Chap 4: The Evolution of High-Mass Stars

Chap 4: The Evolution of High-Mass Stars

- CNO Cycles
- Convective cores
- Consecutive fusion shells
- End of fusion - Binding Energy
- Core collapse supernovae

low- and medium-mass stars (including the Sun)

- Neutron stars and Pulsars
- Supernova Remnants (SNR): expansion parallax method
- The Origin of Elements: six primary astrophysical sources
- Periodic variables: L-P relations (distance measure)
- Mass-Transfer Binaries
- Roche Lobe, Lagrange Points
- Novae, Type la SNe, Blue Stragglers

Chap 4 deals with stars of initial masses greater then $3 M_{\text {sun }}$

- A star's life depends on mass and composition because the rates and types of fusion depend on the star's mass.
- Stars of different masses evolve differently. There are three categories of stars:
- low-mass stars (Mass < $3 M_{\text {Sun }}$)
- intermediate-mass stars (Mass between $3 M_{\text {Sun }}$ and $8 M_{\text {Sun }}$)
- high-mass stars (Mass > $8 M_{\text {Sun }}$)

Name	High-mass stars	Medium-mass stars	Low-mass stars	Very low-mass stars	Brown dwarfs
Spectral type	O, B	B	A, F, G, K	M	M, L, T, Y
Minimum mass	$8 M_{\text {Sun }}$	$3 M_{\text {Sun }}$	$0.5 M_{\text {Sun }}$	$0.08 M_{\text {Sun }}$	$\sim 0.01 M_{\text {Sun }}$ $\left(\sim 13 M_{\text {Jupiter }}\right)$

Massive stars are rare, not only because of their short lifespan

- Initial Mass Function shows the distribution of stellar masses at birth

The division at $3 M_{\text {sun }}$ marks an rough transition in the shape of the computed evolutionary tracks

High-mass stars on the main sequence: CNO cycle and convective core

Massive MS stars have higher core temperature but lower core pressure

- Core temperature can be estimated using the virial theorem:

$$
k T_{c} \approx G M \mu m_{H} / R
$$

- Core pressure can be estimated from a force balance:

$$
4 \pi R^{2} P_{c} \approx G M^{2} / R^{2} \Rightarrow P_{c} \approx G M^{2} /\left(4 \pi R^{4}\right)
$$

- Main sequence stars show a mass-radius relation of:
$R \propto M^{0.7}$
- Therefore, $T_{c} \propto M^{0.3}$ and $P_{c} \propto M^{-0.8}$

The CNO Cycle: step-by-step

CNO Cycle

This carbon nucleus goes back to the beginning-it's a catalyst.
Legend: \quad Proton
The net result is that four hydrogen nuclei were turned into a helium nucleus, two neutrinos,
and seven gamma rays.

Net reaction of the CNO cycle and the Origin of Nitrogen

- In high-mass stars and the midlife Sun, hydrogen burning proceeds in the CNO cycle instead of the pp chain, due to higher core temperatures.
- Due to the bottleneck of the reaction chain ($\left.{ }^{14} \mathrm{~N}->{ }^{15} \mathrm{O}\right)$, Nitrogen accumulates to high levels in the core while depleting Carbon (this is the origin of N)
(a) CNO cycle

Net reaction of the Proton-Proton chain

Changes on the Main Sequence due to Fuel Exhaustion

- The chemical composition inside a star changes over time as hydrogen is fused into helium.
- The Sun started with 70 percent hydrogen by mass, but now contains only 35 percent hydrogen in the core.
- What will happen when the hydrogen is exhausted in the core?

Condition for Convection: Large Temperature Gradients

- When adiabatic expansion of a gas pocket causes its temperature to drop less than that of the ambient gas, convection ensues:

$$
-\left(1-\frac{1}{\gamma}\right) \frac{T}{P} \frac{d P}{d r}<-\frac{d \dot{T}}{d r}
$$

- Why? $P=n k T$, warmer gas at the same pressure as colder gas will have lower density. So the pocket will continue to rise due to buoyancy

Ambient Gas

$$
\begin{gathered}
\rho-\delta \rho \\
P-\delta P \\
T-\delta T
\end{gathered}
$$

$$
\rho(r), P(r), T(r)
$$

High-mass stars' post-MS evolution:

Onion layers of burning shells, nearly horizontal evolution on the HRD, and the end of fusion (Iron)

MAIN-SEQUENCE
 H burning to He -Nonburning envelope

Burning Core and Burning Shells

- The compression of the core ignite He-burning before it becomes degenerate, unlike low-mass stars.
- The fusion shells build up like the layers of an onion.
- The more massive the star, the heavier the elements that can fuse.
- Cores of high-mass stars will fuse elements up until iron (Fe).

Burning Stages in High-Mass Stars

Harder to fuse heavier elements, with diminishing returns

Core Burning Stage	$\mathbf{9 - M _ { \odot }}$ Star	$25-\boldsymbol{M}_{\odot}$ Star	Typical Core Temperatures
Hydrogen (H) burning	20 million years	7 million years	$(3-10) \times 10^{7} \mathrm{~K}$
Helium (He) burning	2 million years	700,000 years	$(1-7.5) \times 10^{8} \mathrm{~K}$
Carbon (C) burning	380 years	160 years	$(0.8-1.4) \times 10^{9} \mathrm{~K}$
Neon (Ne) burning	1.1 years	1 year	$(1.4-1.7) \times 10^{9} \mathrm{~K}$
Oxygen (O) burning	8 months	6 months	$(1.8-2.8) \times 10^{9} \mathrm{~K}$
Silicon (Si) burning	4 days	1 day	$(2.8-4) \times 10^{9} \mathrm{~K}$

The Law of Diminishing Returns

In Economics, the law of diminishing returns states that in productive processes, increasing a factor of production by one, while holding all others constant, will at some point return lower output per incremental input unit

Fusion Energy: the mass per nucleon decreases from H to Fe

- Nuclear fusion produces energy from the mass loss occurred when fusing lighter elements into heavier elements ($E=\Delta m \cdot c^{2}$). This works from Hydrogen (H), to Helium (He-4), up to Iron (Fe-56), which has the lowest mass per nucleon.

An alternative way to understand fusion energy: nuclear binding energy

- Binding Energy is the minimum energy required to disassemble the nucleus of an atom into its constituent nucleons.
- Fusion energy is produced from the difference in binding energy between products and reactants.
- Fe-56 has the highest binding energy per nucleon, so it marks the end of both fusion and fission.

Example: Binding Energy of Atomic Nuclei

- The net energy released by a nuclear reaction is the difference between the binding energy of the products and the binding energy of the reactants.
- For the triple-alpha process:

$$
\begin{aligned}
\binom{\text { Net energy from }}{\text { fusing } 1 \mathrm{~kg} \text { of } \mathrm{He}} & =\binom{\text { Binding energy }}{\text { of } \mathrm{C} \text { formed }}-\binom{\text { Binding energy }}{\text { of He fused }} \\
& =\left(7.402 \times 10^{14} \mathrm{~J}\right)-\left(6.824 \times 10^{14} \mathrm{~J}\right) \\
& =5.780 \times 10^{13} \mathrm{~J}
\end{aligned}
$$

- For the fusion of iron, the binding energy of the products is less than that of the reactants, so the net energy is negative.

Evolution Tracks on H-R Diagram

Once leaving the MS, the star starts to expand to a supergiant. While keeping almost constant luminosity, its temperature varies by $\sim 10 \mathrm{x}$

Betelgeuse

The familiar red star in Orion constellation. Betelgeuse is a red supergiant.

distance = 640 light years, $M=7.7 \mathrm{Msun} \mathrm{R}=1,200 \mathrm{R}_{\text {sun }}$

- Eta Carinae (dis $\sim 2.4 \mathrm{kpc}$): $150 \mathrm{M}_{\text {sun }}$ primary $+80 \mathrm{M}_{\text {sun }}$ secondary
- The primary may have already lost $30 \mathrm{M}_{\text {sun }}$ by now.
- Homunculus Nebula: ~22,000 AU in radius (bipolar lobes), likely formed in the 1841 outburst.

Severe Mass Loss of High Mass Stars

- Stars with $20 \mathrm{M}_{\text {sun }}$ loses its mass quickly: 10^{-7} to $10^{-5} \mathrm{M}_{\text {sun }} / \mathrm{yr}$ because of low gravity and radiation pressure, and occasional eruptions (the Sun loses 10^{-14} to $10^{-13} \mathrm{M}_{\text {sun }} / \mathrm{yr}$ to wind)

Core-Collapse Supernovae

Type II SNe

Simulation of a Core-Collapse SN explosion

- e- degenerate iron core collapses as required P surpasses e-degenerate
- Fe -> He, photodisintegration
- $p^{+}+e^{-}=n+\nu$
- core collapse accelerates
- strong nuclear force becomes repulsive
- core bounces and send shock waves outwards
- trapped neutrinos further accelerate shock waves
- 0.1c shocks reach surface and heat it to $500,000 \mathrm{~K}$

\star

Core-Collapse SN

Core Bounce and Explosion

leaving behind a blast nebula and a neutron star

9 ... and leaving behind the collapsed remains of the core, a neutron star.

5. EXPLOSION AND NUCLEOSYNTHESIS

Just a few hundred milliseconds after the shock wave first forms, it accelerates out of the core - although it can take as long as a day to reach the star's surface. The energy of the shock wave creates new elements, such as radioactive nickel. In the neutrino-heated, inner part of the explosion, nuclei also capture free neutrons or protons to form elements heavier than iron.

How to distinguish between the two main types of SNe?

(a) Type- 1 Supernova

(b) Type- II Supernova

Light Curves \& Energy Output: Type Ia vs. Type II Supernovae

Optical Spectra of Supernovae near Peak: Type I (No Hydrogen lines)

 vs. Type II (Hydrogen lines)

Sketches of spectrafrom Carroll \& Ostlie data attributed to Thomas Matheson of National Opticall Ástronony Observatory

Supernova Remnants are beautiful objects, but what can they tell us about the supernovae?

Zoom into Veil Nebula (a SN remnant formed ~10,000 yrs ago)

How to Measure the Age and Distance of a Supernova Remnant?

the "Expansion Parallax" method

When we see a SN remnant, how could we measure the age of the remnant and thus estimate when the SN exploded?

Veil Nebula

Cassiopeia A

Detecting the Expansion of SN remnants

How to associate a remnant with a supernova in the past?

Expansion of the Crab Nebula

Years 1999 and 2012

Estimating Age from Angular Expansion Rate (assuming constant angular expansion rate)

Age = Angular Size / Angular Expansion Rate

$$
t=\theta / \dot{\theta}
$$

Data: Cassiopeia A

Model: spherical expansion of a shell

Crab Nebula

- age = angular size / angular expansion rate
- assumes constant expansion rate
- In 1928, Hubble estimated that the supernova exploded in the year of 1054 CE

CRAB NEBULA

- The supernova was seen by the entire world in July 1054 CE.
- Peak magnitude between -7 and -4.5 (brighter than Venus)
- The event was documented by astronomers in Song Dynasty
- There is also some drawing evidence in Native American ruins in New Mexico, Chaco Canyon

The Sky in the morning of July 4,1054

Location of the SN

r.7

L Vesta

Gémẹaux Mercury
Pollux

Determining Distance from "Expansion Parallax"

Physical Size vs. Angular Size: $r=D \theta$
Physical Expansion Rate vs. Angular Expansion Rate:

$$
\dot{r} \delta t=D \dot{\theta} \delta t \rightarrow \dot{r}=D \dot{\theta}
$$

Distance $=$ Physical Expansion Rate $/$ Angular Expansion Rate

$$
D=\dot{r} / \dot{\theta}
$$

Radius Expansion $=\dot{r} \delta t$

e.g., $\dot{\theta}=0.01^{\prime \prime} / y r$, and $\dot{r}=250 \mathrm{~km} / \mathrm{s}$, what is the distance? But how do we measure the physical expansion rate \dot{r} in km / s ?

Physical Expansion Rate from Doppler Shifts: Each Line Splits into Multiples
Supernova Remnant Crab Nebula SNR M1, NGC 1952

Witnessing the formation of a Supernova Remnant (SNR)

SN 1987A

SN $1987 A$

LMC
$d=50 \mathrm{kpc}$
Dec $=-70 \mathrm{~d}$
$M^{*}=1 e 10 M_{\text {sun }}$
-

Zoom in onto SN 1987A

- Hubblê Space Telescope

The firework after the explosion

SN ejecta catching up with the mass loss from stellar winds

The firework after the explosion

SN ejecta catching up with the mass loss from stellar winds

Neutrinos from SN 1987A

19 neutrinos were detected
(in Japan \& Ohio)
the day before the optical explosion was seen

In a core-collapse SN (i.e., type II), neutrinos are produced when protons and electrons combine to form neutrons

At the center of the SN explosion, a Neutron Star is born

Theoretical Models

Sirius B - the white dwarf companion of the Dog Star

Sirius A and Sirius B
Hubble Space Telescope - WFPC2

- Inferred properties of Sirius B:
- 1 Solar Mass
- 0.03 Solar Luminosity
-27,000 K surface temperature
- 5500 km radius (Earth-size)
- Sirius B represent a class of objects called White Dwarfs (WDs)
- The physical conditions of WDs are extreme:
- extreme density ($\rho \approx 3 \mathrm{e} 9 \mathrm{~kg} / \mathrm{m}^{3}$) $\left(n_{e} \sim 1 \mathrm{e} 36 / \mathrm{m}^{3}\right)$
- extreme surface gravity (HW)
- extreme pressure at the center

Neutron stars are extremely compact and dense, even compared to white dwarfs

Neutron Star
Mass ~ 1.5 times the Sun ~ 12 miles in diameter

Solid crust ~1 mile thick

Heayy liquid interior Mostly neutrons, with other particles

- packing a solar mass into a ball of $\sim 10 \mathrm{~km}$ in radius results in a density of $\sim 10^{9}$ tons per teaspoon (compared to ~ 10 tons on a white dwarf)
- surface gravitational field $-300,000$ times that of Earth ($\mathrm{g}=\mathrm{GM} / \mathrm{R}^{2}$)
- To escape from a neutron star, an object would have to reach 50% the speed of light!

Outer crust
Atomic nuclei, free electrons
Inner crust
Heavier atomic nuclei, free neutrons and electrons
Outer core
Quantum liquid where neutrons, protons and electrons exist in a soup

Inner core

Unknown ultra-dense matter. Neutrons and protons may remain as particles, break down into their constituent quarks, or even become 'hyperons'.

Atmosphere

Hydrogen, helium, carbon

Beam of X-rays coming from the neutron star's poles, which sweeps around as the star rotates.

Core scenarios

A number of possibilities have been suggested for the inner core, including these three options.
© Up quark
© Down quark
© Strange quark
(2) Anti-down quark

Quarks

The constituents of protons and neutrons - up and down quarks - roam freely.

Bose-Einstein condensate

 Particles such as pions containing an up quark and an anti-down quark combine to form a single quantum-mechanical entity.
Hyperons

Particles called hyperons form. Like protons and neutrons, they contain three quarks but include 'strange' quarks.

Observable Neutron Stars I:

Pulsars

Neutron star has a size of a small city - How can we find them?

What are the unique observational properties of neutron stars?

- How can we tell if any of the objects in the image is a neutron star?

The Discovery of Pulsars in 1967

1967: Jocelyn Bell Burnell PhD student of Anthony Hewish at Cambridge University, England

Helped build a radio telescope to study the solar wind by looking at "twinkling" of background radio sources as their emission passes through the solar wind

In Nov 1967, she discovered a repeating radio signal with period ~ 1 s

Thought it could be detection of ET - "LGM1"
extraterrestrial (ET)
little green men (LGM)
Now known as PSR 1919+21

Pulsars

- Charged particles around rapidly rotating, highly magnetized object produce beam of synchrotron radiation
- The beams sweep by Earth like a lighthouse beam.

Neutron stars are expected to spin very fast!

Angular momentum of a uniform sphere, and L is conserved during collapse

$$
L=I \omega=\frac{2}{5} M r^{2} \omega \Rightarrow \omega \propto r^{-2} \Rightarrow P \propto r^{2}
$$

where I is the moment of inertia, and ω the angular velocity.

When the Sun ($\mathrm{R}=7 \mathrm{e} 5 \mathrm{~km}$) collapses into a neutron $\operatorname{star}(\mathrm{R}=10 \mathrm{~km})$:

What's the current angular velocity? What will be the rotating period?

$$
\omega_{\odot}=\frac{2 \pi}{P}=14 \mathrm{deg} / \text { day for } P=25 \text { days }
$$

Strengths of Magnets

The tesla (symbol: \mathbf{T}) is the SI unit of magnetic flux density (also called magnetic B-field strength). $1 \mathrm{~T}=\mathbf{1 e 4}$ Gauss
A particle, carrying a charge of one coulomb (C), and moving perpendicularly through a magnetic field of one tesla, at a speed of one meter per second, experiences a force with magnitude one newton (N), according to the Lorentz force law: $\mathbf{F}=q(\mathbf{E}+\mathbf{v} \times \mathbf{B})$.

Smallest value in a magnetically shielded room	$10^{\wedge}-14$ Tesla	$10^{\wedge}-10$ Gauss
Interstellar space	$10^{\wedge}-10$ Tesla	$10^{\wedge}-6$ Gauss
Earth's magnetic field	0.00005 Tesla	0.5 Gauss
Small bar magnet	$\mathbf{0 . 0 1}$ Tesla	100 Gauss
Within a sunspot	0.15 Tesla	1500 Gauss
Small NIB magnet	0.2 Tesla	2000 Gauss
Big electromagnet	1.5 Tesla	15,000 Gauss
Strong lab magnet	10 Tesla	100,000 Gauss
Surface of neutron star	$\mathbf{1 0 0 , 0 0 0 , 0 0 0}$ Tesla	$10^{\wedge} 12$ Gauss
Magstar	$\mathbf{1 0 0 , 0 0 0 , 0 0 0 , 0 0 0 ~ T e s l a ~}$	$10^{\wedge} 15$ Gauss

Conservation of magnetic flux:

Neutron stars are expected to have strong magnetic fields

The collapse of a star also concentrates the magnetic field on the surface Similar to angular velocity, $B \propto R^{-2}$
shrinking to a radius of 10 km , the Sun's magnetic field would be 1010 times as strong!
Magnetic field for normal star (e.g. Sun): a few Gauss (G)
Magnetic field for neutron star: up to $10^{15} \mathrm{G}$
Strongest magnetic field produced in a laboratory (for a few seconds): $10^{6} \mathrm{G}$

Optical Pulsars and Primary vs. Secondary Pulses

The pulsar near the center of the Crab Nebula

> a slow-motion optical video

Pulsars animation

The Discovery of Cepheid Variables and the P-L Relation

Delta Cephei - the Prototype Cepheid Variable Star

Period-Luminosity Relations (Leavitt's Law discovered in 1912)

- $M_{V}=-2.43 \log \left(P_{\text {day }}\right)-1.62$
(Type I Cepheids, Fritz et al. 2007)
- This is critical for determining distances to other galaxies: $d_{\mathrm{pc}}=10^{\frac{(m-M)+5}{5}}$

Annie Cannon and Henrietta Leavitt in 1913

Annie Jump Cannon

Cannon in 1922
Born
December 11, 1863
Dover, Delaware, U.S. ${ }^{[1]}$
Died April 13, 1941 (aged 77)
Cambridge, Massachusetts, U.S.
Alma mater Wellesley College, Wilmington
Conference Academy, Radcliffe College
Known for Stellar classification

In 1923, Edwin Hubble used a Cepheid to determine distance to M31

- $M_{V}=-2.43 \log \left(P_{\text {day }}\right)-1.62$ (Type I Cepheids, Fritz et al. 2007)
- This is critical for determining distances to other galaxies:

$$
d_{\mathrm{pc}}=10^{\frac{(m-M)+5}{5}}
$$

Cepheid Variable Star V1 in M31

The Instability Strip on the H-R Diagram

GAIA data release 2: Variable Stars on the HR Diagram

The Instability Strip on the HR Diagram

- Pulsating variables populate the instability strip on the HR diagram.
- During the pulsation, the stars change in both radius and temperature

Period-Luminosity Relation of Different Types of Cepheids

- Based on the shape of the light curve, astronomers have classified three main types of Cepheids:
- FM - Fundamental Mode
- FO - First Overtone
- T2 - Type II
- The P-L relations of the three types differ from each other, as illustrated on the diagram using ~2000 Cepheids in M31 (Kodric+2018; Fig 10).

How to Tell Apart the Different Types of Pulsating Variable Stars?

- Type I Cepheid variables
- Classic Cepheid variables are high-mass stars becoming supergiants.
- They have periods from 1 to 100 days.
- RR Lyrae variables \& Type II Cepheid variables
- These are low-mass stars on the horizontal branch.
- They are less luminous than Cepheid variables.
- They follow different L-P relations

Period-luminosity relationship

Cepheids Light Curves - Type I vs. Type II Cepheids

Type II Cepheids

RR Lyrae - Shorter Periods

- RR Lyrae variables have periods shorter than one day.
- Like Cepheids, their light curves show a variety shapes.
- They are low-mass stars in the horizontal branch phase.

RR LYRAE LIGHT CURVES

There are two major classes of RR Lyrae stars, based on the shape of their light curve, which measures a star's brightness over time: RRab- (left, middle) and RRc-type stars. Arrowom wownad

What's the physical mechanism that drives the pulsation?

Pulsating Variable Stars Change in Size and Temperature

- The star's luminosity changes as their radius and temperature changes at a regular period.
- A star can evolve into a pulsating variable star when its interior fails to achieve a steady balance between pressure and gravity (i.e., it overshoots and undershoots).

Pulsation Caused by Helium (He) Ionization and Recombination

- Pulsations are caused by the atmosphere oscillating between more ionized (more opaque) and more neutral (more transparent) phases.
- Photons go through gas
- Gravity condenses star

- Temperature increases
- He is ionized
- Gas becomes opaque

- Less ionization means less blocked photons
- Decreases pressure

- Opacity blocks photon flow
- Pressure increases
- Pressure expands star
- He cools and becomes less ionized

Pulsation Caused by Gas Ionization and Recombination

The kappa(opacity)-mechanism works as follows:

- As the star contracts, its temperature rises, causing the outer layers to become more ionized.
- The increased ionization leads to a corresponding increase in opacity in these layers.
- This increase in opacity inhibits the outward flow of radiation, leading to a buildup of pressure.
- The increased pressure causes the outer layers to expand, which in turn causes the temperature to decrease.
- As the temperature decreases, the outer layers become less ionized, reducing the opacity.
- With reduced opacity, radiation can escape more easily, leading to a decrease in pressure.
- The decreased pressure allows the outer layers to contract again, starting the cycle anew.

This cyclical process results in periodic expansions and contractions of the star's outer layers, which manifest as changes in brightness observed from Earth. The period of these pulsations is related to the time it takes for a pressure wave to travel through the star's interior and back to the surface.

The Origin of Elements: from H to Fe
Nucleosynthesis in the Big Bang, stellar cores, and supernovae explosions

The Primary Origin of Each Element

(up to two main contributors are shown for each element)

- The hydrogen atoms in water were created 13.7 billion years ago in the Big Bang ($t=3 \mathrm{~min}, T=1 \mathrm{e} 9 \mathrm{~K}$, density $=1 \mathrm{e} 5 \mathrm{~kg} / \mathrm{m}^{3}$)
- The oxygen atoms in the air you breathe and the water you drink were created by nucleosynthesis in the cores of high mass stars and released into the ISM via type II SNe.
- The carbon atoms were formed in the cores of low-to-intermediate mass stars and released into the ISM in the Post-AGB phase.
- The iron atoms that are a key element of hemoglobin, which makes up the red blood cells that carry oxygen from your lungs to the rest of your body, formed in the explosion of white dwarfs (type Ia SNe).

The Origin of Elements: Li, Be, and B

Classical Nova, AGB stars, and Cosmic Ray Spallation

Cosmic Ray Spallation (x-process): Be and B

- Cosmic rays are high energy particles emitted by astrophysical sources like our Sun, supernovae, and active galactic nuclei (1936 Nobel Prize)
- Cosmic rays can hit other nuclei and cause them to split. This process is called Cosmic Ray Spallation or x-process
- Lithium, Beryllium, and Boron are destroyed in stars, the x-process is responsible for their abundances:
e.g., $n+{ }^{14} \mathrm{~N}->\mathrm{p}+{ }^{4} \mathrm{He}+{ }^{10} \mathrm{Be}$, then ${ }^{10} \mathrm{Be}->{ }^{10} \mathrm{~B}+\mathrm{e}-$ (beta decay)

1

Spallation products

3

Excited nucleus decays

Lithium Production in AGB and Classical Nova (Gameron \& Fowler 1971)

- As part of the triple-alpha process in Helium burning, Beryllium forms:
- $3 \mathrm{He}+{ }^{4} \mathrm{He}->{ }^{7} \mathrm{Be}+$ photon
- if Be is transported to cooler regions ($10^{6} \mathrm{~K}$) by convection, it can form Lithium:
- $7 \mathrm{Be}+\mathrm{e}^{-}->\mathrm{Li}^{+}+$neutrino
- Otherwise, Beryllium fuses with hydrogen to form Boron:
- ${ }^{7} \mathrm{Be}+\mathrm{p}-{ }^{8} \mathrm{~B}+$ photon

Helium burning shell in an AGB star
Classical Novae are powered by thermonuclear runaway on the surface of C/O White Dwarfs.

The Origin of Elements: beyond Fe

Neutron star mergers and AGB Stars

Rapid and Slow Neutron Capture Processes (r- / s-process)

- Rapid neutron capture: the nuclei can capture multiple neutrons before the beta decay (emission of an electron)
- neutron star mergers (short Gamma-ray bursts), given the high neutron fluxes
- Makes half of the nuclei heavier than iron (mostly neutron-rich isotopes)
- Slow neutron capture: the nuclei undergo beta decay before another neutron can be captured.
- Important in AGB stars, neutron flux comes from ${ }^{13} \mathrm{C}(\alpha, \mathrm{n}){ }^{16} \mathrm{O}$ \& ${ }^{22} \mathrm{Ne}(\alpha, n){ }^{25} \mathrm{Mg}$
- Together with proton capture (p-process), makes the other half of the nuclei heavier than iron

Neutron Star Merger: Gravitational Wave \& Gamma-Ray Burst

The Proton Capture Process (p-process)

- makes neutron-deficit isotopes from selenium (Se-34) to mercury (Hg-80)

Summary: The Six Astrophysical Sources of Elements

(top two/three main contributors are shown foreach element)

THE HUMAN BODY
DNA

"We are all made of stardust" - Carl Sagan

Midterm 2

Key concepts to be tested

Chap 3: The Evolution of Low-Mass Stars

- Observations
- Nothing last forever, even stars
- H-R diagram of star clusters
- Numerical Models
- Equations of stellar structure and evolution
- Stellar evolutionary tracks
- Fine-Tune Models
- Isochrones (equal-age lines)
- Fitting cluster H-R diagrams
- Cluster age estimates
- Model Inferences
- Main stages and lifetimes
- Changes in the interiors of the stars: e- degenerate core + fusion shells

Chap 3: Key Equations

- Hydrostatic Equilibrium:

$$
\frac{d P}{d r}=-\rho g(r)=-\rho \frac{G M_{r}}{r^{2}}
$$

- The pressure from non-relativistic degenerate gas is:

$$
P_{\text {degen }}=\frac{2}{3} n \frac{p^{2}}{2 m} \approx \frac{h^{2}}{4 \pi^{2}} \frac{n^{5 / 3}}{m}
$$

- The pressure from ideal gas is:

$$
P_{\text {ideal }}=\frac{2}{3} n\left(\frac{3}{2} k T\right)=n k T
$$

- The condition for degeneracy is

$$
\frac{h^{2}}{4 \pi^{2}} \frac{n^{2 / 3}}{m}>k T
$$

- Mass-Radius relation:
- $R \propto M^{-1 / 3}$ for white dwarfs (Chandrasekhar limit: 1.4 $\mathrm{M}_{\text {sun }}$)
- $R \propto M^{0.7}$ for main-sequence stars

Chap 4: The Evolution of High-Mass Stars

- CNO Cycles
- Convective cores
- Consecutive fusion shells
- End of fusion - Binding Energy
- Type I vs. II supernovae

low- and medium-mass stars (including the Sun)

- Neutron stars and Pulsars
- Supernova Remnants (SNR): expansion parallax method
- The origins of elements: six primary astrophysical sources
- Periodic variables: Leavitt's law (standard candles)
- Mass-Transfer Binaries
- Roche Lobe, Lagrange Points
- Novae, Type la SNe, Blue Stragglers

Determining Distance from "Expansion Parallax"

Physical Size vs. Angular Size: $r=D \theta$
Physical Expansion Rate vs. Angular Expansion Rate:

$$
\dot{r} \delta t=D \dot{\theta} \delta t \rightarrow \dot{r}=D \dot{\theta}
$$

Distance $=$ Physical Expansion Rate $/$ Angular Expansion Rate

$$
D=\dot{r} / \dot{\theta}
$$

Radius Expansion $=\dot{r} \delta t$

e.g., $\dot{\theta}=0.01^{\prime \prime} / y r$, and $\dot{r}=250 \mathrm{~km} / \mathrm{s}$, what is the distance? But how do we measure the physical expansion rate \dot{r} in km / s ?

Period-Luminosity Relations (Leavitt's Law discovered in 1912)

- $M_{V}=-2.43 \log \left(P_{\text {day }}\right)-1.62$
(Type I Cepheids, Fritz et al. 2007)
- This is critical for determining distances to other galaxies: $d_{\mathrm{pc}}=10^{\frac{(m-M)+5}{5}}$

Mass-Transfer Binary Stars

Blue stragglers and Type-la SNe

The logarithmic of Binary Periods follow a "Bell" curve log Radius (AU)

What about stars in close binary systems? "Breaking the isolation and starting to share": co-evolution

Introducing the non-inertial co-rotating reference frame

- Inertial reference frame for binaries on circular orbits

- Non-inertial co-rotating reference frame

A non-inertial reference frame (also known as an accelerated reference frame ${ }^{[1]}$) is a frame of reference that undergoes acceleration with respect to an inertial frame. In classical mechanics it is often possible to explain the motion of bodies in non-inertial reference frames by introducing additional fictitious forces (also called inertial forces, pseudo-forces ${ }^{[5]}$ and d'Alembert forces) to Newton's second law. Common examples of this include the Coriolis force and the centrifugal force.

Effective potential in a co-rotating reference frame

The contours of equipotential show the effective gravitational potential on the orbital plane, the Lagrange points are the local maxima where the gradient of effective potential is zero (no acceleration in the co-rotating non-inertial reference frame).
$\Phi_{\mathrm{eff}}=-G\left(\frac{M_{1}}{s_{1}}+\frac{M_{2}}{s_{2}}\right)-\frac{1}{2} \omega^{2} r^{2}$
2nd term is (pseudo-)centrifugal potential

$$
\vec{a}_{\mathrm{eff}}=-\nabla \Phi_{\mathrm{eff}}
$$

Roche Lobe (or Roche Surface)

- On the orbital plane, there is a critical equipotential contour that intersects itself at the L1 point, forming a figure-of-eight.

Lagrange Points of a Binary System

- Equilibrium points for small mass objects under the influence of two massive orbiting bodies in a co-rotating frame of reference (non-inertial)

Roche Lobe (or Roche Surface)

- In 3D, the critical equipotential surface delineates two lobes in a binary system. In each lobe, small-mass objects are gravitationally bounded to the massive object at the center.

Location of the L1 Point: approximate formulae for large mass ratios (M2/M1 > 0.01), this provide a rough estimate of the sizes of Roche Lobes

$$
\begin{aligned}
& d\left(L 1 \rightarrow M_{1}\right)=a\left[0.5-0.227 \log \left(M_{2} / M_{1}\right)\right] \\
& d\left(L 1 \rightarrow M_{2}\right)=a\left[0.5+0.227 \log \left(M_{2} / M_{1}\right)\right]
\end{aligned}
$$

Note that as the mass ratio changes, the L1 point moves in the opposite direction as the center of mass.

Earth-Moon free-return trajectory: 1959 Soviet Luna 3

Star 1 Star 2

Roche lobes

Mass-Transfer Binary Stars

- $\sim 60 \%$ of stars are in binaries, a small fraction of which are very close binaries.
- The two stars in a binary have different MS lifetimes because of their different initial masses
- The more massive primary evolves into a RGB while the less massive secondary remains on the MS (middle figure)
- If the Roche lobe is smaller than the possible size of the RGB, the red giant primary can only expand so much before material is lost to the MS secondary's gravity (bottom fig)

Blue Stragglers:

MS stars in a cluster beyond the turnoff point

Mass-Transfer Binary Stars

- It's likely that by the time the less massive star evolves to a red giant, the originally more massive star already evolved into a WD (Fig d)
- So mass transfer reverses: the secondary star begins to lose its envelope to the WD's gravity, forming an accretion disk (Fig e)
- As the WD grows in mass because of accretion, there are two possible consequences.

Mass Transfer Binary Stars and Type la Supernovae

White Dwarf Mass
I 1.44 Solar
 explosively in a nova...

4 ...leaving the white dwarf and companion to possibly repeat the show.

- H deposition on the surface of the white dwarf from the red giant star
- Condenses onto degenerate core and explosively burns episodically: Nova
- For a few hours, a Nova can be 10^{5} times more luminous than the Sun.

In 1901, GK Persei was one of the brightest star on the sky (for a few days)
Light Curve of GK Persei

GK Persei: Nova of 1901 X-ray (blue), optical (yellow), radio (pink)

Takei et al. 2015 ApJ (2013 data)

6 ...pushing up the temperature until carbon ignites and burns explosively.

TYPE ISUPERNOVA

The Type I supernova consumes the white dwarf completely.

II: Type la Supernovae

- WD mass increases over time because of accretion from the RGB
- When its mass reaches $1.4 \mathrm{M}_{\text {sun }}$, the Chandrasekhar limit, gravity overcomes the relativistic electron degeneracy pressure
- The WD collapses, heats up and triggers a thermonuclear runaway:
- "C Flash": C core burns out in <1 sec! Forms Mg, Ne, Na, Ni, Fe.
- This is a Type Ia supernova.
- 10^{10} times brighter than the Sun comparable to the luminosity of a galaxy!
- Note: Type Ia may also be WD mergers

Type la Supernovae

- Over just a few days, the explosion releases about the same amount of energy as the Sun does over its entire main-sequence lifetime (10^{44} Joules).
- Type Ia supernovae are excellent distance indicators because they are standard candles (luminosity can be inferred from the shape of its light curve)

Type la Supernova Remnants

- The entire star explodes in the thermonuclear runaway - there is no central star left (unlike planetary nebulae and type II SNe)
- Supernova remnants are leftover shells of dust and gas from the explosion

a.

XRAY
IIMMO
b.

XRAY

More X-ray Images of Type la Supernova Remnants

Kepler supernova (1604)
Tycho supernova (1572)

Chap 4: The Evolution of High-Mass Stars

- CNO Cycles
- Convective cores
- Consecutive fusion shells
- End of fusion - Binding Energy
- Type I vs. II supernovae

low- and medium-mass stars (including the Sun)

- Neutron stars and Pulsars
- Supernova Remnants (SNR): expansion parallax method
- The origins of elements: six primary astrophysical sources
- Periodic variables: Leavitt's law (standard candles)
- Mass-Transfer Binaries
- Roche Lobe, Lagrange Points
- Novae, Type la SNe, Blue Stragglers

