Chap 1: Taking the Measure of Stars

Chap 1: Key Diagram

log(luminosity) vs. \log (flux ratio)

Chap 1: Taking the Measure of Stars

- How do we use parallax to determine distance? Astrometry.
- How do we measure brightness? Photometry.
- How do we combine distance (d) with brightness (apparent magnitude, m) to determine luminosity (absolute magnitude, M)?
- How do we measure temperature (T)? color index
- The Hertzsprung-Russell (H-R) diagram: M vs. color index
- Key concepts:
- parallax, magnitude system, distance modulus
-H-R diagram and the distribution of stars on the diagram
- Other measurements: size \& mass of stars

Distance Measurements: Parallax

Geological Survey Method

Geological Survey Method: Theodolite measurements

need to know the baseline length $(l=A B)$ and the two angles (α, β)

$$
\begin{aligned}
\ell & =d\left(\frac{\cos \alpha}{\sin \alpha}+\frac{\cos \beta}{\sin \beta}\right) & \text { therefore: } \\
\ell & =d \frac{\sin (\alpha+\beta)}{} & d=\ell \frac{\sin \alpha \sin \beta}{\sin (\alpha+\beta)}
\end{aligned}
$$

Geological Survey Method: Theodolite measurements
What would the angles become when d is much much greater than $A B$?

To measure greater distances, we need:
(1) longer baselines and (2) the ability to measure tiny angles

The Earliest Parallax Measurement by Hipparchus (~150 BC): Baseline limited by the diameter of the Earth

The Solar Eclipse on Mar 14, 190 BC

seen in Alexandria (80% obscured)

The Simple Geometry of Parallax

$$
D_{\text {moon }}=\text { baseline length } / \text { parallax angle in radian }=l / p
$$

in the above, we have used the small angle approximation

Measure the baseline itself

- How do we measure the Astronomical Unit (AU)? Recall that $A U$ is defined as the average heliocentric distance of the Earth, but how long is it exactly?
- One geometric method involves two components:
- An inner planet's heliocentric distance in AU
- A parallax measurement of the distance between the Earth and the inner planet during its transit of the Sun

Copernicus' method of determining the heliocentric distance of inner planets

$$
\text { Inner Planets: } \mathrm{R}_{\mathrm{AU}}=\sin (\text { Max Elongation })
$$

Parallax measurement of the AU

- By observing the transit of Venus at two locations on Earth, one can measure the distance to Venus using the measured parallax and the baseline length.
- Assuming Venus and Earth are both on circular orbits around the Sun, the greatest elongation angle of Venus tells us its orbit has a radius of 0.7 AU .
- Since the Earth's orbit has a radius of 1 AU , the measured parallax distance of Venus during its transit across the Sun equals 0.3 AU.

Extend the Baseline from Earth Size to Earth's Orbit Size: Stellar Parallax

Parallax distance can be measured given the baseline length (l) and the parallax angle (p); by using the orbit of the Earth, the baseline length is increased by 23500 times from $2 x 6400 \mathrm{~km}$ to $2 x 149.6$ million km.

The Definition of Parallax in Stellar Astronomy

Any directional shift due to a positional shift is a parallax effect, but in stellar astronomy, parallax is defined as half of the maximum directional shift due to Earth's orbital motion.
From this diagram, it's clear that parallax is inversely proportional to distance: p ~ 1/d

Definition of the unit parsec: the distance at which $p=1$ arcsec
Let p be the parallax in arcseconds.
Let d be the distance in parsecs; the unit parsec is defined as the distance at which $p=1 \operatorname{arcsec}$ Given this definition we have:

$$
d=1 \operatorname{parsec}\left(\frac{1 \operatorname{arcsec}}{p}\right)
$$

From the diagram above, we derived:
1 parsec $=206,205$ AU since $l / d=\tan p \sim p$ (in radian)

Practice: convert parallax to distance

The greater the parallax, the smaller the distance.
A star with a parallax of 1 arcsecond (arcsec) is at a distance of 1 parsec (pc).

- 1 arcsec = 1/3,600 degree
- 1 pc = 3.26 light-years (only useful when talking to non-astronomers)
Parallax angles have been measured for >1 billion stars.

The first star with measured parallax was 61 Cygni by Friedrich Bessel in 1838. It had a parallax of 0.314 arcsec, what is its distance in parsec and light-year?

Bessel functions in Mathematics are named after him.

Practice: Convert distance to parallax angle

Let's try a reversed problem. After the Sun, the closest star to Earth is Proxima Centauri, which is 4.24 light-years away. What is the star's parallax in arcsec? (1 pc = 3.26 ly)

THE SUN'S CLOSEST NEIGHBORS
WISE 0855-0714
disc. 2014

Practice: Convert distance to parallax

Let's try a reversed problem. After the Sun, the closest star to Earth is Proxima Centauri, which is 4.24 light-years away. What is the star's parallax in arcsec?

First, we convert light-years to parsecs:
$d=4.24$ light-years $\times \frac{1 \text { parsecs }}{3.26 \text { light-years }}=1.30$ parsecs
Then, we plug in to find the distance:
$p(\operatorname{arcsec})=\frac{1}{1.30 \mathrm{pc}}=0.77 \mathrm{arcsec}$
The closest star to the Sun has a parallax smaller than 1 arcsec!

Stellar Parallax: One Slide Introduction

In stellar astronomy, parallax (p) is defined as half of the maximum directional shift due to Earth's orbital motion. The unit is typically arcsec or mas (milliarcsec) With this definition and the definition of the parsec, we have the following parallax-distance relation:

How to Calculate Parallax from Coordinates?

A star's position is recorded in celestial coordinates (RA, Dec), how to calculate the angular offset between two coordinates?

Celestial Coordinates are similar to the Longitude and Latitude system on
Earth's surface

Equatorial coordinates

right ascension (RA) declination (Dec)

RA's units
(hour, minute, second)
Dec's units:
(deg, arcmin, arcsec)

Practice: Calculate the distance between locations along the same parallel

Iowa City: $41.6578^{\circ} \mathrm{N}, 91.5346^{\circ} \mathrm{W}$
 Des Moines: 41.5868° N, 93.6250° W
 Earth's Radius: 3960 miles

Almost the same latitude, difference in longitude about 2.1 degrees.

- convert 2.1 deg to radian: 0.0366519
- distance $=$ arc length $=$ $R \cdot \theta=3960 \mathrm{miles} \times 0.0366519=145 \mathrm{miles}$
- Google says the distance is 115 miles (much less than 145 miles), why?

Practice: at fixed Declination, calculate angular offset in R.A.

- Obj 1: RA = 2 hr , Dec = 60 deg , Obj 2: RA $=3 \mathrm{hr}$, Dec =60deg; what's their angular distance in degrees?
- Note that you'll need to first convert hours to degrees ...

$$
\begin{aligned}
\delta \mathrm{RA}^{\circ} & =\left(\mathrm{RA}_{1}^{h}-\mathrm{RA}_{2}^{h}\right) \cdot \cos \left(\mathrm{Dec}_{1}^{\circ}\right) \cdot 15^{\circ} / \text { hour } \\
\delta \mathrm{Dec}^{\circ} & =\mathrm{Dec}_{1}^{\circ}-\mathrm{Dec}_{2}^{\circ}
\end{aligned}
$$

Offsets in both RA and Dec, how to calculate the total offset?
When the two coordinates are close together, we can use plane trigonometry to approximate spherical trigonometry:

$$
\Delta^{\prime \prime}=\sqrt{\delta \mathrm{RA}^{\prime \prime 2}+\delta \mathrm{Dec}^{\prime \prime 2}}
$$

Given two (RA, Dec) coordinates, calculate their angular offset

$$
\Delta^{\prime \prime}=\sqrt{\delta \mathrm{RA}^{\prime \prime 2}+\delta \mathrm{Dec}^{\prime \prime 2}}
$$

Note that (1) RA's units are (hour, minute, second), and Dec's units are (deg, arcmin, arcsec), and (2) the angular distance between two meridians decreases from the equator to the poles. As a result, we have the following formulae to calculate both the RA offset and the Dec offset in arcsec:

Practice: Given two (RA, Dec) coordinates, calculate their angular offset

$$
\begin{aligned}
& \Delta^{\prime \prime}=\sqrt{\delta \mathrm{RA}^{\prime \prime 2}+\delta \mathrm{Dec}^{\prime \prime 2}} \\
& \delta \mathrm{RA}^{\prime \prime}=\left(\mathrm{RA}_{1}^{s}-\mathrm{RA}_{2}^{s}\right) \cdot \cos \left(\mathrm{Dec}^{\circ}\right) \cdot 15^{\prime \prime} / \mathrm{s} \\
& \delta \mathrm{Dec}^{\prime \prime}=\mathrm{Dec}_{1}^{\prime \prime}-\mathrm{Dec}_{2}^{\prime \prime} \mathrm{dRA}^{2} 0.03^{*} \cos (23.5 \text { deg })^{*} 15=0.413^{\prime \prime} \\
& \text { dDec }=0.005^{\prime \prime} \\
& \Rightarrow \mathrm{p}=0.413^{\prime \prime} / 2 \Rightarrow \mathrm{~d}=2.4^{*} 2 \text { parsec }
\end{aligned}
$$

A star's coordinates have been recorded based on images taken on the following dates:

Mar 21 2022: 06h00m15.205s 23d29'15.155" Sep 21 2022: 06h00m15.235s 23d29'15.160"

- How far has the star moved in RA \& in Dec (both in arcsec)?
- How large is the parallax? What's the distance in parsec?

How to Plan Parallax Observations?

Given a star's position in equatorial coordinates (RA, Dec), how to decide when to make the two observations to detect the maximum parallax effect?

Are these dates and coordinates arbitrary?
Mar 21 2022: 06h00m15.205s 23d29'15.155"
Sep 21 2022: 06h00m15.235s 23d29'15.160"

Equatorial coordinates

right ascension (RA) declination (Dec)

Ecliptic coordinates

Longitude Latitude

Ecliptic Longitude ~ RA ~ means "roughly equal"
|Ecliptic Latitude - Dec| < 23.5 degrees

The Equatorial and Ecliptic Coordinates of the Sun

- In the course of a year, the Sun travels on the Ecliptic from Spring Equinox, to Summer Solstice, to Fall Equinox, to Winter Solstice, and back to Spring Equinox

	RA	Dec	Ecliptic Longitude	Ecliptic Latitude	Notes
Spring Equinox (Mar 20)	0 hr	0 deg	0 hr	0 deg	Coordinates Origin
Summer Solstice (Jun 21)	6 hr	+23.5 deg	6 hr	0 deg	longest day in a year
Fall Equinox (Sep 22)	12 hr	0 deg	12 hr	0 deg	equal day and night
Winter Solstice (Dec 21)	18 hr	-23.5 deg	18 hr	0 deg	longest night in a year

Conversion between the Equatorial and Ecliptic Coordinates

```
from astropy import units as u
from astropy.coordinates import SkyCoord
raval=[112.357708,122.580465,104.726966]
decval=[-12.69596,-5.513852,-10.580455]
coord_eq = SkyCoord(ra=raval*u.degree, dec=decval*u.degree, frame='icrs')
coord_ecl=coord_eq.transform_to('geocentricmeanecliptic')
latval=coord_ecl.lat.degree
longval=coord_ecl.lon.degree
print(latval,longval)
```

Coordinate Converter: https://ned.ipac.caltech.edu/coordinate calculator

Sources on the Ecliptic Plane: Observational Considerations

- On these two days illustrated in the graph below, at what local time do Stars A and B transit the meridian?
- What are the Ecliptic Longitudes of Star A and Star B relative to those of the Sun on these two days?

	RA	Dec	Ecliptic Longitude	Ecliptic Latitude	Notes
Spring Equinox (Mar 20)	0 hr	0 deg	0 hr	0 deg	Coordinates Origin
Summer Solstice (Jun 21)	6 hr	+23.5 deg	6 hr	0 deg	longest day in a year
Fall Equinox (Sep 22)	12 hr	0 deg	12 hr	0 deg	equal day and night
Winter Solstice (Dec 21)	18 hr	-23.5 deg	18 hr	0 deg	longest night in a year

Let's check the RA, Dec, \& Dates in the previous practice example
Are these dates and coordinates arbitrary? Should its RA increase or decrease? Why its Dec did NOT change much? Mar 21 2022: 06h00m15.205s 23d29'15.155" Sep 21 2022: 06h00m15.235s 23d29'15.160"

The star is on the ecliptic, and its RA places it 90°

Special case: sources near the ecliptic poles

 Do we need to worry about when to observe them to measure parallax?

Weten Schaps

Annual Parallax Traces

What kind of pattern does a star draw on the sky due to Earth's annual motion?
We can record this pattern if we continuously monitor its position over a year

2005-10-05 19:07 UT

Simplest case: sources on the ecliptic poles moving along a circle

Simpler case: sources on the ecliptic plane oscillating along a short line

General cases: $0<$ ecliptic latitude < 90 deg moving along an ellipse

Lines E-v and E'-v are parallel

Summary: Parallactic Traces \& Parallax Measurements

- Sources on the ecliptic oscillate on short lines along the ecliptic; the parallax to measure distance is half of the length of the line.
- Sources on the ecliptic poles draw parallactic circles; the parallax to measure distance is the radius.
- All other sources draw ellipses with major axes parallel to ecliptic; For a parallactic ellipse, what is the parallax to measure distance?

Nakagawa+2008

Summary

Advanced Topics of Parallax

Calculate angular offset given Equatorial coordinates

$$
\begin{aligned}
\Delta^{\prime \prime} & =\sqrt{\delta \mathrm{RA}^{\prime \prime 2}+\delta \mathrm{Dec}^{\prime \prime 2}} \\
\delta \mathrm{RA}^{\prime \prime} & =\left(\mathrm{RA}_{1}^{s}-\mathrm{RA}_{2}^{s}\right) \cdot \cos \left(\mathrm{Dec}^{\circ}\right) \cdot 15^{\prime \prime} / \mathrm{s} \\
\delta \mathrm{Dec}^{\prime \prime} & =\mathrm{Dec}_{1}^{\prime \prime}-\mathrm{Dec}_{2}^{\prime \prime}
\end{aligned}
$$

Stellar Parallax: Observational Considerations

- To see maximum parallax effect, you must choose two nights when the Ecliptic Longitudes of the target is $\mathbf{6} \mathbf{~ h r s ~ (9 0 ~ d e g) ~ a w a y ~ f r o m ~ t h e ~ S u n . ~}$

	RA	Dec	Ecliptic Longitude	Ecliptic Latitude	Notes
Spring Equinox (Mar 20)	0 hr	0 deg	0 hr	0 deg	Coordinates Origin
Summer Solstice (Jun 21)	6 hr	+23.5 deg	6 hr	0 deg	longest day in a year
Fall Equinox (Sep 22)	12 hr	0 deg	12 hr	0 deg	equal day and night
Winter Solstice (Dec 21)	18 hr	-23.5 deg	18 hr	0 deg	longest night in a year

Parallax Ellipse: the trace cross a full year's observations

General cases: $0<$ ecliptic latitude < 90 deg moving along an ellipse

Brightness Measurements: Apparent Magnitude

Visual classification of brightness: The Greek Magnitude System

Ancient Greeks: "the stars that appear first after sunset are the 1st magnitude stars, the stars that appear second are the 2nd magnitude stars, and so on"

129 BC , first formally introduced by
Hipparchus, then refined by Ptolemy in 150 AD:
visual classification of stars into 6 classes, brightest as being of 1st magnitude, faintest of 6th magnitude

MAGNITUDE \& ENERGY FLUX

A BRIEF HISTORY

- 129 BC, first Hipparchus, then refined by Ptolemy in 150 AD: visual classification of stars into 6 classes, brightest as being of 1st magnitude, faintest of 6th magnitude
- 1856, Norman Pogson: 5 magnitude difference $=100 x$ in energy flux, while preserving historically classified 6th mag stars, some brightest stars have negative magnitudes (e.g., Sirius, V-band mag $=-1.5$). Summarized in an equation, we have Pogson's ratio: $m_{\lambda, 1}-m_{\lambda, 2}=-2.5 \log \left(f_{\lambda, 1} / f_{\lambda, 2}\right)$
- 1850s - 1990s: photographic glass plates
- 1940s, photoelectric cells, tubes, photomultipliers
- 1969, Boyle \& Smith: CCD detectors (2009 Nobel Prize for Physics). First used in astronomy in 1976 at U. of Arizona

Observed Brightness of Stars show a HUGE range

-The Sun is the brightest star, which dominates the sky during the day, rendering it impossible to see any other stars

- The faintest star your eye can see is $\mathbf{1 0}^{13}$ fainter than the Sun
- The faintest star that can be detected by the Hubble space telescope is $\mathbf{1 0}^{20}$ fainter than the Sun.
- How do we deal with such a large range? We put everything on a logarithmic scale similar to that used by the Greeks, thus preserving the history started from Hipparchus in 129 BC.
- As a result, brighter stars still have lower magnitudes (a minor annoyance astronomy students have to live with).
- Mathematically we have the Pogson's ratio:

$$
m_{\lambda, 1}-m_{\lambda, 2}=-2.5 \log \left(f_{\lambda, 1} / f_{\lambda, 2}\right)
$$

to tell the magnitude difference between two objects, but how do we put the magnitudes on a universal scale so that a given magnitude means the same flux to all astronomers?

The universal magnitude system based on reference objects

$$
m_{\lambda}-m_{\lambda, 0}=-2.5 \log \left(f_{\lambda} / f_{\lambda, 0}\right)
$$

- where _0 indicate the chosen reference source's magnitude and flux at wavelength lambda. In optical wavelengths, the reference star is Vega.

The universal magnitude system based on Vega

$$
m_{\lambda}-m_{\lambda, 0}=-2.5 \log \left(f_{\lambda} / f_{\lambda, 0}\right)
$$

- Normally in the optical wavelengths, the reference star is Vega.
- For simplicity, Vega's magnitude is set to be zero at all wavelengths
- As a result, we have the Vega magnitude defined in the following equation:

Vega magnitude : $m_{\lambda}=-2.5 \log \left(f_{\lambda} / f_{\lambda, \text { Vega }}\right)$

Practice: From flux ratio to apparent magnitude relative to Vega

- What's the magnitude of a star that is 50x fainter than Vega at 500 nm ?
- What's the magnitude of a star that is $30 x$ fainter than Vega?

$$
\begin{aligned}
& \mathrm{m}(50 \mathrm{x} \text { fainter })=4.25 \\
& \mathrm{~m}(30 \mathrm{x} \text { fainter })=3.69 \\
& \hline
\end{aligned}
$$

Practice: From apparent magnitude to flux ratio

Pogson's ratio : $m_{\lambda, 1}-m_{\lambda, 2}=-2.5 \log \left(\frac{f_{\lambda, 1}}{f_{\lambda, 2}}\right)$
$\Rightarrow \frac{J_{\lambda, 1}}{f_{1,2}}=10^{-0.4\left(m_{, 1,1}-m_{1,2}\right)}$

- δ Lyrae has an apparent magnitude of 4.2 in V-band (551 nm), how many times fainter is it compared to Vega (a Lyrae)?
- 17 Lyrae has an apparent magnitude of 5.2 in V-band, how many times fainter is it compared to $\bar{\delta}$ Lyare?

$$
\begin{aligned}
& 10^{\wedge}\left(0.4^{*} 4.2\right)=47.9 \\
& 10^{\wedge}(0.4 *(5.2-4.2))=2.512
\end{aligned}
$$

$20^{\text {h }} \quad 19^{\text {h }} \quad 18^{\text {h }}$

Summary: Apparent Magnitude and Flux Ratio

- 100x in flux ratio corresponds to a magnitude difference of 5
- 1 magnitude difference corresponds to $2.514 x$ ($=10^{\wedge} 0.4$) difference in flux
- To determine the magnitude of one source, you must know the magnitude and flux of another source (reference or standard) and compare the fluxes of the two sources

$$
\begin{aligned}
& \text { the fluxes of the two sources } \\
& m_{\lambda, 1}-m_{\lambda, 2}=-2.5 \log \left(\frac{f_{\lambda, 1}}{f_{\lambda, 2}}\right) \\
& \Rightarrow \frac{f_{\lambda, 1}}{f_{\lambda, 2}}=10^{-0.4\left(m_{\lambda, 1}-m_{\lambda, 2}\right)}
\end{aligned}
$$

Differential Photometry: e- Count Rates to Magnitudes

- We can point the same telescope at two different sources simultaneously and measure the ratio of their count rates.
- This approach is easier because all instrumental effects in the two measurements cancel out.
- If we know the magnitude from one of the sources, we can infer the magnitude of the other source using this relative measurement.

A typical CCD image - data illustrated with DS9:
the number of e-collected in each pixel (from 0 to $\sim 65 \mathrm{k}$; 16 bit) is represented by only 256 shades of gray (8 bit)

TO COUNT ELECTRONS FROM A SOURCE, WE USE APERTURES

Definition of Magnitudes is based on Differential Photometry

$$
m_{\lambda}=m_{\lambda \mathrm{ref}}-2.5 \log \left(f_{\lambda} / f_{\lambda, \mathrm{ref}}\right)
$$

the reference source here does not need to be Vega, it just needs to be a relatively stable source with a known magnitude

Count rates to magnitude difference

$$
m_{a}-m_{b}=-2.5 \log \left(\frac{F_{a}}{F_{b}}\right)=-2.5 \log \left(\frac{Q_{a} / t_{a}}{Q_{b} / t_{b}}\right)
$$

where object a is your science target and object b is the reference source with known magnitudes.

Practice: from count rates to magnitude

$$
m_{a}-m_{b}=-2.5 \log \left(\frac{F_{a}}{F_{b}}\right)=-2.5 \log \left(\frac{Q_{a} / t_{a}}{Q_{b} / t_{b}}\right)
$$

where object a is your science target and object b is the standard star with known magnitudes.

Your standard star has a magnitude of 10.5 mag in V-band, you took a CCD image of the standard star with a V-band filter and you got a total of 1500 counts in 10 seconds.

Next, you slew the telescope to take a V-band image of your science target, say a random galaxy far away, and with 30 min exposure, you could barely see it. The total count from the galaxy is 50 .

What's the V-band magnitude of the galaxy?

[^0]
Get Ready for a Nova's Bright Return in 2024

Recurrent Nova
 T Coronae Borealis

The Northern Crown

Get Ready for a Nova's Bright Return in the Northern Crown

\triangle LEAD-UP TO 2024 This closeup shows T CrB's brightness in visual (V , in orange) and blue light (B , in blue) from 2005 to 2023. The rise from the low state to the high state (starting around 2015) and the decline in the pre-eruption dip (starting around March 2023) are both more prominent in blue light. The 1927-to-1952 blue light curve is shown as the faint blue line. Assuming the nova follows the same pattern it did in the 1930s and 1940s, it should erupt soon.

Luminosity Measurements:
 Absolute Magnitude
 (requires Distance \& Brightness)

The Inverse Square Law of Flux

- Luminosity is the total amount of energy per unit time (i.e., power) emitted by the source (unit: Watt = Joule/s)
- Flux is the amount of arriving energy per unit time per unit area (unit: Watt $/ \mathrm{m}^{2}$) at a distance d from source
- Flux decreases as the distance from the source increases, obeying an inverse square law:

$$
F=\frac{L}{4 \pi d^{2}}
$$

The Invariability of Luminosity

- Luminosity is the total amount of energy per unit time (i.e., power) emitted by the source (unit: Watt = Joule/s)
- Flux is the amount of arriving energy per unit time per unit area (unit: Watt $/ \mathrm{m}^{2}$) at a distance d from source
- Flux decreases as the distance from the source increases, obeying an inverse square law, which preserves the luminosity

$$
L=F\left(d_{1}\right) 4 \pi d_{1}^{2}=F\left(d_{2}\right) 4 \pi d_{2}^{2}
$$

Definition: Absolute Magnitude (M) vs. Apparent Magnitude (m)

- apparent magnitude (m) is the magnitude of the source at its actual distance (d)
- absolute magnitude (M) is defined as the apparent magnitude of the source if it were at a distance of 10 parsec

Practice: Calculate the absolute magnitude of the Sun

- The Sun has an apparent magnitude of -26.74 ($\mathrm{d}=1 \mathrm{AU}=1 / 206265 \mathrm{pc}$)
- What's its absolute magnitude? Think about how faint it would appear at 10 pc

$$
\begin{gathered}
\text { Pogson's ratio : } m_{\lambda, 1}-m_{\lambda, 2}=-2.5 \log \left(\frac{f_{\lambda, 1}}{f_{\lambda, 2}}\right) \\
-26.74+2.5^{*} \log \left(2062650^{\wedge} 2\right)=4.83
\end{gathered}
$$

Derivation: Absolute Magnitude (M) vs. Apparent Magnitude (m)

- apparent magnitude (m) is the magnitude of the source at its actual distance (d)
- absolute magnitude (M) is defined as the apparent magnitude of the source if it were at a distance of 10 parsec
- because both are measurements of the same source, we can express the same luminosity (L) using its actual flux (f) and its presumed flux (F) at 10 parsec:

$$
\begin{aligned}
& L_{\lambda}=4 \pi d^{2} f_{\lambda}= 4 \pi(10 \text { parsec })^{2} F_{\lambda} \Rightarrow \frac{F_{\lambda}}{f_{\lambda}}=\frac{d^{2}}{(10 \text { parsec })^{2}} \\
& m_{\lambda}-m_{\lambda, 0}=-2.5 \log \left(f_{\lambda} / f_{\lambda, 0}\right) \\
& M_{\lambda}-m_{\lambda, 0}=-2.5 \log \left(F_{\lambda} / f_{\lambda, 0}\right) \\
& m_{\lambda}-M_{\lambda}=2.5 \log \left(\frac{d}{10 \text { parsec }}\right)^{2}=5\left[\log \frac{d}{1 \text { parsec }}-1\right]
\end{aligned}
$$

This, $\mathbf{m}-\mathbf{M}$, is called the distance modulus, because it only depends on distance

Practice: What's the absolute magnitude of the Sun?

- distance $=1 \mathrm{AU}, \mathrm{V}$-band magnitude $= - 2 6 . 7 4 \longdiv { M = - 2 6 . 7 4 - 5 ^ { * } (\operatorname { l o g } (1 / 2 0 6 2 6 5) - 1) }$
- What's its absolute magnitude in V-band?

$$
\begin{aligned}
m_{\lambda}-M_{\lambda} & =5[\log d(\text { parsec })-1] \\
\Rightarrow M_{\lambda} & =m_{\lambda}-5[\log d(\text { parsec })-1]
\end{aligned}
$$

Practice: Calculate absolute magnitude from p and m

- Suppose you measured a star's apparent magnitude in V-band $(550 \mathrm{~nm})$ to be $m_{V}=10.5$
- You also measured its parallax to be $p=5$ mas (milli-arcsec).
-What's its distance in parsec?

$$
d=1 \operatorname{parsec}\left(\frac{1 \operatorname{arcsec}}{p}\right)
$$

- What's its absolute magnitude in V-band (Mv)?

$$
\begin{aligned}
m_{\lambda}-M_{\lambda} & =5[\log d(\text { parsec })-1] \\
\Rightarrow M_{\lambda} & =m_{\lambda}-5[\log d(\text { parsec })-1]
\end{aligned}
$$

$$
\begin{gathered}
d=200 \text { parsec } \\
M=10.5-5{ }^{*}(\log (200)-1)=4.0 \\
\hline
\end{gathered}
$$

Distance from Distance Modulus:

The Standard Candle Methods

Distance Modulus: the difference between mand M

- The definition of absolute magnitude and the inverse distance square law for an isotropic emitter give us this equation:

$$
m-M=5[\log d(\text { parsec })-1]
$$

- The term on the left side, $\mathbf{m} \mathbf{- M}$, is called the distance modulus, because it only depends on distance
- m-M offers us a group of methods to measure distances called the standard candle

$$
d_{\mathrm{pc}}=10^{1+0.2(m-M)}
$$

The Standard Candle Methods

- If we had measured or inferred the absolute magnitude of a class of astrophysical objects, we can get the distance modulus ($\mathrm{m}-\mathrm{M}$) from its apparent magnitude.
- The distance modulus then gives us the distance:

$$
m-M=5\left(\log d_{\mathrm{pc}}-1\right) \Rightarrow d_{\mathrm{pc}}=10^{1+0.2(m-M)}
$$

Standard Candle Method 1 - Spectroscopic "Parallax"

Suppose we find a solar-type star in the constellation Ursa Major, its spectrum looks just like that of the Sun, so we assume that this star has the same luminosity as the Sun. Given the Sun has $\mathbf{M v = 4 . 8 3}$ and this star has $m_{v}=10.5$, can you estimate its distance?

$$
d(\text { parsec })=10^{1+0.2(m-M)}
$$

The Standard Candle Method 2 - Type Ia SNe

- Type la supernovae (SNe) have been used as standard candles to measure cosmological distances to other galaxies.
- They work as standard candles because presumably the white dwarfs have to reach 1.44 solar mass (the Chandrasekhar mass) to trigger the thermonuclear explosion, reaching a peak absolute magnitude of $\mathrm{Mv}_{\mathrm{v}}=-19$.

Practice: The Standard Candle Method of Distance Measurement

- Type la supernovae (SNe) have been used as standard candles to measure cosmological distances to other galaxies.
- They work as standard candles because presumably the white dwarfs have to reach 1.44 solar mass (the Chandrasekhar mass) to trigger the thermonuclear explosion
- At its peak, the absolute magnitude in V-band (550 nm) is $M_{v}=-19$, and you measured a peak apparent magnitude of $m_{v}=10$, what's the distance in parsec?

$$
\begin{gathered}
m-M=5[\log d(\text { parsec })-1] \\
d(\text { parsec })=10^{1+0.2(m-M)}
\end{gathered}
$$

10 parsec * $10^{\wedge}\left(0.2^{*}(10-(-19))\right)=6.3 \mathrm{Mpc}$
"for the discovery of the accelerating expansion of the Universe through observations of distant supernovae"

The Nobel Prize in Physics 2011

© The Nobel Foundation. Photo: U. Montan

Saul Perlmutter

© The Nobel Foundation. Photo:
U. Montan

Brian P. Schmidt

© The Nobel Foundation. Photo:
U. Montan

Adam G. Riess

Distance Modulus vs. Cosmological Redshifts (Hubble Diagram)

Surface Temperatures of Stars

spectroscopic methods: Wien's law and spectral classification

Planck Curves at Various T

Temperature from Wien's Displacement Law

$$
\lambda_{\text {peak }}=\frac{2.9 \mathrm{~mm} \mathrm{~K}}{T} \Rightarrow T=\frac{2.9 \mathrm{~mm} \mathrm{~K}}{\lambda_{\text {peak }}}
$$

- Given a temperature, calculate the wavelength at which the BB emission's flux density peaks; Or given a peak wavelength, calculate the temperature.

What to do when the peak shifts outside of the visible light window? e.g. when T > 9000 K or $\mathrm{T}<3000 \mathrm{~K}$

Optical spectral classification of stars

- The strength of absorption lines from different elements depend mainly on the temperature (because of ionization equilibrium).
- The current classification scheme was re-ordered and simplified by Annie Jump Cannon (1863-1941) at Harvard College Observatory.
- The full sequence is $\mathbf{O} \mathbf{B A F G} \mathbf{~ G ~ M}$, which are further subdivided by adding numbers to the letter. The Sun is a G2 spectral-type star.

a sequence of stellar flux profiles

An A-type star's spectrum taken by the Van Allen Observatory

Temperature from Spectral Classes

Relative Strengths of Absorption Lines vs. Atmospheric Temperature

7	1	1	1	1	1	1
$>30,000$	$10,000-$	$7500-$	$6000-$	$5200-$	$3700-$	$2400-$
	30,000	10,000	7500	6000	5200	3700
Approximate Temperature (K) \longrightarrow						

Temperature

photometric method: color index

Spectroscopy takes longer time to acquire, because each star would require its own spectroscopic observations with a traditional longslit spectrograph

Two-band photometry offers a much simpler way to estimate temperature

Temperature from Color Index

- Color index is defined as the magnitude difference of the same object at two different wavelengths.
- According to Pogson, the magnitude difference corresponds to a flux ratio at two different wavelengths:

$$
\begin{gathered}
m_{B}-m_{V}=-2.5\left[\log \left(f_{B} / f_{V}\right)-\log \left(f_{B, 0} / f_{V, 0}\right)\right] \\
\text { or simply } \\
B-V=-2.5\left[\log \left(f_{B} / f_{V}\right)-\log \left(f_{B, 0} / f_{V, 0}\right)\right]
\end{gathered}
$$

- Typically, we subtract a bluer magnitude (e.g., B) to a redder magnitude (e.g., V), so that the higher the value of the color index, the redder the object appears (i.e., the object appears much fainter in B-band than in V-band)

Practice: From flux ratio to color index

$$
B-V=-2.5\left[\log \left(f_{B} / f_{V}\right)-\log \left(f_{B, 0} / f_{V, 0}\right)\right]
$$

- Vega is the usual reference star that sets the zero point of the apparent magnitude system. Its surface temperature is at 9600 K , much hotter than that of the Sun (5800 K).
- Consider a star that is 100x fainter than Vega at 440nm (B-band) and also 100x fainter than Vega at 550nm (V-band),
- What are the magnitudes of the star in B and V ?
-What is the color index?
-What is its surface temperature?

Practice: From flux ratio to color index

$$
B-V=-2.5\left[\log \left(f_{B} / f_{V}\right)-\log \left(f_{B, 0} / f_{V, 0}\right)\right]
$$

- Vega is the usual reference star that sets the zero point of the apparent magnitude system. Its surface temperature is at 9600 K , much hotter than that of the Sun (5800 K).
- Consider another star that is 100x fainter than Vega at 440nm but 200x fainter than Vega at 550nm (V-band), what are the B and V magnitudes? What is the color index? Is this star hotter or cooler than Vega?

$$
B=5, V=5.75 ; B-V=-0.75
$$

A table that gives the color indices at a range of temperatures

Sample calibration colors ${ }^{[1]}$

Class $\leqslant \mathrm{B}-\mathrm{V} \leqslant \mathrm{U}-\mathrm{B} \leqslant \mathrm{V}-\mathrm{R} \leqslant \mathrm{R}-\mathrm{I} \leqslant \mathrm{T}_{\text {eff }}(\mathrm{K}) \stackrel{ }{*}$

O5V	-0.33	-1.19	-0.15	-0.32	42,000
B0V	-0.30	-1.08	-0.13	-0.29	30,000
AOV	-0.02	-0.02	0.02	-0.02	9,790
FOV	0.30	0.03	0.30	0.17	7,300
G0V	0.58	0.06	0.50	0.31	5,940
K0V	0.81	0.45	0.64	0.42	5,150
MOV	1.40	1.22	1.28	0.91	3,840

Apparent Colors of Stars

Temperature vs. Color Index vs. Apparent Color

$$
B-V=-2.5\left[\log \left(f_{B} / f_{V}\right)-\log \left(f_{B, 0} / f_{V, 0}\right)\right]
$$

$\begin{array}{c}\text { Spec } \\ \text { Type }\end{array}$	$\begin{array}{c}\text { Surface } \\ \text { Temperature }\end{array}$
O	$\geq 33,000 \mathrm{~K}$

$\mathbf{B}-\mathbf{V} \boldsymbol{-}$	Apparent Color	
-0.33		blue
-0.30		blue white
-0.02		white to blue white
0.30		white
0.58		yellowish white
0.81		yellow orange
1.40		orange red

The Colors of Stars

From Hottest to Coldest
These are the Apparent Colors to Your Eyes

Albireo A \& B (beta Cygni)

The Hertzsprung-Russell Diagram: Luminosity-Temperature Diagram

The Hertzsprung-Russell Diagram

- In 1905, Hertzsprung first published the measurements in a Table instead of a Figure. Almost nobody noticed this remarkable finding.
- In 1914, Russell published his independent measurements in the format of a Figure on the journal Nature, making big waves in Astronomy.
- Lesson for Astronomy students: how you present your data matters

The Hertzsprung-Russell Diagram

- In 1905, Hertzsprung first published the measurements in a Table instead of a Figure. Almost nobody noticed this remarkable finding.
- In 1914, Russell published his independent measurements in the format of a Figure on the journal Nature, making big waves in Astronomy.
- Lesson for Astronomy students: how you present your data matters

HR Diagram

-The luminositytemperature diagram is the most important graph in stellar astronomy and is the key to unraveling stellar evolution.

- Two questions to discuss today:
-What does the concentration of stars in certain areas imply?
-What does the location of any star on the HRD tell us about its physical properties?

I - Why stars concentrate in certain areas on the HRD

- On the right is the most detailed auto emission map of the US east coast
- It's made by the New York Times in 2019.
- High emission areas are high concentration areas of internal combustion engines
- Conclusions:
- People spend much more time in cities than in-between.
- People spend a lot of time commuting along the DC-NY line

I - Why stars concentrate in certain areas on the HRD

- On the right is the HR diagram made using the Gaia data.
- Bright color indicates high concentration areas of stars:
- Main sequence
- Giant branch
- White dwarfs
- Conclusions:
- Stars spend much more time in the main sequence, the giant branch, and the white dwarf branch

II - Reading Physical Properties of Stars from the HRD

Bolometric luminosity is defined as the luminosity density of a source integrated over all wavelengths.

Stefan-Boltzmann law gives the bolometric surface flux of blackbody emitters

$$
L_{\mathrm{bol}}=4 \pi R^{2} \times \sigma_{\mathrm{SB}} T^{4}
$$

of blackbody emitters

Size Estimates using Stefan-Boltzmann Law

Luminosity Classes I-V: from Giant Stars and Dwarf Stars

Luminosity Classes - Spectral signatures

- Stars in higher luminosity classes are denser, so they have larger surface gravity. As a result, the absorption lines appear broader.
- Below are examples of A0-type stars from class I to V, plus a white dwarf.

Carroll \& Ostlie, Fig 8.15

- Most stars, incl. the Sun, are found on the main sequence, which runs from luminous/hot stars in upper left corner to low-luminosity/cool stars in lower right corner
- It covers a temperature range of ~ 10, and a radius range of ~ 100, but a luminosity range of $\sim 10^{9}$
- The Giant branch is connected to the main sequence but branches off to the lower temperature side. That is where the red giant stars live
- A separate branch parallel to the main sequence to the lower left, these stars have low luminosities but hot temperatures; this is where the White Dwarfs live
- Spectral classification is 2-dimensional:
(1) temperature (OBAFGKM), and
(2) luminosity (la, Ib, II, III, IV, V)

More advanced topics

radius estimates \& filtered photometry

Size Estimates using Stefan-Boltzmann Law (Req. bolometric luminosity)

Alternative Method: Radius of the Star from Transit Depth

- Once we know the planet radius from transit ingress/egress time, we can use the transit depth to estimate the radius of the star:
no transit : $F_{0}=\frac{F_{S}}{\pi} \frac{\pi R^{2}}{d^{2}} \quad$ in transit : $F_{t}=\frac{F_{S}}{\pi} \frac{\pi\left(R^{2}-r^{2}\right)}{d^{2}}$
fractional reduction in flux : $\frac{F_{0}-F_{t}}{F_{0}}=\frac{r^{2}}{R^{2}}$

Planet Size from Ingress \& Egress time (requires Mass of the Star)

$$
r=v_{\text {circ }}\left(t_{2}-t_{1}\right) / 2
$$

$$
\begin{aligned}
& a_{A U}=\left(M_{\text {solar-mass }} P_{\text {year }}^{2}\right)^{1 / 3} \\
& v_{\text {circ }}=\frac{2 \pi a}{P_{\text {orbit }}}
\end{aligned}
$$

Egress

Limb darkening

Time

Side Note: Why this textbook diagram is incorrect?

Luminosity Density vs. Bolometric Luminosity

- Luminosity Density is the luminosity measured at a given wavelength:
$L_{\lambda}=d L / d \lambda$
- For spherical blackbody radiators of uniform surface temperature, we have:
$L_{\lambda}=4 \pi R^{2} \times \pi B_{\lambda}(T)$,
where
$B_{\lambda}(T) \equiv \frac{2 h c^{2}}{\lambda^{5}} \frac{1}{e^{\frac{h c / \lambda}{k T}}-1}$ is the
Planck function
- Bolometric Luminosity is the luminosity density integrated over all wavelengths:
$L_{\mathrm{bol}}=\int_{0}^{\infty} L_{\lambda} d \lambda$
- For spherical blackbody radiators, we have:
$L_{\lambda}=4 \pi R^{2} \times \pi B_{\lambda}(T)$
as a result,
$L_{\mathrm{bol}}=4 \pi R^{2} \int \pi B_{\lambda}(T) d \lambda$
$=4 \pi R^{2} \sigma_{\mathrm{SB}} T^{4}$

So ... What $B_{\lambda}(T)$ actually is to an observer?

- Flux density can be derived from luminosity density using the inverse distance square law: $F_{\lambda}=L_{\lambda} / 4 \pi d^{2}=B_{\lambda}(T) \pi R^{2} / d^{2}$
- Since $\pi R^{2} / d^{2}$ is the angular area of the source, hence Planck function $B_{\lambda}(T)$ gives the surface brightness of the source (at λ), which is distance invariant.

How to measure stellar mass?

Binary stars and Kepler's Laws

How did we know that the main sequence stars cover a range of masses?

which led us to conclude that the MS stars have drastically different lifetimes

Table 16.1

Main-Sequence Lifetimes

Spectral Type	Mass $\left(M_{\text {sun }}\right)$	Luminosity $\left(L_{\text {sun }}\right)$	Main-Sequence Lifetime (years)
O5	60	500,000	3.6×10^{5}
B0	17.5	32,500	7.8×10^{6}
B5	5.9	480	1.2×10^{8}
A0	2.9	39	7×10^{8}
A5	2.0	12.3	1.6×10^{9}
F0	1.6	5.2	3.1×10^{9}
F5	1.4	2.6	4.3×10^{9}
G0	1.05	1.25	8.9×10^{9}
G2 (Sun)	1.0	1.0	1.0×10^{10}
G5	0.92	0.8	1.2×10^{10}
K0	0.79	0.55	1.8×10^{10}
K5	0.67	0.32	2.7×10^{10}
M0	0.51	0.08	5.4×10^{10}
M5	0.14	0.008	4.9×10^{11}
M8	~ 0.08	0.0003	1.1×10^{12}

[^1]The various configurations of visual binaries and multiples

B. MacEvoy 2012

Binary Star Formation: Accretion Disk Fragmentation

Fragmentation of the protostar accretion disk is believed to be a frequent if not the most common path to binary formation at distances of around 40 AU ... a massive spiral arm forces the protostar off the center of mass to produce a binary structure; the spiral arms draw more mass into the accretion disk while reducing the binary orbital momentum via gravitational (and possibly magnetic) torque (Source: Bonnell \& Bate, 1994)

What fraction of stars are binaries?

For solar-type stars, $\sim 60 \%$ of star systems are single star systems, yet only ~40\% of all stars are single stars (i.e., ~60\% of all stars are components of binary or multiple star systems)

	$\begin{gathered} \text { Kuipe } \\ r \\ (1942 \end{gathered}$	$\begin{aligned} & \text { Heintz } \\ & (1969) \end{aligned}$	Abt \& Levy (1976) *	Duquennoy \& Mayor (1991)	Nordström et al. (2004)	Raghavan et al. (2010)
Systems (N)	274	n.a.	123	164	16682	454
Single Star Systems	70\%	30\%	45\%	57\%	66\%	56\%
Binary	25\%	47\%	46\%	38\%	34\%	33\%
3	4\%	16\%	8\%	4\%		8\%
4+	1\%	7\%	1\%	1\%		3\%
Double Star Systems	30\%	70\%	55\%	43\%	34\%	44\%
Median R		50 AU		35 AU		40 AU
Stars in Doubles	52\%	85\%	73\%	62\%	51\%	65\%

The multiplicity fraction increases with the mass of the primary

The logarithmic of Binary Periods follow a "Bell" curve log Radius (AU)

Binary Star - Center of Mass

- To measure mass, we must look for the effects of gravity.
- Many stars are binary stars orbiting a common center of mass.
- A less massive star moves faster on a larger orbit.

Center of mass "seesaw" equation:

$$
m_{1} d_{1}=m_{2} d_{2}
$$

Binary Star - Doppler Shift Measurements vs. Time

Binary Stars: Doppler shift curves from spectroscopy

${ }^{\alpha \operatorname{Cen~B}}{ }_{\alpha \text { Cen A }}$	- A visual binary system is one in which both stars are distinguished visually.
	- In a spectroscopic binary system, stars are too far away to distinguish; pairs of
$\operatorname{mwnman}_{G} \mathfrak{M O}_{v} \bigvee_{R}$	Doppler-shifted lines trade places.

Eclipsing Binary Stars - Light curve from photometry

- In an eclipsing binary system, the total light coming from the star system decreases when either star passes in front of the other.
- But there are two eclipses (A in front of B vs. B in front of A), why one is deeper than the other? What can the eclipse light curve tell us?
- Can we also measure the radii of the stars in these systems?

Planet Size from the Depth of the Transit and Radius of the Star

- Notice the difference between eclipsing binary stars and transiting planets: both stars emit light, while planets only reflects light from the side that faces the star.

fractional reduction in flux : $\frac{F_{0}-F_{t}}{F_{0}}=\frac{r^{2}}{R^{2}}$

Measuring the Masses of Stars in Eclipsing+Spectroscopic Binaries

- Being an eclipsing binary implies that their orbits are viewed edge-on
- The Doppler shift results shown above give key parameters:
- The period of the binary (\boldsymbol{P})
- The orbital velocities of star 1 and star $2\left(\boldsymbol{V}_{1}\right.$ and $\boldsymbol{V}_{\mathbf{2}}$)
- What are the circumferences and radii of the two orbits?

$$
\begin{aligned}
& C_{1}=V_{1} \times P=2 \pi a_{1} \\
& C_{2}=V_{2} \times P=2 \pi a_{2}
\end{aligned}
$$

Kepler's 3rd Law for One-Body Problem (Planets are massless)

3rd Law:
period-distance relation

$$
\frac{a^{3}}{P^{2}}=\frac{G M}{4 \pi^{2}} \quad \frac{a_{A U}^{3}}{P_{\text {year }}^{2}}=M_{\text {solar-mass }}
$$

But there are two masses (m 1 and m 2), and two semimajor axes (r1 \& r2), how should we use the Kepler's 3rd law to estimate mass?

One-body problem:

$$
\frac{M}{1 M_{\text {sun }}}=\left(\frac{a}{1 \mathrm{AU}}\right)^{3}\left(\frac{P}{1 \text { year }}\right)^{-2}
$$

Two-body problem:

$$
\frac{M_{1}+M_{2}}{1 M_{\text {sun }}}=\left(\frac{a_{1}+a_{2}}{1 \mathrm{AU}}\right)^{3}\left(\frac{P}{1 \text { year }}\right)^{-2}
$$

Measuring the Masses of Stars in Eclipsing+Spectroscopic Binaries

- Next, we can calculate the total mass using Kepler's third law:

$$
\frac{M_{1}+M_{2}}{1 M_{\text {sun }}}=\left(\frac{a_{1}+a_{2}}{1 \mathrm{AU}}\right)^{3}\left(\frac{P}{1 \text { year }}\right)^{-2}
$$

- Finally, we obtain the individual masses based on the velocity ratio:

$$
\frac{M_{1}}{M_{2}}=\frac{a_{2}}{a_{1}}=\frac{V_{2}}{V_{1}}
$$

Kepler's 3rd Law for Two-body Problems

Derivation

Two-body Problem Derivation - The Center-of-Mass Reference Frame

Two-Body Problem can be reduced to One-Body Problem

define reduced mass

$$
\mu=\frac{m_{1} m_{2}}{m_{1}+m_{2}}
$$

$$
\begin{aligned}
\vec{r}_{1} & =-\frac{m_{2}}{m_{1}+m_{2}} \vec{r}=-\frac{\mu}{m_{1}} \vec{r} \\
\vec{r}_{2} & =\frac{m_{1}}{m_{1}+m_{2}} \vec{r}=\frac{\mu}{m_{2}} \vec{r}
\end{aligned}
$$

$$
\begin{aligned}
& \vec{v}_{1}=-\frac{\mu}{m_{1}} \vec{v} \\
& \vec{v}_{2}=\frac{\mu}{m_{2}} \vec{v}
\end{aligned}
$$

Then write down the total kinetic and gravitational potential energy

$$
E=\frac{1}{2} m_{1}\left|\vec{v}_{1}\right|^{2}+\frac{1}{2} m_{2}\left|\vec{v}_{2}\right|^{2}-G \frac{m_{1} m_{2}}{\left|\vec{r}_{2}-\vec{r}_{1}\right|}
$$

$$
=\frac{1}{2} m_{1}\left(\frac{\mu}{m_{1}}\right)^{2} v^{2}+\frac{1}{2} m_{2}\left(\frac{\mu}{m_{2}}\right)^{2} v^{2}-G \frac{\left(m_{1}+m_{2}\right) \cdot m_{1} m_{2} /\left(m_{1}+m_{2}\right)}{r}
$$

$$
=\frac{1}{2} \mu\left(\frac{\mu}{m_{1}}+\frac{\mu}{m_{2}}\right) v^{2}-G \frac{M \mu}{r} \Rightarrow E=\frac{1}{2} \mu v^{2}-G \frac{M \mu}{r}
$$

- The two-body problem is equivalent to a one-body problem with the reduced mass $\mu=m_{1} m_{2} /\left(m_{1}+m_{2}\right)$ moving about a fixed total mass $M=m_{1}+m_{2}$ at a distance $\vec{r}=\vec{r}_{2}-\vec{r}_{1}$.

Kepler's 3rd Law for Binary Stars (Two-body Problem)

- The two-body problem is equivalent to a one-body problem with the reduced mass $\mu=m_{1} m_{2} /\left(m_{1}+m_{2}\right)$ moving about a fixed total mass $M=m_{1}+m_{2}$ at a distance $\vec{r}=\vec{r}_{2}-\vec{r}_{1}$.

Two-body problem:

$$
\frac{m_{1}+m_{2}}{1 M_{\mathrm{sun}}}=\left(\frac{a_{1}+a_{2}}{1 \mathrm{AU}}\right)^{3}\left(\frac{P}{1 \text { year }}\right)^{-2}
$$

Chap 1: Key Concepts

- stellar parallax
- Unit parsec defined by AU
- Pogson's ratio: apparent magnitude and flux ratio
- CCD photometry: count rate to magnitude
- absolute magnitude
- distance modulus (m-M)
- standard candle methods
- spectroscopic parallax
- type la supernovae
- color index and temperature
- luminosity-temperature-size relation
- HR diagram: the main sequence
- Eclipsing and spectroscopic binaries: Kepler's 3rd law for binary systems (two-body problem)

Chap 1: Key Equations

$$
\begin{gathered}
d=1 \text { parsec }\left(\frac{1 \operatorname{arcsec}}{p}\right) \\
m_{\lambda, 2}-m_{\lambda, 1}=-2.5 \log \left(f_{\lambda, 2} / f_{\lambda, 1}\right) \\
m_{\lambda}-M_{\lambda}=2.5 \log \left(\frac{d}{10 \text { parsec }}\right)^{2}=5[\log d(\text { parsec })-1] \\
d(\text { parsec })=10^{1+0.2(m-M)} \\
L_{\mathrm{bol}}=4 \pi R^{2} \sigma_{\mathrm{SB}} T^{4} \quad L_{\lambda}=4 \pi R^{2} \pi B_{\lambda}(T) \\
\frac{R}{R_{\odot}}=\sqrt{\frac{L_{\mathrm{bol}}}{L_{\odot}}}\left(\frac{T}{T_{\odot}}\right)^{-2} \quad \frac{M_{1}+M_{2}}{1 M_{\mathrm{sun}}}=\left(\frac{a_{1}+a_{2}}{1 \mathrm{AU}}\right)^{3}\left(\frac{P}{1 \text { year }}\right)^{-2}
\end{gathered}
$$

[^0]: $\mathrm{V}_{\text {galaxy }}=10.5-2.5 \log ((50 / 1800) /(1500 / 10))=19.83$

[^1]: Copyright © 2022 W. W. Norton \& Company, Inc.

