest elongation

ET-c 1.0AU




For outer planets, the previous method no longer works,
because the greatest elongation is the “opposition”

Superior-planet Conjunction
orbit

Earth's orbit\‘

Inferior-planet
orbit

/0

.y
/ Infdrior
N conjupction _~
Yy N /)

Eastern quadrature Western quadrature

Opposition



Synodic Periods vs.
Sidereal Periods

Synodic /sa nadik/:
relating to or involving the conjunction of planets, moons,
or other objects in the Solar system.

Origin: from Greek sunodikos, a meeting or an assembly



. The time that elapse between two successive
identical configurations as seen from Earth. This can be easily
measured by observers on Earth.

: The time it takes the planet to complete one full
orbit of the Sun. This cannot be directly measured for planets
other than the Earth. How did Copernicus derive these periods?

Planet Synodic period Sidereal period
Mercury 116 days : 88 days
Venus 584 days derived 225 days
Earth — measured | 1.0 year
Mars measured 780 days 1.9 years
Jupiter 399 days 11.9 years
Saturn 378 days _ 29.5 years
Uranus 370 days derived 84.1 years
Neptune 368 days 164.9 years
Pluto 367 days 248.6 years




Planetary Configurations S

Diagram
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https://astro.unl.edu/classaction/animations/renaissance/configurationssimulator.html

Copernicus’ Method of
Determining Sidereal
Periods of Planets



The Relation between Synodic Period & Sidereal Periods

Key realization: Between two successive oppositions, the faster planet
has to travel exactly one full circle than the slower planet.

For uniform circular motions, the
angle traveled in a period of 7 1s ¢ .
times angular speed (360°/P, P the , garth's orbit
: . . Inferior
sidereal period), so the difference  conjunction

between the two planets 1s:

360° 360°
— I X

in P out

which 1s required to be a full circle

if ¢ 1s the synodic period S:

[ X

360° 360°
S X — S X = 360°
n Pout / N
Inferior
= l — L — L conju;ction
5 P in P out




Use Synodic Periods to Determine Sidereal Periods of Planets

1 1 1

\) Pi Pout

Inferior
Synodic periods have been used to <€onjunction

determine sidereal periods:

| 1 1

P out P Earth S

1 1 1

—_— —I— —_— \\
P n P Earth S —_— /

conjunction
2




1 1 1 1 1 1

Sout P 1 P Earth Si

P out P Earth

. The time that elapse between two successive identical
configurations as seen from Earth. This can be easily measured by

observers on Earth.

: The time it takes the planet to complete one full orbit of
the Sun. This cannot be directly measured for planets other than the
Earth and is derived using the equations above.

Planet Synodic period Sidereal period
Mercury 116 days , 88 days
Venus y 584 days derived 225 days
Earth — measured | 1.0 year
Mars measured 780 days 1.9 years
Jupiter 399 days 11.9 years
Saturn 378 days _ 29.5 years
Uranus 370 days derived 84.1 years
Neptune 368 days 164.9 years
Pluto 367 days 248.6 years




The Synodic Period of a planet is easy to measure, and we know the
sidercal period ol the Earth, so we can use the relation to calculate the
Sidereal Period of the planet (which is difficult to measure directly)

If Venus has a synodic period of 484 days (as observed

from the Earth), what is its sidereal period?

S =484 days
Pout = 365 days
solve for Pin




The Synodic Period of a planet is easy to measure, and we know the
sidereal period of the Earth, so we can use the relation to calculate the
Sidereal Period of the planet (which is difficult to measure directly)

If Mars is observed to have a synodic period of 2.1 years,
what is its sidereal period?

S=21yrs
Pin =1.0 yr
solve for Pout




Copernicus’ Method of
Heliocentric Distances:

b. Outer Planets



Copernicus’ method of determining the
heliocentric distance of inner planets

Inner Planets: R;, = sin(Max Elongation) AU

Greatest elongation

ET-c 1.0AU




Copernicus’ method of determining the
heliocentric distances of outer planets

® the time between opposition and quadrature (Az)
* outer planet’s synodic period ()

At

= ESE' = 360°—

// \\\ PE

L N At

/ N PSP’ = 360°—

/ PP
/ 5 e a = ESE’ — PSP’

/ R 11
opposition / S — 360°At(— — _>
P E @ PE PP

a E'4 PSp At
= 21—
S T 1AU
P& £ / Rout = SP' =
) / COS o
quadrature




Other examples:
Synodic Period of
the Moon - a Month





https://www.youtube.com/watch?v=c-N3u3IufK4

a lunar month is Earth’s orbit

d Moon
1 sidereal month

a tull cycle ot
moon phases

— -
—
——
'—.—-—"
—_—
-
s —
——

Next new Moon

orbital period is
a

time to orbit 360

degs around the
Earth




Synodic Orbital Period of the Moon:
the time between successive full Moons

| 1 |

Given one lunar month is 29.5 days, what is the sidereal

period of the Moon?

S =29.5 days
Pout = 365 days
solve for Pin




Other Examples
Synodic Period of an
Observer on Earth -

a Solar Day



An observer on Earth is like a little moon orbiting
around the Earth’s center once a day

/<

From Ato Aisa Sidereal day 23 hr 56 min

One sidereal day's
motion on the Earth

4 —""-

. Rotation
i

SUN



Synodic Spin Period of an observer on Earth:
the time between successive noons (a Solar day)

11 1
S P, P

out

Given one solar day is 24 hrs, and a year is 365 days,

what is the length of a sidereal day?

S =24 hrs
Pout = 8760 hrs
solve for Pin




Part [11: Kepler’s Three Laws of Planetary Motion

Tuvur T1.oRBIVMPLANE TAR VM DIMENSIONES, ET msTAN'ilAs m:zvnuvi‘ Lars :
EERTERRIACOR FORADENTILICHE il loavnis Keppier

fovsTriIss: pRINCI , ST
LA S 4 QSMBPSOS&%E&;&E%J%D‘{%F“ BRR 'Mothemalic Laard

ARGEN TORATENST BIBOTHECK,
Conlecr,
MATTHIAS BERNEGGERY
HD’[Z'[Z:I 1.




1 1 1 1 1

Sout P 1 P Earth Si

. The time that elapse between two successive identical
configurations as seen from Earth. This can be easily measured by
observers on Earth.

. The time it takes the planet to complete one full orbit of
the Sun. This cannot be directly measured for planets other than the
Earth and is derived using the equations above.

P out P Earth

Planet Synodic period Sidereal period
Mercury 116 days , 88 days
Venus y 584 days derived 225 days
Earth — measured | 1.0 year
Mars measured 780 days 1.9 years
Jupiter 399 days 11.9 years
Saturn 378 days _ 29.5 years
Uranus 370 days derived 84.1 years
Neptune 368 days 164.9 years
Pluto 367 days 248.6 years




Copernicus’ Heliocentrie Distances

2t
R = sin(Max Elongation) AU R .= sec( . ) AU
TABLE 3.1 Distances of Planets from the Sun

PLANET COPERNICUS MODERN
Mercury 0.38 0.387
Venus 0.72 0.723
Earth 1.00 1.00
Mars 1.52 1.52
Jupiter 5.22 5.20

Saturn 9.17 9.54




Copernicus’s Heliocentric Model in 1543 AD

Measured both the sidereal periods of planets (in years) and
their heliocentric distances (in AU). What did he miss?




What did Copernicus miss?

* Unlike synodic period, sidereal period increases with
heliocentrice distance.

® There 1s an exact power-law relation between the two.

TABLE 3.1 Distances of Planets from the Sun
PLANET COPERNICUS MODERN

Mercury 0.38 0.387
Venus 0.72 0.723
Earth 1.00 1.00
Mars 1.52 1.52
Jupiter 5.22 5.20
Saturn 9.17 9.54

Planet Synodic period Sidereal period

Mercury 116 days 88 days

Venus 584 days 225 days

Earth — 1.0 year

Mars 780 days 1.9 years

Jupiter 399 days 11.9 years

Saturn 378 days 29.5 years




Kepler’s Srd law of Planetary Motion

R3
— = constant related to the central object
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Kepler’s Srd law of Planetary Motion
R’ |
3 = constant related to the central object
Since Kepler found that planetary orbits are ellipses instead of circles,
we replace the radius R above with the semimajor axis a below. And

if we choose convenient units (AU & yr), the constant becomes unity:

3
Aau _q

P2

year

In the next Chapter, we will use Newton’s law of gravity to show the
general form of Kepler’s 3rd law for planets in other star systems
and for moons of planets:

Objects orbiting around the Sun:

3

Small objects orbiting around dau —

a much more massive object: P2 — “’"solar—mass
year




Kepler’s 3rd Law: 3
period-distance

relation
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Kepler’s Laws of
Planetary Motion:

the Ist and the 2nd laws



Kepler’s 1st law of Planetary Motion

Ellipse: a regular oval shape,
traced by a point moving in a
plane so that the sum of its
distances from the foci is
constant, which equals 2x the
semimajor axis a




Kepler’s 1st law of Planetary Motion

e Planet orbits are ellipses.

e The Sun is at one focus of the elliptical orbit.

-

Minor
axis

Focus 1
Focus 2

Major axis
Sun

Planet



Kepler’s 1st law of Planetary Motion

semimajor axis (a)

A

o Planet

semiminor axis (b)




The Eccentricity of Elliptical Orbits

The greater the eccentricity,
the more elongated the ellipse.

. b
e =0.983 ( 14 >
e = 0.958 Q
e =0.745




The Eccentricity of Elliptical Orbits

e Focal Length Fis the distance between a focus and the center of the ellipse

e eccentricity:

F | b?
e = — = e —
a a?

semimajor axis (a)

O

semiminor axis (b)

<€ >

focal length (F)




Eccentricity of the
planetary orbits

Venus
Earth

Jupiter
Saturn
Uranus

0.007
0.017

0.048
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0.046
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Perihelion and Aphelion Distances

Aphelion distance:

Ty = a(l +e)

Perihelion distance: t

=a(l —e) ®

¥ peri

i

|

|

|

|

l [ ] L[ ] 1 ]

' | semiminor axis (b)
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|

’ semimajor axis (a)
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focal length (F)




Kepler’s 2nd law of Planetary Motion
e Often called the Law of Equal Areas.

e The line between the Sun and the planet “sweeps” out

equal areas in equal times.
Kepler’'s Second Law

t
| Planet on
elliptical orbit
Sun ‘O t6

These three }

areas—A, B, and
C—will be equal...

...if these time
intervals are equal.




Implications of Kepler’s 2nd law

A planet will go fastest when closest to the Sun, and it will go slowest
when farthest from the Sun.

AA
The area swept per unit time is ~ = —rv, (as shown below), and this

quantity remains a constant throughout an orbit
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FIGURE 3.3 The motions of a planet during a short time interval At.

1 1 1
AA ~ Er(vtAt) + E(vrAt)(vtAt) ~ Er(vtAt)



Physical Explanation of Kepler’s 2nd Law

® Angular momentum is preserved under the influence of a central
force like gravity: L =Fxmy= mrv[k is a constant vector

® the product of heliocentric distance r and the tangential velocity v¢
is a constant for each planet: mrv, = constant
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FIGURE 3.3 The motions of a planet during a short time interval At.

The 2nd law is equivalent to conservation of angular momentum

1 1 1
AA ~ Er(vtAt) + E(VrAt)(vtAt) R~ Er(v,At)



Summary: Equations of Kepler’s Laws of Planetary Motion

1st Law:
elliptical orbits

2nd Law:
equal area In
equal time

3rd Law:

period-distance
relation

. F b*
Eccentricity: e = — =14/ 1 — —

a a?
Aphelion distance:
Iy = a(l + e)

Perihelion distance:

Foeri = (1 —€)
mry, = constant

3

a
AU — which is equivalent to:
p2 solar—mass

year

(i) () =7
1 AU/ \1year/ 1M,




How did Kepler

discover Mars’ elliptical
orbit 400 years ago?

Yet another demonstration of how humans
approach seemingly insurmountable
problems with the tools we have at the time



Tycho Brahe (1546-1601), Danish astronomer
For 20 years, he accumulated
positional measurements of the
five planets with an accuracy
better than 1 arcmin (1/60°)

Soalen
T
il

"mmmumummunmmmunmmmmmmmmnmmmumnmun I
astronomical sextant, 5 ft in radius

portrait
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Tycho Brahe’s Observatory on Hven, Denmark

i

e

Uraniborg (dedicad to Urania, the Goddess of As

tronomy)


https://en.wikipedia.org/wiki/Urania
https://en.wikipedia.org/wiki/Astronomy

Mural Quadrant in Tycho Brahe’s Observatory

-\‘*&“~"i;7" LEFIGIES TYGIONIS BRAFE O'F.
RDIFICII T INSTRUMENTORVM {4
ASTRONOMI

mural quadrant: an altitude

CORVM STRVC TORIS

A% DOMINI 1§87 AYATIS SVA.

Ty e | measurement instrument built
T e e . into a wall on the meridian

2




Johannes Kepler (1571-1630), German astronomer

. In 1600, Kepler became Tycho's
”iﬁ‘lhi”f?.ﬂ‘:hﬁ.i’:it' ! | assistant. After Tycho’s death in
*[B.‘ N . 1601, he used Tycho’s data to

7L % develop his three laws of
R L = planetary motion

T TASIATIL TLorBIVMPLANE TAR VM DIMENSIONES BT DISTANTIAS PERQVINGVE - |

VLARIA CORPORA GEOMETRICA EXH
fLovsTriss: Pkmcm AC DNO, DNO, Fmozkloo IDVCI WIRsi!

TENBERGICO, ET TTMIO COMITT MONTIS BELGARVM

portrait | Kepler’s model of the SolarSvstem



Kepler’s method of triangulating the distances to Mars

Choose two elongation
measurements separated by
a Martian year (687 days)

Why? Because Mars would
have returned to its initial
position M, while Earth has
moved from E1 to E2

What did Kepler know?

1. The elongations, i.e., the
angles SE/M and SE:M

2. The sidereal periods of
the Earth and Mars

What did Kepler want to solve? | 3 The time between the

' The heliocentric distance MS

two measurements



Kepler’s quadrilateral is fixed, because these measurements:
1. The elongations, i.e., the angles SE:M and SE2M

2. The sidereal periods of the Earth and Mars

3. The time between the two measurements (687 days)

tell us (a) three of the four angles and (b) two of its four sides.
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o /
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To measure the heliocentric distance of Mars, simply draw the
quadrilateral based on what we know, then measure MS with a ruler



Kepler’s Results on Mars

e Kepler did the triangulation
calculations for five pairs of
elongation data that are |
roughly evenly spaced along /=
Mars’ orbit b s

e He found the heliocentric
distances of Mars vary quite
a lot: ~20% difference for
an eccentricity of 0.093



Kepler’s method Step 1: Solve for E1E>

If we assume uniform circular
% motion of the Earth, then E1SEzis
an isosceles triangle and we can
calculate all its angles.

How? We just need to realize that

! Earth will return to E1 in whole
S \ Earth years, and a Martian year is

slightly shorter than 2 Earth years.

2P, — P
E,SE, = 3600 ——X
PE

= st _ ESE,
E\E, =2sin




Kepler’s method Step 2: Solve for ExM

Focus on the triangle E1E2M

We have solved the angle SE1Eo,
the angle E2E1M is simply the
elongation at E1 minus SE1E>

We also know E1E2 from Step 1

Lastly, we know the angle
E1ME2 = 360-ME1S-ME>S-E/SE:

Based on the law of sine, we can
solve for E2M:

E.M E,E,
sin(E,E;M)  sin(E;ME,)




Kepler’'s method Step 3: Solve for MS

N Focus on the triangle SE2M

pU N We know SE2=1AU and E2M
& from Step 2
\£, We also know the angle
sk //\ SE2M from the 2nd
\ .@ elongation measurement
/
Based on the law of cosine,
2 we can finally solve for MS,

the heliocentric distance of
et Mars:

MS?* = SE; + E;M?* — 2 - SE, - E;M - cos(SE,M)




