Chap 8: Exoplanctary Systems

Stellar wind from the proto-Sun removed most of the gas from the disk when $\mathrm{T}_{\text {disk }} \sim 650 \mathrm{~K}$ at 1 AU , which explains the absence of gas giants in the inner system

Should we only be interested in the origin of the Solar system?
"A lovely, rollicking book, direct and clear....[A] fascinating glimpse
into anthropology in the era of the genome." - Wall Street Journal

THE SEVEN DAUGHTERS of EVE

the science that reveals our genetic ancestry

BRYAN SYKES

Chap 8: Exoplanetary Systems

- The Search for Exoplanets
- Indirect methods: Timing Variations, Radial Velocity, Transit
- Direct method: Coronagraphic imaging
- Characterizing Exoplanetary Systems
- Period v. Radius, Period v. Mass
- Hot / cold Jupiters, Super-Neptunes, Super-Earths
- The Drake Equation ($N=L$ in years)
- How many advanced civilizations are in the Milky Way?
- This type of estimation is called "Fermi Estimation"

The Search for Exoplanets

introduction

Is it a planet or a star? How do we define a planet?

Planets, Brown Dwarfs, and Stars

- 1 Jupiter mass $=318$ Earth masses $=0.001$ Solar mass
- Planets are objects with mass less than 13 MJupiter
- Stars are objects with masses greater than $80 M_{\text {Jupiter, }}$ massive enough to sustain nuclear fusion of hydrogen.
- Brown Dwarfs are substellar objects with mass between 13 and 80 Mupiter; They fuse deuterium and lithium instead of hydrogen.

Planets
Up to ~13x Jupiter's mass

Brown Dwarfs
$\sim 13 x$ to $80 x$ Jupiter's mass

Stars
Over ~80x
Jupiter's mass

Sun

Low Mass Star

Brown Dwarf

Jupiter

Earth

Historical Timeline of Exoplanet Discoveries

- 1984 - first protoplanetary debris disk discovered around β Pictoris
- 1992 - first exoplanets (rocky) discovered around a pulsar: PSR B1257+12
-1995 - first exoplanet (hot Jupiter) discovered around a main-sequence star: 51 Pegasi
- 1999 - first transiting exoplanets discovered around HD 209458
-2009 - Kepler planet-finding mission launched.
- 2018 - Transiting Exoplanet Survey Satellite (TESS) launched
- 2023 Nov: 5,539 exoplanets in 4,123 systems, with 937 multi-planet systems.
β Pictoris is a 4th magnitude A-type main-sequence star
It is surrounded by a thin disk of dust, comets, and asteroids reaching 400 AU from the star, discovered in 1984 by Smith \& Terrile
β Pictoris is a 4th magnitude A-type main-sequence star
It is surrounded by a thin disk of dust, comets, and asteroids reaching 400 AU from the star, discovered in 1984 by Smith \& Terrile

Beta Pictoris • Hubble Space Telescope • STIS

Exoplanet Census

For planets with both measured or estimated orbital period and mass

> Pulsar Timing (2)

Discovery Year

The Search for Exoplanets

 indirect and direct techniques"Absence of evidence is NOT evidence of absence"

- Carl Sagan (1934-1996)

Indirect methods for searching exoplanets and their biases

- Clever methods to infer the existence of invisible bodies
- Timing technique: periodic anomalies
- biased towards uninhabitable worlds :)
- Spectroscopic technique: radial velocity
- biased towards large, close companions
- Occultation technique: transit
- biased towards planetary systems viewed edge-on
- Astrometric technique: periodic positional shift
- biased towards large companions of nearby stars

Direct method for searching exoplanets and its bias

- Brute-force imaging with coronographs
- biased towards large, distant companions of nearby stars

By Method

75.3\% Transit

19.6\% Radial Velocity
1.2\%

Imaging

Indirect Method I

timing variations (Timing Doppler)

Spectroscopic and Timing Doppler Shifts

$$
\frac{V_{r}}{c}=\frac{\lambda_{\text {obs }}-\lambda_{0}}{\lambda_{0}}=\frac{\Delta \lambda}{\lambda_{0}}=\frac{\Delta \lambda / c}{\lambda_{0} / c}=\frac{\Delta P}{P_{0}}
$$

V_{r} - radial velocity (along line-of-sight), c - speed of light, $\lambda_{\text {obs }}$ - observed wavelength, λ_{0} - rest-frame wavelength

Doppler effect of the star due to the gravity from the planet

$$
\frac{\Delta P}{P}=\frac{\Delta \lambda}{\lambda}=\frac{V_{r}}{c}=\frac{V_{\text {circ }}}{c} \sin \left(\frac{t-t_{0}}{\text { Orbital Period }}\right)
$$

Center of mass equation of a binary system "Seesaw Equation"

$m_{1} r_{1}=m_{2} r_{2}$ \& because $P_{1}=P_{2}$ we have $m_{1} v_{1}=m_{2} v_{2}$

For the Earth-Sun binary, what's the velocity of the Sun?
$V_{\text {circ }}$ of Earth $=30 \mathrm{~km} / \mathrm{s}$,
$M_{\text {sun }} / M_{\text {Earth }}=333,000$

PSR B1257+12 - a millisecond pulsar about 1.4 solar mass

PSR - Pulsating Source of Radio
B1257+12 - RA and Dec at the epoch of 1950

Wolszczan \& Frail 1992

A planetary system around the millisecond pulsar PSR1257+12

A. Wolszczan \& D. A. Frail

Nature 355, 145-147 (1992) | Cite this article
7538 Accesses | 986 Citations \| 684 Altmetric \mid Metrics

MILLISECOND radio pulsars, which are old ($\sim 10^{9} \mathrm{yr}$), rapidly rotating neutron stars believed to be spun up by accretion of matter from their stellar companions, are usually found in binary systems with other degenerate stars ${ }^{1}$. Using the $305-\mathrm{m}$ Arecibo radiotelescope to make precise timing measurements of pulses from the recently discovered $6.2-\mathrm{ms}$ pulsar PSR1257 +12 (ref. 2), we demonstrate that, rather than being associated with a stellar object, the pulsar is orbited by two or more planet-sized bodies. The planets detected so far have masses of at least $2.8 M_{\oplus}$ and $3.4 M_{\oplus}$ where M_{\oplus} is the mass of the Earth. Their respective distances from the pulsar are 0.47 AU and 0.36 AU , and they move in almost circular orbits with periods of 98.2 and 66.6 days. Observations indicate that at least one more planet may be present in this system. The detection of a planetary system around a nearby ($\sim 500 \mathrm{pc}$), old neutron star, together with the recent report on a planetary companion to the pulsar PSR1829-10 (ref. 3) raises the tantalizing possibility that a non-negligible fraction of neutron stars observable as radio pulsars may be orbited by planet-like bodies.

Practice: measure planet mass based on period anomaly

 What we know from this plot:

- Orbital Period $=98.2$ days
- Average Pulsation Period $P=6.2 \mathrm{~ms}$
- Amplitude of Period Anomaly: $\Delta \mathrm{P}=0.006 \mathrm{~ns}$
- What we know about the pulsar:
- Mass = 1.4 Solar Mass

Step 1: Use the Doppler shift equation to calculate the circular velocity of the Pulsar

$$
\frac{\Delta P}{P}=\frac{V_{r}}{c}=\frac{V_{\mathrm{circ}}}{c} \sin \left(\frac{t-t_{0}}{\text { Orbital Period }}\right) \Rightarrow V_{\mathrm{circ}}=c \frac{\max \Delta P}{P}
$$

> For PSR B1257+12, we have the pulsation period of $P=6.2 \mathrm{~ms}$ and a maximum $\Delta P=0.006 \mathrm{~ns}$. We can calculate that the circular velocity of the pulsar is $V_{\text {circ }}=0.3 \mathrm{~m} / \mathrm{s}$

Practice: measure planet mass based on period anomaly

 - What we know from this plot:

- Orbital period = 98.2 days
- Amplitude of Delta $P=0.006$ ns
- What we know from timing pulses:
- Pulsation Period $P=6.2 \mathrm{~ms}$
- What we know about the pulsar:
- Mass = 1.4 Solar Mass

Step 2: Use the Kepler's 3rd Law to calculate the circular velocity of the invisible planet

$$
\begin{aligned}
& a_{A U}=\left(M_{\text {solar-mass }} P_{\text {year }}^{2}\right)^{1 / 3} \\
& v_{\text {circ }}=\frac{2 \pi a}{P_{\text {orbit }}} \\
& a_{A U}=\left(M_{\text {solar-mass }} P_{\text {year }}^{2}\right)^{1 / 3}=0.466 \\
& v_{\text {circ }}=2 \pi a / P=51.6 \mathrm{~km} / \mathrm{s}
\end{aligned}
$$

Practice: measure planet mass based on period anomaly

- What we know from this plot:
- Orbital period $=98.2$ days
- Amplitude of Delta $P=0.006$ ns - What we know from timing pulses:
- Pulsation Period $P=6.2 \mathrm{~ms}$
- What we know about the pulsar:
- Mass = 1.4 Solar Mass
- 1 Solar Mass = 3.3e5 Earth Mass

Step 3: Use the center of mass equation to calculate the mass ratio from velocity ratio

$$
\frac{m}{M}=\frac{V_{\mathrm{circ}}}{v_{\mathrm{circ}}}
$$

mass ratio between the planet and the pulsar:

$$
\frac{m}{M}=\frac{V_{\text {circ }}}{v_{\text {circ }}}=\frac{0.3 \mathrm{~m} / \mathrm{s}}{51.6 \mathrm{~km} / \mathrm{s}}=6 \times 10^{-6}
$$

Step 4: Use the mass ratio and the mass of the Pulsar to calculate the mass of the planet

$$
\text { planet mass }=6 \mathrm{e}-6 \times \text { (} 1.4 \text { solar mass) }
$$

given that 1 solar mass $=3.3 \mathrm{e} 5$ earth mass
we have planet mass = 2.8 Earth Mass

The Importance of Geometry:

 ambiguities caused byorbital inclination angle

Ambiguity Caused by the Unknown Inclination Angle

$$
\frac{\Delta P}{P}=\frac{\Delta \lambda}{\lambda}=\frac{V_{r}}{c}=\frac{V_{\text {circ }}}{c} \sin \left(\frac{t-t_{0}}{\text { Orbital Period }}\right) \times \sin i
$$

Unknown Inclination Angle => Planetary masses are lower limits

Two systems, one tilted by 60 degrees

The Importance of Earth's Motion:

false positive detections

The Importance of Earth's Motion

NATURE • VOL 352 • 25 JULY 1991

A planet orbiting the neutron star PSR1829-10

M. Bailes, A. G. Lyne \& S. L. Shemar

University of Manchester, Nuffield Radio Astronomy Laboratories, Jodrell Bank, Macclesfield, Cheshire SK11 9DL, UK

Pulsation Period $=\mathbf{2 2 6 . 5} \mathbf{~ m s}$

No planet orbiting PSR1829-10

SIR - In an earlier paper ${ }^{1}$, we reported a cyclic variation in the arrival times of the pulses from the neutron star PSR1829-10 with a period close to 6 months, and presented this as evidence for a 10 -Earth-mass planet. As we noted in that paper, we were concerned that the 6 -month periodicity might be an artefact concerned with the Earth's orbit around the Sun, but were encouraged by the fact that no such periodicity appeared in observational data for the 300 other pulsars currently under observation. We have nevertheless reexamined the algorithm used in compensating for the Earth's orbital motion and now find that we can account for the observed radiation without the presence of a planet.

The standard analysis (p. 105 of ref. 2) involves correcting the observed arrival times to the barycentre of the Solar System using a precise ephemeris for the position of the Earth. An analytical model for the pulsar rotation and position is then adjusted to minimize a set of residuals, the differences between the observed barycentric arrival times and model times. Because this is a differential process, the approximation is made that the orbit of the Earth is circular. Provided that the difference between the

Recap: Indirect Method I

timing variations (Timing Doppler)

Doppler effect of the star due to the gravity from the planet

$$
\frac{\Delta P}{P}=\frac{\Delta \lambda}{\lambda}=\frac{V_{r}}{c}=\frac{V_{\text {circ }}}{c} \sin \left(\frac{t-t_{0}}{\text { Orbital Period }}\right)
$$

Planets around PSR B1257+12 - a millisecond pulsar about 1.4 solar mass

How did they achieve an accuracy of 0.001 ns when the data were taken every 0.1 ms ?

Indirect Method II

the radial velocity method (Spectroscopic Doppler)

Spectroscopic Doppler Shift

Radial Velocity Method

How to measure planet mass based on periodic radial velocity

- What we know from this plot:
- Orbital period (4.2 days)
- Amplitude of radial velocity of the star ($55 \mathrm{~m} / \mathrm{s}$)
- What we know about the star:
- Mass (1.1 solar mass)

Step 1: Get a lower limit on the circular velocity of the host star:

$$
\begin{aligned}
& V_{r}=V_{\text {circ }} \sin i \cdot \sin \left(\frac{t-t_{0}}{\text { Orbital Period }}\right) \\
& \Rightarrow V_{\text {circ }}=\max \left(V_{r}\right) / \sin i
\end{aligned}
$$

where i is the inclination angle of the orbital plane from face-on

How to measure planet mass based on periodic radial velocity

- What we know from this plot:
- Orbital period (4.2 days)
- Amplitude of radial velocity of the star ($55 \mathrm{~m} / \mathrm{s}$)
- What we know about the star:
- Mass (1.1 solar mass)

Step 2: Use the Kepler's 3rd Law to calculate the circular velocity of the invisible planet

$$
\begin{aligned}
& a_{A U}=\left(M_{\mathrm{solar}-\mathrm{mass}} P_{\mathrm{year}}^{2}\right)^{1 / 3} \\
& v_{\mathrm{circ}}=\frac{2 \pi a}{P_{\mathrm{orbit}}}
\end{aligned}
$$

How to measure planet mass based on periodic radial velocity

- What we know from this plot:
- Orbital period (4.2 days)
- Amplitude of radial velocity of the star ($55 \mathrm{~m} / \mathrm{s}$)
- What we know about the star:
- Mass (1.1 solar mass)

Step 3: Use the center of mass equation to calculate the mass ratio from velocity ratio:

$$
\frac{m}{M}=\frac{V_{\mathrm{circ}}}{v_{\mathrm{circ}}}=\frac{\max \left(V_{r}\right) / \sin (i)}{v_{\mathrm{circ}}}
$$

Step 4: Use the mass ratio and the mass of the star to calculate the mass of the planet, because there is a sin i term on the denominator, the result is a lower mass limit.

A Jupiter-mass companion to a solar-type star

Michel Mayor \& Didier Queloz
Geneva Observatory, 51 Chemin des Maillettes, CH-1290 Sauverny, Switzerland
The presence of a Jupiter-mass companion to the star 51 Pegasi is inferred from observations of periodic variations in the star's radial velocity. The companion lies only about eight million kilometres from the star, which would be well inside the orbit of Mercury in our Solar System. This object might be a gas-giant planet that has migrated to this location through orbital evolution, or from the radiative stripping of a brown dwarf.

The Nobel Prize in Physics 2019

© Nobel Media. Photo: A. Mahmoud
James Peebles
Prize share: 1/2

© Nobel Media. Photo: A Mahmoud
Michel Mayor
Prize share: 1/4

© Nobel Media. Photo: A. Mahmoud
Didier Queloz
Prize share: 1/4

Half of the award is "for the discovery of an exoplanet orbiting a solar-type star." The other half for cosmology.

Practice: Jupiter-Sun as an exoplanet system (Reversed Problem Solving)

- Jupiter distance: 5.2 AU
- Jupiter mass: 0.001 solar mass
- Jupiter period: 12 years
-What is the circular velocity of Jupiter? $v_{\text {circ }}=\sqrt{G M / a} \propto 1 / \sqrt{a}$
- What is the amplitude of the radial velocity of the Sun caused by Jupiter?
recall the center of mass equation: $\frac{m}{M}=\frac{V_{\text {circ }}}{v_{\text {circ }}}$

Practice: Jupiter-Sun as an exoplanet system: Center of Mass

The radius of the outer blue circle is 5.2 AU , what is the radius of the inner yellow circle?

Answer: $\mathrm{R}=5.2 \mathrm{e}-3 \mathrm{AU}$
given $1 A U=215 R_{\text {sun }}$, we have $R=1.1 R_{\text {sun }}$

Jupiter-Sun as an exoplanet system: radial velocity vs. time

By assuming exoplanet systems are similar to the Jupiter-Sun system, most astronomers missed the opportunity to discover 51 Pegasi b

A Jupiter-mass companion to a solar-type star

Michel Mayor \& Didier Queloz

Geneva Observatory, 51 Chemin des Maillettes, CH-1290 Sauverny, Switzerland

Indirect Method III

the transit method

Received Flux = (Surface Flux/ π) x Angular Area

$$
F=\frac{L}{4 \pi d^{2}}=\frac{4 \pi R^{2} F_{S}}{4 \pi d^{2}}=\frac{F_{S}}{\pi} \frac{\pi R^{2}}{d^{2}}
$$

Received Flux is in units of Joule $/ \mathrm{m} 2 / \mathrm{s}$, if the size of the emitting area changes, the received flux will change

F: received flux
Fs: surface flux $\left(\sigma_{S B} T^{4}\right)$
L: Iuminosity
d: distance
R: radius of star

Sketch of an Exoplanet Transit

What would be the expression for the received flux during the transit? What would be the fractional change in flux?
no transit : $F_{0}=\frac{F_{S}}{\pi} \frac{\pi R^{2}}{d^{2}} \quad$ in transit : $F_{t}=\frac{F_{S}}{\pi} \frac{\pi\left(R^{2}-r^{2}\right)}{d^{2}}$

Transiting Signals from Multiple Planets

Planet Size from the Depth of the Transit and Radius of the Star

- By measuring the amount by which a star's light is dimmed during a planet's transit as well as the length of time the planet is in front of the star, you can estimate the size of the planet.

$\underset{\text { Percentage }}{\text { reduction in light }}=\frac{\text { Area of disk of planet }}{\text { Area of disk of star }}=\frac{\pi R_{\text {planet }}^{2}}{\pi R_{\text {star }}^{2}}=\frac{R_{\text {planet }}^{2}}{R_{\text {star }}^{2}}$

Practice: The Depth of Earth's Transit (Kepler's design requirement)

- Earth radius $=6,400 \mathrm{~km}$, Solar radius $=695,700 \mathrm{~km}$
- What would be the percentage reduction in the brightness of the Sun when the Earth transits in front of it?
$\underset{\text { reduction in light }}{\text { Percentage }}=\frac{\text { Area of disk of planet }}{\text { Area of disk of star }}=\frac{\pi R_{\text {planet }}^{2}}{\pi R_{\text {star }}^{2}}=\frac{R_{\text {planet }}^{2}}{R_{\text {star }}^{2}}$

What's the size of the smallest planets that Kepler can detect?

Transit depth:
12 p.p.m.
$R=0.3 R_{\text {Earth }}$
A sub-Mercury

Transit depth:
81 p.p.m.
$R=0.7 R_{\text {Earth }}$

Barclay et al. 2013

Planet Size from Ingress \& Egress Duration and Mass of the Star

$$
r=v_{\text {circ }}\left(t_{2}-t_{1}\right) / 2
$$

$$
\begin{aligned}
& a_{A U}=\left(M_{\text {solar-mass }} P_{\text {year }}^{2}\right)^{1 / 3} \\
& v_{\text {circ }}=\frac{2 \pi a}{P_{\text {orbit }}}
\end{aligned}
$$

Time

Practice: Planet Size from Ingress \& Egress Duration

- A transiting exoplanet around a Sun-like star ($1 \mathrm{M}_{\text {sun }}$) has a transiting period of 1 year. From the transit light curve, you measure $\mathrm{t} 1, \mathrm{t} 2, \mathrm{t} 3, \mathrm{t} 4$ at 5:15, 5:18, 11:40, 11:43 (UTC), respectively.
- Estimate the radius of the planet and the radius of the star.

```
    Diameter \(=30 \mathrm{~km} / \mathrm{s}^{*} 3^{*} 60=5400 \mathrm{~km}\)
Diameter of the star \(=30 \mathrm{~km} / \mathrm{s}^{*}(6 * 60+22) \mathrm{min}=687,600 \mathrm{~km}\)
```

Egress

Time

Nothing is as simple as it appears: Stellar Activities, Stellar Rotation, \& Limb Darkening

Nothing is as simple as it appears: Stellar Activities \& Rotation

Quasi-Periodic Stellar Activities Regularly Changes the Brightness by A Few Percent

Orbital Inclination Effect

Direct Method

coronagraph imaging

Directly imaging exoplanets around other stars is difficult because the planets are much much fainter compared to the star, and they appear very close to the star on the sky because of their great distances to Earth

Practice: Earth-Sun as an exoplanet system

- Earth-Sun distance: 1 AU = 1.5 e 8 km
- Earth radius: 6400 km
- Earth Albedo: 0.3
- Assume quarter phase (i.e., Earth appears half illuminated)
- How many times brighter the Sun appears compared to the Earth to an observer on an alien planet far away?

$L_{\text {sun }} / L_{\text {earth }}=1.5 \mathrm{e} 10,15$ billion brighter

- How to estimate this ratio?
- Can you express the luminosity of the Sun in terms of the Solar flux at Earth's orbit?
- Can you express the luminosity

$$
\begin{aligned}
L_{\text {star }} & =F_{@ \text { planet }} \cdot 4 \pi d_{\text {planet }}^{2} \\
L_{\text {planet }} & =F_{@ \text { planet }} \cdot A \cdot \pi r_{\text {planet }}^{2} / 2 \\
& \Rightarrow \\
\frac{L_{\text {star }}}{L_{\text {planet }}} & =\frac{8}{A} \frac{d_{\text {planet }}^{2}}{r_{\text {planet }}^{2}}
\end{aligned}
$$ of the Earth in terms of the Solar flux at Earth's orbit?

Practice: Earth-Sun as an exoplanet system

- What is the maximum angular separation between Earth and the Sun seen by an alien observer located at a distance of 1 parsec (= 206265 AU)?
- What if their distance is at 10 parsec?

1AU @ 1 parsec => 1 arcsec

1AU @ 10 parsec => 0.1 arcsec

$$
\theta_{\max }^{\prime \prime}=\frac{a_{\mathrm{AU}}}{d_{\mathrm{parsec}}}=\frac{a}{1 \mathrm{AU}} \cdot \frac{1 \mathrm{parsec}}{d}
$$

2
$2-2$

Inspired by the solar eclipse example, can we simply put an occulting mask in front of a telescope to block the starlight?

To be effective, the occulting mask must be larger than the size of the telescope pupil (e.g., > 10 m for Keck), and placed distant enough so that its angular size is comparable to that of the Sun (0.5 degree across).

Distance $=$ Mask Diameter $/ 0.5$ deg in radian $=115 \times$ Mask Diameter

The Ultimate Coronagraph - Starshade placed $72,000 \mathrm{~km}$ away from the space telescope

Distance = Starshade Diameter / Angular Size of Exoplanet Orbit

A Typical Coronagraph (invented by Bernard Lyot in 1931) the occulting mask is placed inside the camera

Telescope pupil evenly illuminated

Image is
occulted

Pupil is partially blocked

Final image after coronagraph has only 0.5% of original starlight

Occulting spot

Lyot stop

Direct imaging of exoplanets requires
(1) high dynamical range
(2) high spatial resolution

For high dynamical range, we use coronagraph.

For high spatial resolution, we use
(a) space-based telescopes,
(b) ground-based adaptive optics, or (c) radio interferometers

Four sub-stellar objects orbiting around HR 8799. Current mass estimates favor planet-size objects (< 13 Jupiter Mass), but we don't know if these are correct.

Exoplanet Populations

hot Jupiters and super-Earths

What can we measure?

Planet Mass [RV], Planet Size [Transit], \& Orbital Period/Size [Both]

Classification of the Exoplanets based on Orbital Size and Mass

Ref: The Astrobiology Primer v2.0

Classification of the Exoplanets based on Orbital Period and Size

Below are planets discovered by the transit method, because planet size needs to be measured from transit depth or ingress/ egress interval, the RV method cannot measure planet size.

The Mean Density of Planets in the Solar System

Densities at the bottom are in units of $\mathrm{g} / \mathrm{cm}^{3}$

Densities of Exoplanets Require both RV and Transit Measurements

- To measure density, $\rho=3 m /\left(4 \pi r^{3}\right)$, we need
- planet mass (m) from RV method ($\mathrm{m} / \mathrm{M}=\mathrm{V} / \mathrm{v}=\mathrm{D} / \mathrm{d}$) and
- planet size (r) from transit method (transit depth or ingress interval)
- Note the large error bars of the measurements

How many planets hosting ET are out there?

Drake Equation

$$
N \sim L_{y r}
$$

Fermi Estimation

- The goal is to get an order-of-magnitude estimate
- This is not a method to obtain accurate answers
- To reach the goal, Fermi needs to take advantage of various conversion factors

$$
-\frac{\hbar}{i} \frac{\partial}{\partial t}=\frac{p^{2}}{2 m}=\frac{z e^{2}}{r}
$$

How many piano tuners are there in Chicago?

- we assume \# required = \# actually exist (supply meets demand)

How many piano tuners are there in Chicago?

-What is the unit of the answer?

- the number of piano tuners
- What are some starting piece of information?
- Population of Chicago - 3 million
- What are some conversion factors we might use?
- what percentage of families have pianos? - about $1 / 10$
- how many people per family? - about 3
- frequency of tuning - once per 3 years
- number of tunings a tuner can do in a year - 300

How many piano tuners are there in Chicago?

-What is the number of pianos?

- 3 million / 3 people per family * 10\% piano ownership $=100,000$ pianos
- What is the number of tunings required per year?
- 100,000 pianos * $1 / 3$ tunings per year $=30,000$ tunings per year
- What is the number of tuners required to complete the job?
- 30,000 tunings per year / 300 tunings per year per tuner = 100 tuners

Q1: How many advanced civilizations ever existed in the Milky Way?

- Potential trap: we'll assume they live on planets similar to the Earth

Recall that by assuming exoplanet systems are similar to the Jupiter-Sun system, most astronomers missed the opportunity to discover 51 Pegasi b

Q1: How many advanced civilizations ever existed in the Milky Way?

- What is the unit of the answer?
- the number of planets hosting advanced civilization ever existed
- What are some starting piece of information?
- The Population of Stars in the Milky Way - 100 billion
- What are some conversion factors we might use?
- percentage of stars have planets
- average number of Earth-like planets per system
- fraction of life-supporting planets
- fraction of such planets that develop advanced civilization

Q1: How Many Advanced Civilizations Ever Existed?

$$
\begin{aligned}
N_{\text {total }}= & N_{*} \cdot f_{p} \cdot n_{e} \cdot f_{l} \cdot f_{i} \cdot f_{c} \\
& \text { - }
\end{aligned}
$$

$N_{\text {total }}=$ the cumulative number of advanced civilizations in the Galaxy $N_{*}=$ the total number of stars in the Galaxy, i.e., the integral of the star formation history of the Galaxy
$f_{\mathrm{p}}=$ the average fraction of stars that host planets
$n_{\mathrm{e}}=$ the number of planets, per system, that can potentially support life
$f_{1}=$ the fraction of life-supporting planets that actually develop life
$f_{\mathrm{i}}=$ the fraction of planets with life that actually develop intelligent life
$f_{\mathrm{c}}=$ the fraction of planets with intelligent life that develop advanced civilizations that release potentially detectable signs of their existence

Q2: How many advanced civilizations are present at a random time?

- Imagine life-supporting planets are fireflies, and advanced civilizations are like their brief flashes of light - At any moment, only a fraction of fireflies are visible.
- What's the probability of a photographer catching a photo of the flash from a certain firefly throughout a night? This photographer can only take one photo in one night.
- The probability depends on the duration of the flash and the duration of the night

Q2: How many advanced civilizations are present at a random time?

- Imagine one of these civilizations, e.g., Terra, that lasted 1e4 years
- What's the probability of an observer catching its existence at a random time t throughout the long ($\sim 1 e 10 \mathrm{yrs}$) history of our Galaxy?

Milky Way Lifetime

Evenly Spaced Slices in Time

Q2: How many advanced civilizations are present at any given time?

$$
\begin{aligned}
N & =N_{\mathrm{total}} \cdot\left(L / L_{\mathrm{G}}\right) \\
& =N_{*} \cdot f_{p} \cdot n_{e} \cdot f_{l} \cdot f_{i} \cdot f_{c} \cdot\left(L / L_{\mathrm{G}}\right) \\
& =\left(N_{*} / L_{\mathrm{G}}\right) \cdot f_{p} \cdot n_{e} \cdot f_{l} \cdot f_{i} \cdot f_{c} \cdot L \\
& =R_{*} \cdot f_{p} \cdot n_{e} \cdot f_{l} \cdot f_{i} \cdot f_{c} \cdot L
\end{aligned}
$$

$N=$ the number of advanced civilizations that are alive today
$L=$ the mean lifetime of advanced civilizations
$L_{G}=$ the age of the Galaxy (i.e., the time it took to accumulate the number of stars we have today)
$R_{*}=N_{*} / L_{G}=$ the mean star formation rate of the Galaxy

$\mathbf{N}=\mathrm{R}_{*} \times \mathrm{f}_{p} \times$
 \mathbf{n}_{e}
 The Drake Equation (1961)

The number of technologically advanced civilizations in the Milky Way galaxy

The rate of formation of stars in the galaxy

The fraction of those stars with planetary systems

The number of planets, per solar system. with an environment suitable for life

What is the average fraction of stars that host planets?

- 2023 Nov: 5,539 exoplanets in 4,123 systems, with 937 multi-planet systems.
- NASA's Kepler mission observed 530,506 stars and discovered 2,662 exoplanets over its lifetime.
-How frequently do stars have planets?
- "The absence of evidence is not the evidence of absence." We cannot simply get the answer from 2662/530506 = 0.5\%
- The RV technique is biased towards large, close companions, viewed edge-on
- The transit technique is biased towards planetary systems viewed edge-on

Planet-hosting probabilities after de-biasing the Kepler transit data

About 50\% of normal stars have planet of Earth-size or larger!

Here is a very optimistic answer to Q2:

- $R_{*}=10 \mathrm{yr}^{-1}$ (100 billion star formed over 10 billion years)
- $f_{\mathrm{p}}=0.5$ (one half of all stars formed will have planets)
- $n_{\mathrm{e}}=0.2$ (20% chance of hosting life-supporting planets)
- $f_{1}=1$ (100% of the above will develop life)
- $f_{\mathrm{i}}=1$ (100% of the above will develop intelligent life)
- $f_{c}=1$ (100% of the above will develop advanced civilizations)

$$
N \approx L_{\mathrm{year}}
$$

Contacting ET

Contact (1997): Jodie Foster - Detecting the signal at the VLA

The Arecibo Message (1974) to the Globular Cluster M13

- Frank Drake, Carl Sagan, et al.
- Will take 25,000 years to arrive at M13
- Contains information of the DNA, the Solar system, and the radio telescope Arecibo

Pioneer 10 and Pioneer 11 Spacecraft (Launched in 1972 \& 1973)

The Pioneer 10 and 11 spacecraft were the first human-built objects to achieve escape velocity from the Solar System. The plaques were attached to the spacecraft's antenna support struts in a position that would shield them from erosion by interstellar dust.

The Pioneer plaques - gold-anodized aluminum plaques (9x6in)

Hopefully, the aliens can read this and find us ...

Chap 8: Planet mass from timing / radial velocity method

Step 0: Use Doppler shift equation to get radial velocity:

Step 1: Get a lower limit on the circular velocity of the host star:

$$
\frac{V_{r}}{c}=\frac{\Delta \lambda}{\lambda}=\frac{\Delta P}{P}
$$

$$
\begin{aligned}
V_{r} & =V_{\text {circ }} \sin i \cdot \sin \left(\frac{t-t_{0}}{\text { Orbital Period }}\right) \\
\Rightarrow V_{\text {circ }} & =\max \left(V_{r}\right) / \sin i
\end{aligned}
$$

where i is the inclination angle of the orbital plane from face-on

Step 2: Use the Kepler's 3rd Law to calculate the circular velocity of the invisible planet

$$
a_{A U}=\left(M_{\text {solar-mass }} P_{\text {year }}^{2}\right)^{1 / 3}, \quad v_{\text {circ }}=\frac{2 \pi a}{P_{\text {orbit }}}
$$

Step 3: Use the center of mass equation to
calculate the mass ratio from velocity ratio:

$$
\frac{m}{M}=\frac{V_{\mathrm{circ}}}{v_{\mathrm{circ}}}=\frac{\max \left(V_{r}\right) / \sin (i)}{v_{\mathrm{circ}}}
$$

Chap 8: Planet radius from transit method

Relative Size Estimate from Transit Depth:

$\underset{\text { reduction in light }}{\text { Percentage }}=\frac{\text { Area of disk of planet }}{\text { Area of disk of star }}=\frac{\pi R_{\text {planet }}^{2}}{\pi R_{\text {star }}^{2}}$

Absolute Size Estimate from Transit Ingress Interval:

$$
\begin{array}{ll}
\begin{array}{c}
\text { Step 1: Use the } \\
\text { Kepler's 3rd Law to } \\
\text { calculate the circular } \\
\text { velocity of the invisible } \\
\text { planet }
\end{array} & a_{A U}=\left(M_{\text {solar-mass }} P_{\text {year }}^{2}\right)^{1 / 3} \\
& v_{\text {circ }}=\frac{2 \pi a}{P_{\text {orbit }}}
\end{array}
$$

Step 2: Use the ingress interval and the velocity to infer the size of the

$$
r=v_{\mathrm{circ}}\left(t_{2}-t_{1}\right) / 2
$$

Chap 8: Planet-Star Contrast and Angular Separation for Direct Imaging

$$
\begin{aligned}
& L_{\text {star }}=F_{@ \text { planet }} \cdot 4 \pi d_{\text {planet }}^{2} \\
& L_{\text {planet }}=F_{@ \text { planet }} \cdot A \cdot \pi r_{\text {planet }}^{2} / 2 \\
& \Rightarrow \\
& \frac{L_{\text {star }}}{L_{\text {planet }}}=\frac{8}{A} \frac{d_{\text {planet }}^{2}}{r_{\text {planet }}^{2}} \\
& \theta_{\text {max }}^{\prime \prime}=\frac{a_{\mathrm{AU}}}{d_{\text {parsec }}}=\frac{a}{1 \mathrm{AU}} \cdot \frac{1 \text { parsec }}{d}
\end{aligned}
$$

