
Chap 1: Taking the Measure of Stars



Chap 1: Key Diagram 

log(luminosity) vs. 
log(flux ratio)



•How do we use parallax to determine distance? Astrometry.

•How do we measure brightness? Photometry.

•How do we combine distance (d) with brightness (apparent 
magnitude, m) to determine luminosity (absolute magnitude, M)?

•How do we measure temperature (T)? color index

•The Hertzsprung-Russell (H-R) diagram: M vs. color index

•Key concepts:

•parallax, magnitude system, distance modulus 

•H-R diagram and the distribution of stars on the diagram 

•Other measurements: size & mass of stars

Chap 1: Taking the Measure of Stars



Distance Measurements: 
Parallax



Geological Survey Method



Geological Survey Method: Theodolite measurements

need to know the baseline length ( ) and the two angles ( )l = AB α, β



Geological Survey Method: Theodolite measurements

What would the angles become when d is much much greater than AB?

parallax

To measure greater distances, we need: 
 (1) longer baselines and (2) the ability to measure tiny angles



The Earliest Parallax Measurement by Hipparchus (~150 BC): 
Baseline limited by the diameter of the Earth

2pA

2pB

seen in Hellespont (100% obscured)

seen in Alexandria (80% obscured)

The Solar Eclipse on Mar 14, 190 BC



The Simple Geometry of Parallax

Alexandria

Moon

Hellespont

parallax angle (p)

Direction to the Sun
Direction to the Moon 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Dmoon = baseline length/parallax angle in radian = l/p

in the above, we have used the small angle approximation



Measure the baseline itself

• How do we measure the Astronomical Unit (AU)? Recall 
that AU is defined as the average heliocentric distance of 
the Earth, but how long is it exactly?


• One geometric method involves two components:


• An inner planet’s heliocentric distance in AU


• A parallax measurement of the distance between the 
Earth and the inner planet during its transit of the Sun



Copernicus’ method of determining the 
heliocentric distance of inner planets

Inner Planets: RAU = sin(Max Elongation)



Parallax measurement of the AU
• By observing the transit of Venus at two locations on Earth, one can measure the distance to 

Venus using the measured parallax and the baseline length. 

• Assuming Venus and Earth are both on circular orbits around the Sun, the greatest elongation 
angle of Venus tells us its orbit has a radius of 0.7 AU.  

• Since the Earth’s orbit has a radius of 1 AU, the measured parallax distance of Venus during its 
transit across the Sun equals 0.3 AU.



Extend the Baseline from Earth Size to Earth’s Orbit Size: Stellar Parallax

Parallax distance can be measured given the baseline length ( ) and the 
parallax angle ( ); by using the orbit of the Earth, the baseline length is 

increased by 23500 times from 2x 6400 km to 2x 149.6 million km. 

l
p



The Definition of Parallax in Stellar Astronomy

Any directional shift due to a positional shift is a parallax effect, 
but in stellar astronomy, parallax is defined as half of the 
maximum directional shift due to Earth’s orbital motion. 
From this diagram, it’s clear that parallax is inversely proportional 
to distance: p	~	1/d

2pA

2pB



Sun
Star

Earth
How many AU is a parsec?

Let p be the parallax in arcseconds. 
Let d be the distance in parsecs; the unit parsec 
is defined as the distance at which p = 1 arcsec 
Given this definition we have:

d = 1 parsec ( 1 arcsec
p )

Definition of the unit parsec: the distance at which p = 1 arcsec

From the diagram above, we derived: 
1 parsec = 206,205 AU since l/d = tan p ~ p (in radian)

d = 1 parsec
p = 1 arcsec

l = 1 AU



Practice: convert parallax to distance

The greater the parallax, the smaller the distance. 
A star with a parallax of 1 arcsecond	(arcsec) is at a distance of 1 
parsec	(pc).  

•  1 arcsec = 1/3,600 degree  
•  1 pc = 3.26 light-years (only useful when talking to 

non-astronomers) 
Parallax angles have been measured for >1 billion stars. 

The first star with measured parallax was  
61 Cygni by Friedrich Bessel in 1838.  
It had a parallax of 0.314 arcsec, what is  
its distance in parsec and light-year? 
 
Bessel functions in Mathematics are  
named after him.



Practice: Convert distance to parallax angle

Let’s try a reversed problem. After the Sun, the closest star to 
Earth is Proxima Centauri, which is 4.24 light-years away. What is 
the star’s parallax in arcsec? (1 pc = 3.26 ly)



Practice: Convert distance to parallax

Let’s try a reversed problem. After the Sun, the closest star to 
Earth is Proxima Centauri, which is 4.24 light-years away. What is 
the star’s parallax in arcsec?

First, we convert light-years to parsecs: 

Then, we plug in to find the distance: 

The closest star to the Sun has a parallax smaller than 1 arcsec!

𝑑 = 4.24 light−years  ×  
1 parsecs

3.26 light−years
= 1.30 parsecs

𝑝 (arcsec) = 
1

1.30 pc
= 0.77 arcsec



Stellar Parallax: One Slide Introduction

In stellar astronomy, parallax (p) is defined as half of the maximum 
directional shift due to Earth’s orbital motion. The unit is typically arcsec or 
mas (milliarcsec) With this definition and the definition of the parsec, we have 
the following parallax-distance relation:

2pA

2pB

d = 1 parsec ( 1 arcsec
p )



How to Calculate Parallax from 
Coordinates? 

A star’s position is recorded in celestial 
coordinates (RA, Dec), how to calculate the 
angular offset between two coordinates? 



Celestial 
Coordinates 
are similar to 
the Longitude 
and Latitude 
system on 
Earth’s surface 

Longitude &  
Latitude units: 
(deg, arcmin, arcsec)



Equatorial 
coordinates
right ascension (RA) 
declination (Dec)

RA’s units  
(hour, minute, second) 
 
Dec’s units: 
(deg, arcmin, arcsec)

EclipticSpring 
Equinox

Summer 
Solstice

Equator

NCP

SCP



Practice: Calculate the distance between locations along the same parallel

Iowa City: 41.6578° N, 91.5346° W 
Des Moines: 41.5868° N, 93.6250° W 

Earth’s Radius: 3960 miles

Almost the same latitude, 
difference in longitude about 
2.1 degrees. 
• convert 2.1 deg to radian: 

0.0366519 
• distance = arc length =

  
• Google says the distance is 

115 miles (much less than 
145 miles), why? 

R ⋅ θ = 3960miles × 0.0366519 = 145miles



Practice: at fixed Declination, calculate angular offset in R.A.

• Obj 1: RA = 2 hr, Dec = 60 deg, Obj 2: RA = 3 hr, Dec = 60deg; 
what’s their angular distance in degrees? 

• Note that you’ll need to first convert hours to degrees …

δRA∘ = (RAh
1 − RAh

2) ⋅ cos(Dec∘
1) ⋅ 15∘/hour

δDec∘ = Dec∘
1 − Dec∘

2



Offsets in both RA and Dec, how to calculate the total offset?
When the two coordinates are close together, we can use  
plane trigonometry to approximate spherical trigonometry: 

June

December

δ RA”

δ Dec”

Δ′ ′ = δRA′ ′ 
2 + δDec′ ′ 

2



Δ′ ′ = δRA′ ′ 
2 + δDec′ ′ 

2
Given two (RA, Dec) coordinates, calculate their angular offset

Note that (1) RA’s units are (hour, minute, second), and Dec’s units are (deg, 
arcmin, arcsec), and (2) the angular distance between two meridians decreases 
from the equator to the poles. As a result, we have the following formulae to 
calculate both the RA offset and the Dec offset in arcsec:

δRA′ ′ = (RAs
1 − RAs

2) ⋅ cos(Dec∘) ⋅ 15′ ′ /s
δDec′ ′ = Dec′ ′ 1 − Dec′ ′ 2



Δ′ ′ = δRA′ ′ 
2 + δDec′ ′ 

2

Practice: Given two (RA, Dec) coordinates, calculate their 
angular offset

A star’s coordinates have been recorded based on images taken on 
the following dates: 

Mar 21 2022: 06h00m15.205s 23d29’15.155”

Sep 21 2022: 06h00m15.235s 23d29’15.160”


• How far has the star moved in RA & in Dec (both in arcsec)? 

• How large is the parallax? What’s the distance in parsec?

dRA = 0.03 * cos(23.5 deg) * 15 = 0.413” 
dDec = 0.005” 

=> p = 0.413”/2 => d = 2.4*2 parsec 

δRA′ ′ = (RAs
1 − RAs

2) ⋅ cos(Dec∘) ⋅ 15′ ′ /s
δDec′ ′ = Dec′ ′ 1 − Dec′ ′ 2



How to Plan Parallax Observations? 

Given a star’s position in equatorial 
coordinates (RA, Dec), how to decide when to 

make the two observations to detect the 
maximum parallax effect? 

Are these dates and coordinates arbitrary?

Mar 21 2022: 06h00m15.205s 23d29’15.155”

Sep 21 2022: 06h00m15.235s 23d29’15.160”



Equatorial 
coordinates
right ascension (RA) 
declination (Dec)

Ecliptic 
coordinates
Longitude 
Latitude

Ecliptic Longitude ~ RA 
~ means “roughly equal”

|Ecliptic Latitude - Dec| 
< 23.5 degrees



The Equatorial and Ecliptic Coordinates of the Sun

• In the course of a year, the Sun travels on the Ecliptic from 
Spring Equinox, to Summer Solstice, to Fall Equinox, to Winter 
Solstice, and back to Spring Equinox

RA Dec Ecliptic 
Longitude

Ecliptic 
Latitude

Notes

Spring Equinox 
(Mar 20)

0 hr 0 deg 0 hr 0 deg Coordinates 
Origin

Summer Solstice 
(Jun 21)

6 hr +23.5 deg 6 hr 0 deg longest day 
in a year

Fall Equinox 
(Sep 22)

12 hr 0 deg 12 hr 0 deg equal day 
and night

Winter Solstice 
(Dec 21)

18 hr -23.5 deg 18 hr 0 deg longest night 
in a year



Coordinate Converter: https://ned.ipac.caltech.edu/coordinate_calculator 

 from astropy import units as u
 from astropy.coordinates import SkyCoord

 raval=[112.357708,122.580465,104.726966] 
 decval=[-12.69596,-5.513852,-10.580455]
 coord_eq = SkyCoord(ra=raval*u.degree, dec=decval*u.degree, frame='icrs')
 coord_ecl=coord_eq.transform_to('geocentricmeanecliptic')
 latval=coord_ecl.lat.degree
 longval=coord_ecl.lon.degree
 print(latval,longval)

Conversion between the Equatorial and Ecliptic Coordinates

https://ned.ipac.caltech.edu/coordinate_calculator


Sources on the Ecliptic Plane: Observational Considerations

• On these two days illustrated in the graph below, at what local time do 
Stars A and B transit the meridian? 


• What are the Ecliptic Longitudes of Star A and Star B relative to 
those of the Sun on these two days?

RA Dec Ecliptic 
Longitude

Ecliptic 
Latitude

Notes

Spring Equinox 
(Mar 20)

0 hr 0 deg 0 hr 0 deg Coordinates 
Origin

Summer Solstice 
(Jun 21)

6 hr +23.5 deg 6 hr 0 deg longest day 
in a year

Fall Equinox 
(Sep 22)

12 hr 0 deg 12 hr 0 deg equal day 
and night

Winter Solstice 
(Dec 21)

18 hr -23.5 deg 18 hr 0 deg longest night 
in a year

Coordinates of the Sun on the Four Special Days

Note: this is the ecliptic plane



Let’s check the RA, Dec, & Dates in the previous practice example 

Are these dates and coordinates arbitrary? Should its RA increase 
or decrease? Why its Dec did NOT change much?


Mar 21 2022: 06h00m15.205s 23d29’15.155”

Sep 21 2022: 06h00m15.235s 23d29’15.160”

Mar 21

Sep 21

Jun 21 Dec 21

The star is on the ecliptic, and its RA places it 90° 
away from the Sun on the two dates, yielding 

maximum parallax effect. 



Weten Schaps

Special case: sources near the ecliptic poles 
Do we need to worry about when to observe them to 

measure parallax?



Annual Parallax Traces 

What kind of pattern does a star draw on the 
sky due to Earth’s annual motion?  

We can record this pattern if we continuously 
monitor its position over a year





Weten Schaps

Simplest case: sources on the ecliptic poles 
moving along a circle



Simpler case: sources on the ecliptic plane 
oscillating along a short line

2pA

2pB



General cases: 0 < ecliptic latitude < 90 deg 
moving along an ellipse



Summary: Parallactic Traces & Parallax Measurements 

• Sources on the ecliptic oscillate on short lines along the ecliptic;  
the parallax to measure distance is half of the length of the line. 

• Sources on the ecliptic poles draw parallactic circles;  
the parallax to measure distance is the radius. 

• All other sources draw ellipses with major axes parallel to ecliptic;  
For a parallactic ellipse, what is the parallax to measure distance?

Nakagawa+2008



Advanced Topics of Parallax

Summary



Δ′ ′ = δRA′ ′ 
2 + δDec′ ′ 

2

δRA′ ′ = (RAs
1 − RAs

2) ⋅ cos(Dec∘) ⋅ 15′ ′ /s
δDec′ ′ = Dec′ ′ 1 − Dec′ ′ 2

Calculate angular offset given Equatorial coordinates

June

December

δ RA”

δ Dec”



Stellar Parallax: Observational Considerations

• To see maximum parallax effect, you must choose two nights when the 
Ecliptic Longitudes of the target is 6 hrs (90 deg) away from the Sun.

RA Dec Ecliptic 
Longitude

Ecliptic 
Latitude

Notes

Spring Equinox 
(Mar 20)

0 hr 0 deg 0 hr 0 deg Coordinates 
Origin

Summer Solstice 
(Jun 21)

6 hr +23.5 deg 6 hr 0 deg longest day 
in a year

Fall Equinox 
(Sep 22)

12 hr 0 deg 12 hr 0 deg equal day 
and night

Winter Solstice 
(Dec 21)

18 hr -23.5 deg 18 hr 0 deg longest night 
in a year

Coordinates of the Sun on Special Dates

Note: this is the ecliptic plane



General cases: 0 < ecliptic latitude < 90 deg 
moving along an ellipse

Parallax Ellipse: the trace cross a full year’s observations



Brightness Measurements: 
Apparent Magnitude



Visual classification of brightness: The Greek Magnitude System

Ancient Greeks: “the 
stars that appear first 
after sunset are the 1st 
magnitude stars, the 
stars that appear 
second are the 2nd 
magnitude stars, and 
so on ……” 

129 BC, first formally 
introduced by 
Hipparchus, then 
refined by Ptolemy in 
150 AD:  
visual classification of 
stars into 6 classes, 
brightest as being of 
1st magnitude, faintest 
of 6th magnitude 



A BRIEF HISTORY

MAGNITUDE & ENERGY FLUX

• 129 BC, first Hipparchus, then refined by Ptolemy in 150 AD:  
visual classification of stars into 6 classes, brightest as being of 1st 
magnitude, faintest of 6th magnitude  

• 1856, Norman Pogson: 5 magnitude difference = 100x in energy flux, while 
preserving historically classified 6th mag stars, some brightest stars have 
negative magnitudes (e.g., Sirius, V-band mag = -1.5). Summarized in an 
equation, we have Pogson’s ratio:  

• 1850s - 1990s: photographic glass plates 

• 1940s, photoelectric cells, tubes, photomultipliers 

• 1969, Boyle & Smith: CCD detectors (2009 Nobel Prize for Physics). First 
used in astronomy in 1976 at U. of Arizona

mλ,1 − mλ,2 = − 2.5 log( fλ,1/fλ,2)



Observed Brightness of Stars show a HUGE range

▪The Sun is the brightest star, which dominates the sky during the 
day, rendering it impossible to see any other stars 
▪The faintest star your eye can see is 1013 fainter than the Sun 
▪The faintest star that can be detected by the Hubble space 

telescope is 1020 fainter than the Sun. 

▪How do we deal with such a large range? We put everything on a 
logarithmic scale similar to that used by the Greeks, thus 
preserving the history started from Hipparchus in 129 BC. 
▪As a result, brighter stars still have lower magnitudes (a minor 

annoyance astronomy students have to live with). 

▪Mathematically we have the Pogson’s ratio:  
                          
to tell the magnitude difference between two objects, but how 
do we put the magnitudes on a universal scale so that a given 
magnitude means the same flux to all astronomers?

mλ,1 − mλ,2 = − 2.5 log( fλ,1/fλ,2)



The universal magnitude system based on reference objects

mλ − mλ,0 = − 2.5 log( fλ/fλ,0)
▪where _0 indicate the chosen reference source’s magnitude and flux at 

wavelength lambda. In optical wavelengths, the reference star is Vega. 



Practice: From flux ratio to apparent magnitude relative to Vega

• Normally in the optical wavelengths, the reference star is Vega.  
• For simplicity, Vega’s magnitude is set to be zero at all wavelengths 
• As a result, we have the Vega magnitude defined in the following equation:

mλ − mλ,0 = − 2.5 log( fλ/fλ,0)

Vega magnitude : mλ = − 2.5 log( fλ/fλ,Vega)

• What’s the magnitude of a star that is 50x fainter than Vega 
at 500nm? 

• What’s the magnitude of a star that is 30x fainter than Vega?

m(50x fainter) = 4.25 
m(30x fainter) = 3.69

The universal magnitude system based on Vega



Practice: From apparent magnitude to flux ratio

Pogson′ s ratio : mλ,1 − mλ,2 = − 2.5 log( fλ,1

fλ,2
)

• δ Lyrae has an apparent 
magnitude of 4.2 in V-band (551 
nm), how many times fainter is it 
compared to Vega (α Lyrae)?  

• 17 Lyrae has an apparent 
magnitude of 5.2 in V-band, how 
many times fainter is it compared 
to δ Lyare?

⇒
fλ,1

fλ,2
= 10−0.4(mλ,1−mλ,2)

10^(0.4*4.2) = 47.9 
10^(0.4*(5.2-4.2)) = 2.512



Summary: Apparent Magnitude and Flux Ratio

mλ,1 − mλ,2 = − 2.5 log( fλ,1

fλ,2
)

⇒
fλ,1

fλ,2
= 10−0.4(mλ,1−mλ,2)

• 100x in flux ratio corresponds to a magnitude difference of 5 
• 1 magnitude difference corresponds to 2.514x (=10^0.4) difference 

in flux 

• To determine the magnitude of one source, you must know the 
magnitude and flux of another source (reference or standard) and 
compare the fluxes of the two sources 



Differential Photometry: e- Count Rates to Magnitudes

▪We can point the 
same telescope at two 
different sources 
simultaneously and 
measure the ratio of 
their count rates.  
▪This approach is 

easier because all 
instrumental effects in 
the two measurements 
cancel out. 
▪ If we know the 

magnitude from one of 
the sources, we can 
infer the magnitude of 
the other source using 
this relative 
measurement.

variable star illustration



A typical CCD image - data illustrated with DS9:

the number of e- collected in each pixel (from 0 to ~65k; 16 bit)  

is represented by only 256 shades of gray (8 bit)



TO COUNT ELECTRONS FROM A SOURCE, WE USE APERTURES



Definition of Magnitudes is based on  
Differential Photometry 

Count rates to magnitude difference

where object a is your science target and  
object b is the reference source with known magnitudes.

the reference source here does not need to be Vega, it just 
needs to be a relatively stable source with a known magnitude 



Practice: from count rates to magnitude

where object a is your science target and  
object b is the standard star with known magnitudes.

Your standard star has a magnitude of 10.5 mag in V-band, you took a CCD 
image of the standard star with a V-band filter and you got a total of 1500 

counts in 10 seconds. 
 

Next, you slew the telescope to take a V-band image of your science target, 
say a random galaxy far away, and with 30 min exposure, you could barely 

see it. The total count from the galaxy is 50. 


What’s the V-band magnitude of the galaxy?

Vgalaxy = 10.5 - 2.5 log((50/1800)/(1500/10)) = 19.83



Get Ready for a Nova’s Bright Return in 2024

Recurrent Nova  
T Coronae Borealis 

The Northern Crown



Get Ready for a Nova’s Bright Return in the Northern Crown



Luminosity Measurements:  
Absolute Magnitude 

(requires Distance & Brightness)



▪Luminosity is the total amount of energy per unit time (i.e., power) 
emitted by the source (unit: Watt = Joule/s) 
▪Flux is the amount of arriving energy per unit time per unit area (unit: 

Watt/m2) at a distance d from source 
▪Flux decreases as the distance from the source increases, obeying 

an inverse square law:

F =
L

4πd2

The Inverse Square Law of Flux



The Invariability of Luminosity

▪Luminosity is the total amount of energy per unit time (i.e., power) 
emitted by the source (unit: Watt = Joule/s) 
▪Flux is the amount of arriving energy per unit time per unit area (unit: 

Watt/m2) at a distance d from source 
▪Flux decreases as the distance from the source increases, obeying 

an inverse square law, which preserves the luminosity

L = F(d1)4πd2
1 = F(d2)4πd2

2



Definition: Absolute Magnitude (M) vs. Apparent Magnitude (m)

• apparent magnitude (m) is the magnitude of the source at its actual 
distance (d)  

• absolute magnitude (M) is defined as the apparent magnitude of the 
source if it were at a distance of 10 parsec

Practice: Calculate the absolute magnitude of the Sun

• The Sun has an apparent magnitude of -26.74 (d = 1 AU = 1/206265 pc) 
• What’s its absolute magnitude? Think about how faint it would appear at 10 pc

Pogson′ s ratio : mλ,1 − mλ,2 = − 2.5 log( fλ,1

fλ,2
)

- 26.74 + 2.5 * log(2062650^2) = 4.83



Derivation: Absolute Magnitude (M) vs. Apparent Magnitude (m)

• apparent magnitude (m) is the magnitude of the source at its actual 
distance (d)  

• absolute magnitude (M) is defined as the apparent magnitude of the 
source if it were at a distance of 10 parsec 

• because both are measurements of the same source, we can express 
the same luminosity (L) using its actual flux (f) and its presumed flux 
(F) at 10 parsec: 

mλ − Mλ = 2.5 log( d
10 parsec )2 = 5 [log

d
1 parsec

− 1]

Lλ = 4πd2fλ = 4π(10 parsec)2Fλ ⇒
Fλ

fλ
=

d2

(10 parsec)2

mλ − mλ,0 = − 2.5 log( fλ/fλ,0)

Mλ − mλ,0 = − 2.5 log(Fλ/fλ,0)

This, m-M, is called the distance modulus, because it only depends on distance



Practice: What’s the absolute magnitude of the Sun?

• distance = 1 AU, V-band magnitude = -26.74 
• What’s its absolute magnitude in V-band? 

mλ − Mλ = 5 [log d(parsec) − 1]
⇒ Mλ = mλ − 5 [log d(parsec) − 1]

M = -26.74-5*(log(1/206265)-1) 
= 4.83 



Practice: Calculate absolute magnitude from p and m

• Suppose you measured a star’s apparent magnitude in V-band 
(550 nm) to be mV = 10.5 

• You also measured its parallax to be p = 5 mas (milli-arcsec).  
• What’s its distance in parsec? 

                               

• What’s its absolute magnitude in V-band (MV)? 
 

d = 1 parsec ( 1 arcsec
p )

mλ − Mλ = 5 [log d(parsec) − 1]
⇒ Mλ = mλ − 5 [log d(parsec) − 1]

d = 200 parsec 
M = 10.5 - 5 * (log(200) - 1) = 4.0



Distance from Distance Modulus: 
 

The Standard Candle Methods



Distance Modulus: the difference between m and M

m − M = 5 [log d(parsec) − 1]

• The term on the left side, m-M, is called the distance 
modulus, because it only depends on distance


• m-M offers us a group of methods to measure distances 
called the standard candle

dpc = 101+0.2(m−M)

• The definition of absolute magnitude and the inverse 
distance square law for an isotropic emitter give us this 
equation:



The Standard Candle Methods

• If we had measured or inferred the absolute magnitude of a 
class of astrophysical objects, we can get the distance modulus 
(m-M) from its apparent magnitude. 

• The distance modulus then gives us the distance:

m − M = 5 (log dpc − 1) ⇒ dpc = 101+0.2(m−M)

⇒ d = 10 parsec ⋅ 100.2(m−M)



Standard Candle Method 1 — Spectroscopic “Parallax”

Suppose we find a solar-type star in the constellation Ursa Major, its spectrum 
looks just like that of the Sun, so we assume that this star has the same 

luminosity as the Sun. Given the Sun has MV = 4.83 and this star has  
mV = 10.5, can you estimate its distance?

d(parsec) = 101+0.2(m−M)

d = 10^(1+0.2*(m-M)) = 136 parsec



The Standard Candle Method 2 — Type Ia SNe
• Type Ia supernovae (SNe) have been used as standard candles to 

measure cosmological distances to other galaxies. 
• They work as standard candles because presumably the white dwarfs 

have to reach 1.44 solar mass (the Chandrasekhar mass) to trigger the 
thermonuclear explosion, reaching a peak absolute magnitude of MV = -19.



Practice: The Standard Candle Method of Distance Measurement

• Type Ia supernovae (SNe) have been used as standard 
candles to measure cosmological distances to other galaxies. 

• They work as standard candles because presumably the 
white dwarfs have to reach 1.44 solar mass (the 
Chandrasekhar mass) to trigger the thermonuclear explosion 

• At its peak, the absolute magnitude in V-band (550 nm) is    
MV = -19, and you measured a peak apparent magnitude of 
mV = 10, what’s the distance in parsec?

m − M = 5 [log d(parsec) − 1]

10 parsec * 10^(0.2*(10-(-19))) = 6.3 Mpc

d(parsec) = 101+0.2(m−M)



"for the discovery of the accelerating expansion of the Universe through 
observations of distant supernovae"



Distance Modulus vs. Cosmological Redshifts (Hubble Diagram)

Perlmutter & Schmidt 2003



Surface Temperatures of Stars 
  

spectroscopic methods: Wien’s law and 
spectral classification



Planck Curves at Various T
Bλ(T) ≡

2hc2

λ5

1

ehc/λ
kT − 1



Temperature from Wien’s Displacement Law

• Given a temperature, calculate the wavelength at which the BB 
emission’s flux density peaks; Or given a peak wavelength, 
calculate the temperature.

λpeak =
2.9 mm K

T
⇒ T =

2.9 mm K
λpeak

Bλ(T ) ≡
2hc2

λ5

1

ehc/λ
kT − 1



What to do when the peak shifts outside of the visible light window? 
e.g. when T > 9000 K or T < 3000 K 



Optical spectral classification of stars

▪ The	strength	of	absorption	lines	from	different	elements	depend	
mainly	on	the	temperature	(because	of	ionization	equilibrium).	

▪ The	current	classification	scheme	was	re-ordered	and	simplified	by		
Annie	Jump	Cannon	(1863–1941)	at	Harvard	College	Observatory.	

▪ The	full	sequence	is	O	B	A	F	G	K	M,	which	are	further	subdivided	by	adding	
numbers	to	the	letter.	The	Sun	is	a	G2	spectral-type	star.







An A-type star’s spectrum taken by the Van Allen Observatory



Temperature from Spectral Classes



Relative Strengths of Absorption Lines vs. Atmospheric Temperature



Temperature 
  

photometric method: color index



Spectroscopy takes 
longer time to 

acquire, because 
each star would 
require its own 
spectroscopic 

observations with a 
traditional longslit 

spectrograph



Two-band photometry offers a much simpler way to estimate temperature

B V



Temperature from Color Index

• Color index is defined as the magnitude difference of the same 
object at two different wavelengths.  

• According to Pogson, the magnitude difference corresponds to 
a flux ratio at two different wavelengths: 
              
                                      or simply 
               

• Typically, we subtract a bluer magnitude (e.g., B) to a redder 
magnitude (e.g., V), so that the higher the value of the color 
index, the redder the object appears (i.e., the object appears 
much fainter in B-band than in V-band)

mB − mV = − 2.5[log( fB/fV) − log( fB,0/fV,0)]

B − V = − 2.5[log( fB/fV) − log( fB,0/fV,0)]



Practice: From flux ratio to color index

• Vega is the usual reference star that sets the zero point of the 
apparent magnitude system. Its surface temperature is at 9600 K, 
much hotter than that of the Sun (5800 K).  

• Consider a star that is 100x fainter than Vega at 440nm (B-band) 
and also 100x fainter than Vega at 550nm (V-band),  
• What are the magnitudes of the star in B and V?  
• What is the color index?  
• What is its surface temperature? 

B − V = − 2.5[log( fB/fV) − log( fB,0/fV,0)]



Practice: From flux ratio to color index

• Vega is the usual reference star that sets the zero point of the 
apparent magnitude system. Its surface temperature is at 9600 K, 
much hotter than that of the Sun (5800 K).  

• Consider another star that is 100x fainter than Vega at 440nm but 
200x fainter than Vega at 550nm (V-band), what are the B and V 
magnitudes? What is the color index? Is this star hotter or cooler 
than Vega?

B = 5, V = 5.75; B-V = -0.75

B − V = − 2.5[log( fB/fV) − log( fB,0/fV,0)]



A table that gives the color indices at a range of temperatures



Apparent Colors of Stars



Temperature vs. Color Index vs. Apparent Color

Spec 
Type

Surface 
Temperature Apparent Color

B − V = − 2.5[log( fB/fV) − log( fB,0/fV,0)]



These are the Apparent Colors to Your Eyes



Albireo A & B (beta Cygni) 



The Hertzsprung-Russell Diagram: 
 

Luminosity-Temperature Diagram



The Hertzsprung-Russell Diagram

• In 1905, Hertzsprung first 
published the 
measurements in a Table 
instead of a Figure. 
Almost nobody noticed 
this remarkable finding. 

• In 1914, Russell 
published his independent 
measurements in the 
format of a Figure on the 
journal Nature, making 
big waves in Astronomy. 

• Lesson for Astronomy 
students: how you 
present your data 
matters



The Hertzsprung-Russell Diagram

• In 1905, Hertzsprung first 
published the 
measurements in a Table 
instead of a Figure. 
Almost nobody noticed 
this remarkable finding. 

• In 1914, Russell 
published his independent 
measurements in the 
format of a Figure on the 
journal Nature, making 
big waves in Astronomy. 

• Lesson for Astronomy 
students: how you 
present your data 
matters



HR Diagram
▪The luminosity-

temperature diagram is 
the most important 
graph in stellar 
astronomy and is the 
key to unraveling stellar 
evolution. 
▪Two questions to 

discuss today: 
▪What does the 

concentration of 
stars in certain areas 
imply? 
▪What does the 

location of any star 
on the HRD tell us 
about its physical 
properties?



I - Why stars concentrate in certain areas on the HRD

• On the right is the 
most detailed auto 
emission map of the 
US east coast 

• It’s made by the New 
York Times in 2019.  

• High emission areas 
are high concentration 
areas of internal 
combustion engines 

• Conclusions: 
• People spend much 

more time in cities 
than in-between.  

• People spend a lot 
of time commuting 
along the DC-NY 
line



I - Why stars concentrate in certain areas on the HRD

• On the right is the HR 
diagram made using the 
Gaia data. 

• Bright color indicates high 
concentration areas of 
stars:  
• Main sequence 
• Giant branch 
• White dwarfs 

• Conclusions: 
• Stars spend much more 

time in the main 
sequence, the giant 
branch, and the white 
dwarf branch 



II - Reading Physical Properties of Stars from the HRD

Temperature [Color Index or Spectral Type]

Bolom
etric Lum

inosity [Abs. M
ag.]

radius in
creases

R = R
sun

R = 10 R
sun

R = 0.1 R
sun

Lbol = 4πR2 × σSBT4

Bolometric luminosity is 
defined as the luminosity 
density of a source 
integrated over all 
wavelengths.

 

Stefan-Boltzmann law gives 
the bolometric surface flux 
of blackbody emitters



Temperature [Color Index or Spectral Type]

Bolom
etric Lum

inosity [Abs. M
ag.]

radius in
creases

R = R
sun

R = 10 R
sun

R = 0.1 R
sun

Size Estimates using Stefan-Boltzmann Law



Luminosity Classes I-V: from Giant Stars and Dwarf Stars

▪Broad luminosity 
classes are defined 
roughly along the 
luminosity axis.  
▪This makes spectral 

classification of stars in 
a two-dimensional 
parameter space: T & L 

▪The Sun is a G2V star: 
G2 - spectral type 
V - luminosity class 
▪Betelgeuse is a M1Ia: 

M1 - spectral type 
Ia - luminosity class



Luminosity Classes - Spectral signatures

▪Stars in higher luminosity classes are denser, so they have larger surface 
gravity. As a result, the absorption lines appear broader. 
▪Below are examples of A0-type stars from class I to V, plus a white dwarf.

Carroll & Ostlie, Fig 8.15



HR Diagram: Main Sequence, Giant Branch, White Dwarfs, & Luminosity Classes

▪Most stars, incl. the Sun, are found on the 
main sequence, which runs from 
luminous/hot stars in upper left corner to 
low-luminosity/cool stars in lower right 
corner 
▪ It covers a temperature range of ~10, and a 

radius range of ~100, but a luminosity 
range of ~109          

• The Giant branch is connected to the main 
sequence but branches off to the lower 
temperature side. That is where the red 
giant stars live 

• A separate branch parallel to the main 
sequence to the lower left, these stars have 
low luminosities but hot temperatures; this 
is where the White Dwarfs live 

• Spectral classification is 2-dimensional:   
(1) temperature (OBAFGKM), and            
(2) luminosity (Ia, Ib, II, III, IV, V) 



More advanced topics 

radius estimates & filtered photometry



Size Estimates using Stefan-Boltzmann Law (Req. bolometric luminosity)

Lbol = 4πR2 × σSBT4



Alternative Method: Radius of the Star from Transit Depth 

Once we know the planet radius from transit ingress/egress time,  
we can use the transit depth to estimate the radius of the star.

R

r

no transit : F0 =
FS

π
πR2

d2
in transit : Ft =

FS

π
π(R2 − r2)

d2

fractional reduction in flux :
F0 − Ft

F0
=

r2

R2



Planet Size from Ingress & Egress time (requires Mass of the Star)

Ingress Egress

Limb darkening

r = vcirc(t2 − t1)/2
aAU = (Msolar−massP2

year)1/3

vcirc =
2πa
Porbit

Key Timing Points during a Transit



Side Note: Why this textbook diagram is incorrect?But this is the distribution we see …



Luminosity Density vs. Bolometric Luminosity 

• Luminosity Density is the 
luminosity measured at a 
given wavelength:  

 
• For spherical blackbody 

radiators of uniform surface 
temperature, we have:       

,     
where 

 is the 

Planck function

Lλ = dL/dλ

Lλ = 4πR2 × πBλ(T )

Bλ(T ) ≡
2hc2

λ5

1

ehc/λ
kT − 1

• Bolometric Luminosity is the 
luminosity density integrated 
over all wavelengths: 

 

• For spherical blackbody 
radiators, we have: 

               
as a result,

        

Lbol = ∫
∞

0
Lλdλ

Lλ = 4πR2 × πBλ(T )

Lbol = 4πR2 ∫ πBλ(T )dλ

= 4πR2σSBT4



• Flux density can be derived from luminosity density using the inverse 
distance square law:  

• Since  is the angular area of the source, hence Planck function  
gives the surface brightness of the source (at ), which is distance invariant.

Fλ = Lλ/4πd2 = Bλ(T )πR2/d2

πR2/d2 Bλ(T )
λ

So … What  actually is to an observer?Bλ(T )

10x distance

50x distance

1x distance



How to measure stellar mass?  
 

Binary stars and Kepler’s Laws



How did we know that the main sequence stars cover a range of masses?



which led us to conclude that the MS stars have drastically different lifetimes



The various configurations of visual binaries and multiples

B. MacEvoy 2012



Binary Star Formaion: Accreion Disk Fragmentaion

Fragmentation of the protostar accretion disk is believed to be a frequent if not the most 
common path to binary formation at distances of around 40 AU ... a massive spiral arm 
forces the protostar off the center of mass to produce a binary structure; the spiral arms 
draw more mass into the accretion disk while reducing the binary orbital momentum via 
gravitational (and possibly magnetic) torque (Source: Bonnell & Bate, 1994)



What	fraction	of	stars	are	binaries?

Kuipe
r 

(1942
)

Heintz
(1969)

Abt & 
Levy

(1976)*

Duquennoy 
& Mayor

(1991)

Nordström 
et al.

(2004)

Raghavan 
et al. (2010)

Systems (N)  274 n.a. 123 164 16682 454

Single Star Systems 70% 30% 45% 57% 66% 56%

Binary 25% 47% 46% 38% 34% 33%

3 4% 16% 8% 4% . 8%

4+ 1% 7% 1% 1% . 3%

Double Star Systems 30% 70% 55% 43% 34% 44%

Median R 50 AU 35 AU 40 AU

Stars in Doubles 52% 85% 73% 62% 51% 65%
B. MacEvoy 2012

For solar-type stars, ~60% of star systems are single star systems,  
yet only ~40% of all stars are single stars (i.e., ~60% of all stars are 
components of binary or multiple star systems)



The multiplicity fraction increases with the mass of the primary

B. MacEvoy 2012



The logarithmic of Binary Periods follow a “Bell” curve



Binary Star - Center of Mass

▪To measure mass, we must 
look for the effects of gravity. 
▪Many stars are binary stars 

orbiting a common center of 
mass. 
▪A less massive star moves 

faster on a larger orbit.

Center of mass “seesaw” equation: 
m1 d1 = m2 d2



Binary Star - Doppler Shift Measurements vs. Time



Binary Stars: Doppler shift curves from spectroscopy

▪A visual binary system is one 
in which both stars are 
distinguished visually. 
▪ In a spectroscopic binary 

system, stars are too far away 
to distinguish; pairs of 
Doppler-shifted lines trade 
places.



Eclipsing Binary Stars - Light curve from photometry

▪ In an eclipsing binary system, the total light coming from the star 
system decreases when either star passes in front of the other. 
▪But there are two eclipses (A in front of B vs. B in front of A), why one 

is deeper than the other? What can the eclipse light curve tell us? 
▪Can we also measure the radii of the stars in these systems?



Planet Size from the Depth of the Transit and Radius of the Star

• Notice the difference between eclipsing binary stars and 
transiting planets: both stars emit light, while planets only 
reflects light from the side that faces the star. 

fractional reduction in flux :
F0 − Ft

F0
=

r2

R2



Measuring the Masses of Stars in Eclipsing+Spectroscopic Binaries

▪ Being an eclipsing binary implies that their orbits are viewed edge-on 
▪ The Doppler shift results shown above give key parameters:  
▪ The period of the binary (P) 
▪ The orbital velocities of star 1 and star 2 (V1 and V2) 

▪ What are the circumferences and radii of the two orbits?  

                                
C1 = V1 × P = 2πa1

C2 = V2 × P = 2πa2



Kepler’s 3rd Law for One-Body Problem (Planets are massless)

3rd Law:  
period-distance  
relation

a3
AU

P2
year

= Msolar−mass
a3

P2
=

GM
4π2

But there are two masses (m1 and m2), and two semimajor axes (r1 & r2), how 
should we use the Kepler’s 3rd law to estimate mass?

M
1 Msun

= ( a
1 AU )3( P

1 year )−2One-body problem: 

M1 + M2

1 Msun
= (a1 + a2

1 AU )3( P
1 year )−2Two-body problem: 



▪ Next, we can calculate the total mass using Kepler’s third law:  

                     

▪ Finally, we obtain the individual masses based on the velocity ratio:  

                                  

M1 + M2

1 Msun
= (a1 + a2

1 AU )3( P
1 year )−2

M1

M2
=

a2

a1
=

V2

V1

Measuring the Masses of Stars in Eclipsing+Spectroscopic Binaries



Kepler’s 3rd Law for  
Two-body Problems 

Derivation



Two-body Problem Derivation - The Center-of-Mass Reference Frame

m1 ⃗r1 + m2 ⃗r2 = 0
⃗r2 − ⃗r1 = ⃗r

⃗r1 = −
m2

m1 + m2
⃗r

⃗r2 =
m1

m1 + m2
⃗r



Two-Body Problem can be reduced to One-Body Problem

• The two-body problem is equivalent to a one-body problem with the 
reduced mass  moving about a fixed total mass 

 at a distance .
μ = m1m2/(m1 + m2)

M = m1 + m2 ⃗r = ⃗r2 − ⃗r1

E =
1
2

m1 | ⃗v1 |2 +
1
2

m2 | ⃗v2 |2 − G
m1m2

| ⃗r2 − ⃗r1 |

=
1
2

m1( μ
m1

)2v2 +
1
2

m2( μ
m2

)2v2 − G
(m1 + m2) ⋅ m1m2/(m1 + m2)

r

=
1
2

μ( μ
m1

+
μ

m2
)v2 − G

Mμ
r

⇒ E =
1
2

μv2 − G
Mμ
r

μ =
m1m2

m1 + m2

⃗r1 = −
m2

m1 + m2
⃗r = −

μ
m1

⃗r

⃗r2 =
m1

m1 + m2
⃗r =

μ
m2

⃗r

⃗v1 = −
μ

m1
⃗v

⃗v2 =
μ

m2
⃗v

Then write down the total kinetic and gravitational potential energy 

define reduced mass



Kepler’s 3rd Law for Binary Stars (Two-body Problem)

• The two-body problem is equivalent to a one-body problem with the 
reduced mass  moving about a fixed total mass 

 at a distance .
μ = m1m2/(m1 + m2)

M = m1 + m2 ⃗r = ⃗r2 − ⃗r1

m
1 Msun

= ( a
1 AU )3( P

1 year )−2One-body problem: 

m1 + m2

1 Msun
= (a1 + a2

1 AU )3( P
1 year )−2Two-body problem: 



Chap 1: Key Concepts

• stellar parallax 
• Unit parsec defined by AU 
• Pogson’s ratio:  

apparent magnitude and flux ratio 
• CCD photometry: count rate to 

magnitude 
• absolute magnitude 
• distance modulus (m-M) 
• standard candle methods 

• spectroscopic parallax 
• type Ia supernovae 

• color index and temperature 
• luminosity-temperature-size 

relation 
• HR diagram: the main sequence  
• Eclipsing and spectroscopic 

binaries: Kepler’s 3rd law for binary 
systems (two-body problem)



Chap 1: Key Equations

d = 1 parsec ( 1 arcsec
p )

mλ,2 − mλ,1 = − 2.5 log( fλ,2/fλ,1)

mλ − Mλ = 2.5 log( d
10 parsec )2 = 5 [log d(parsec) − 1]

Lbol = 4πR2 σSBT4

R
R⊙

=
Lbol

L⊙
( T

T⊙
)−2

d(parsec) = 101+0.2(m−M)

M1 + M2

1 Msun
= (a1 + a2

1 AU )3( P
1 year )−2

Lλ = 4πR2 πBλ(T)


