

Chap 5: Galaxies (in the Universe Today)

- Nebulae or island universes? How to determine distances to galaxies? What is the distance ladder?
- What are the morphologies of galaxies today?
- How morphology is related to the stellar population?
- How orbits of stars and galaxy morphology are intertwined?
- Evidence of dark matter
- Evidence of supermassive black holes \& accretion energy

Viewing a Large Spiral Galaxy from Inside - the Milky Way

NGC 891 - an edge-on spiral galaxy

Milky Way compared to NGC 891 (an edge-on Spiral galaxy)

Milky Way

Milky Way in optical vs. infrared wavelengths

- The IR light is less attenuated by dust, revealing the central stellar bulge of the galaxy.
- Illustrating the importance of dust extinction

Nebulae or Island Universes?

The 1920 Great Debate

The 1920 Great Debate: "Nebulae" or "Island Universes"?

- Charles Messier and William and Caroline Herschel identified thousands of fuzzy "nebulae" in 1700s.
- Some astronomers thought the nebulae were located in the Milky Way, while others speculated that they were island universes.
- This was an important question as it was widely believed at the time that the Milky Way was the only galaxy in the universe.
- This was the subject of the 1920 Great Debate between Harlow Shapley and Heber Curtis.
- Shapley (1918) calculated the Milky Way to be 100 kpc across. He argued that the nebulae were inside the Milky Way.
- Curtis believed the Milky Way was smaller and therefore the nebulae were located outside of the Milky Way.

The "Sizes" of the Milky Way Galaxy

Actual size

Shapley's Milky Way: 300,000 ly

The Milky Way: Curtis's Milky Way: 105,700 ly 30,000 ly

Edwin Hubble (1889-1953)

- Born in Marshfield, Missouri
- B.S. \& Ph.D. from University of Chicago
- Key accomplishments:
- NGC 6822 and M31's distances: galaxies are island universes
- Hubble-Lamaitre law: the expansion of the universe
- Hubble's sequence of galactic morphology
- The age of the Crab nebula and its association with SN 1054.
- Photo on the left: portrait in front of the 100-in telescope on Mt Wilson, LA.

The debate was resolved by Hubble's discovery of Cepheids in NGC 6822

The debate was resolved by Hubble’s observations of NGC 6822

1925ApJ....62..409H N.G.C. 6822
Negative print of Plate XIV. Variable stars are designated by Arabic figures; nebulae involved in or superposed on the cluster by Roman numerals.

Hubble (1925)

Fig. r.-Light curves for two Cepheids in N.G.C. 6822. Upper curve, variable No. 6. Period 2 2.06 days; range 18.5-19.25. Lower curve, variable No. 2. Period 37.45 days; range 17.9-18.9. The three crosses on the rising slope of the upper curve represent observations on successive days and illustrate the rapid brightening of the variables.

$$
\begin{aligned}
m-M & =2 \mathrm{I} .65 \\
\pi & =0.100000468
\end{aligned}
$$

Distance $=214,000$ parsecs
$=700,000$ light-years

Later, more conclusively by Hubble's observations of M31-V1

- Hubble (1929): "A Spiral Nebula as a Stellar System, Messier 31"
- He discovered a Cepheid variable inside of the Andromeda (M31-V1).
- He used Leavitt (1908)'s Luminosity-Period relation to calculate the distance to M31. This distance was much greater than the size of the Milky Way per Shapley.

In 1923, Edwin Hubble used a Cepheid to determine distance to M31

- $M_{V}=-2.43 \log \left(P_{\text {day }}\right)-1.62$ (Type I Cepheids, Fritz et al. 2007)
- This is critical for determining distances to other galaxies:

$$
d_{\mathrm{pc}}=10^{\frac{(m-M)+5}{5}}
$$

The Distance Ladder

Stellar Parallax - The First Rung of the Ladder

Any directional shift due to a positional shift is a parallax effect, but in stellar astronomy, parallax is defined as half of the maximum directional shift due to Earth's orbital motion.
From this diagram, it's clear that parallax is inversely proportional to distance: $p \sim \mathbf{1} / \boldsymbol{d}$

Distances to Galaxies

- Finding distances to galaxies requires the use of the distance ladder in which short-distance methods are used to calibrate long-distance methods.
- Parallax uses geometry to measure the distances to stars.
- Standard candles are objects with a luminosity inferred from other properties, so that their brightness and luminosity can be combined to calculate a distance.
- Spectroscopic "parallax" uses the luminosity-spectral type relation of main sequence stars
- Cepheid variables uses the luminosity-period relation of pulsating variable stars.
- Type Ia supernovae uses the luminosity-duration relation.

The Standard Candle Methods

- If we had measured or inferred the absolute magnitude of a class of astrophysical objects, we can get the distance modulus (m-M) from its apparent magnitude.
- The distance modulus then gives us the distance:

$$
m-M=5\left(\log d_{\mathrm{pc}}-1\right) \Rightarrow d_{\mathrm{pc}}=10^{1+0.2(m-M)}
$$

The Standard Candle Method 1 - Cepheids (Leavitt’s Law)

- $M_{V}=-2.43 \log \left(P_{\text {day }}\right)-1.62$
(Type I Cepheids, Fritz et al. 2007)
- This is critical for determining distances to other galaxies: $d_{\mathrm{pc}}=10^{\frac{(m-M)+5}{5}}$

The Standard Candle Method 2 - Type la SNe

- Type la supernovae (SNe) have been used as standard candles to measure cosmological distances to other galaxies.
- They work as standard candles because the white dwarfs have to reach ~1.44 solar masses (Chandrasekhar limit) to trigger the thermonuclear explosion, reaching a peak absolute magnitude of $M_{v}=-19$, approximately!

Type la SNe - Luminosity-Lightcurve Correlation

- Over just a few days, the explosion releases about the same amount of energy as the Sun does over its entire main-sequence lifetime (10^{44} Joules).
- Type Ia supernovae are excellent distance indicators because they are standard candles (luminosity can be inferred from the shape of its light curve - how long the explosion last and how fast its brightness declines)

The Distance Ladder from Solar System to Galaxies

Distance Ladder: presented in a more technical Way

1. Geometric Distances -> Cepheids, Leavitt's Law
2. Cepheids $->$ SNe la, Lpeak-Lightcurve relation
3. SNe la -> Hubble's Law, expansion rate of Universe

Riess et al. (2022)

Critical Overlaps: Galaxies with both Cepheids and SNe la

10^{17} Solar Masses, 10^{5} Member Galaxies, 520 million light years across

The scope of the known Universe

Homework P3 Hint: Orbital Velocities of Planets

> Newton's laws: $\mathrm{GM}(\mathrm{r}) / \mathrm{r}^{2}=\mathrm{v}^{2} / \mathrm{r}=>\mathrm{M}(\mathrm{r})=\mathrm{v}^{2} \mathrm{r} / \mathrm{G}$
> $v(r)=\sqrt{G M(r) / r} \Rightarrow v(r) \propto 1 / \sqrt{r}$ because the Sun took 99.9% of the mass!

A Universe of Galaxies

- A galaxy is a gravitationally bound collection of dust, gas, a million to hundreds of billions of stars, and dark matter.
- A galaxy like the Milky Way contains about 100 billion stars.
- There are hundreds of billions of galaxies in the universe.

Galaxies evolve over time

Simulation of a Cube 30 Million Light Year Across

Dark Matter

Gas Temperature

Simulation: showing only baryonic components

Galaxy evolution highly depends on environment

Massive Galaxies Today:

Spirals, Ellipticals, Irregulars

Spiral Galaxies

- Spiral galaxies have arms that lie in a flat disk and a central bulge that extends above and below the disk.
- There are two types of spirals: regular and barred.

Barred Spiral Galaxies: e.g., NGC 1300

Spiral Galaxy Classification: Sa, Sb, Sc \& SBa, SBb, SBc

- Spirals are classified by how bright the central bulge is and how tightly wound the arms are.
- $\mathrm{Sa} / \mathrm{SBa}=$ bright center, tight arms
- $\mathrm{Sc} / \mathrm{SBc}=\mathbf{d i m}$ center, open arms

Sa

SBa

Sb

SBb

Sc

SBc

Elliptical Galaxiés: e.g., Central Cluster Galaxy in Abell S740

Elliptical Galaxy Classification

- Elliptical galaxies have spherical or ellipsoidal shapes.
- They have subtypes based on roundness.
- An E0 galaxy is nearly spherical.
- An E7 galaxy appears flattened.
- Elliptical galaxies appear smooth.
- They have very little dust.
- They have an old stellar population.

E0

E3

E5

An important caveat: geometric effects on observed morphology

Two spiral galaxies: why they look so different?

Inclination Angle Changes the Appearance of Disk Galaxies

$\cos i=b / a$

- where b and a are the semi-minor and semi-major axis of the ellipse, and i is the inclination angle

Estimate inclination angle from b / a ratio

Oblate Ellipsoid Model of Disk Galaxies (Hubble 1926)

$$
\cos ^{2} i=\frac{(b / a)^{2}-q^{2}}{1-q^{2}}
$$

- where q is the intrinsic thickness, the b / a ratio of the disk when viewed edge-on

RA 186.4932 Dec 3.4301

Hubble's Tuning Fork

Massive Irregular Galaxies

- Massive irregular galaxies have no defined shape.
- They are likely the product of a gravitational interaction between two galaxies (mergers).
- Some are forming stars at such a high rate that they are classified as starburst galaxies.

Irregular and Dwarf Galaxies

Chap 3-4: The Mass (Distribution) Function of Stars

- Initial Mass Function shows the distribution of stellar masses at birth

The Mass (Distribution) Function of Galaxies Today

Read \& Trentham 2005

Dwarf Galaxies vs. Massive Galaxies

- Dwarf galaxies have less than $\mathbf{1 0 \%}$ the stellar mass of the Milky Way. Their stellar masses range between 10^{2} and $\mathbf{1 0}^{10}$ solar masses.
- The low surface brightness of dwarf galaxies make them difficult to observe, so we are only detecting the nearest dwarfs.

Dwarf Galaxies: A Diverse Population

Bright dwarfs:
$M_{\star} \approx 10^{8} M_{\odot}$,
$M_{\text {vir }} \approx 10^{11} M_{\odot}$,
$M_{\star} / M_{\text {vir }} \approx 10^{-3}$
Classical dwarfs:
$M_{\star} \approx 10^{6} \mathrm{M}_{\odot}$,
$M_{\text {vir }} \approx 10^{10} M_{\odot}$,
$M_{\star} / M_{\text {vir }} \approx 10^{-4}$
Ultra-faint dwarfs:
$M_{\star} \approx 10^{4} M_{\odot}$,
$M_{\text {vir }} \approx 10^{9} M_{\odot}$,
$M_{\star} / M_{\text {vir }} \approx 10^{-5}$

ADOPTED DWARF GALAXY NAMING CONVENTIONS

Bright Dwarfs: $M_{\star} \approx 10^{7-9} \mathrm{M}_{\odot}$

- the faint galaxy completeness limit for field galaxy surveys

Classical Dwarfs: $M_{\star} \approx 10^{5-7} M_{\odot}$

- the faintest galaxies known prior to SDSS

Ultra-faint Dwarfs: $M_{\star} \approx 10^{2-5} \mathrm{M}_{\odot}$

- detected within limited volumes around M31 and the Milky Way

The Distribution of Dwarf Galaxies around the Milky Way

The HR Diagram of Galaxies

HR Diagram is a Color-Magnitude Diagram of Stars

Integrated color and luminosity of simple stellar populations

- Because individual stars are usually unresolved in galaxies, we can only measure the integrated color and the total luminosity from billions of stars in the same galaxy.
- We can illustrate this process with the HR diagram of star clusters, which represent simple stellar populations.
- If you sum up all of the stars in the two clusters below, what would be the resulting integrated color and luminosity?

Copyright © 2005 Pearson Prentice Hall, Inc.

As a stellar population ages, it becomes redder and fainter

HR diagram of clusters covering a range of ages

- Stellar population synthesis models follow the isochrone evolution of stellar populations and predict the integrated color and the total luminosity as a function of age.
- The mass-to-light ratio (M/L) increases because luminosity decreases faster than mass loss.

HR Diagram of Stars vs. CM Diagram of Galaxies

Color-Magnitude Diagram of Galaxies

Color-Magnitude Diagram of Galaxies

Integrated Color Naturally Separates Spirals and Ellipticals

Galaxies are

either blue spirals or red ellipticals

Hubble's Galaxy Classification Scheme

Galaxies in the Current Universe

Spiral Galaxies: Ongoing Star Formation in Spiral Arms

- Spiral arms contain cold gas and dust that get compressed into clouds.
- Cold gas can form into molecular clouds, out of which stars form.
- Star formation occurs in the spiral arms and produces a blue color.
- Blue light comes only from young stars.

Elliptical Galaxies: Little or No Recent Star Formation

- Passively evolving: No star formation has occurred in elliptical galaxies for a long time. Gas in ellipticals is mostly hot and only visible at X-ray wavelengths. Such hot diffuse gas cannot collapse to form stars.
- Do you expect to find Cepheid variables in Elliptical galaxies? Why?
- Do you expect to find Cepheid variables in Spiral galaxies? Why?

Evidence of Dark Matter

Orbital Velocities of Planets in the Solar System

```
Newton's laws: GM(r)/r2 \(=\mathrm{v}^{2} / \mathrm{r}\)
\(v(r)=\sqrt{G M(r) / r} \Rightarrow v(r) \propto 1 / \sqrt{r}\) because the Sun took \(99.9 \%\) of the mass!
```


A LONGSLIT PLACED ALONG A GALAXY'S MAJOR AXIS

LONG SLITS PLACED AT THE FOCAL PLANE

Evidence of Dark Matter in Disk Galaxies

Newton's laws: GM(r)/r2 $=\mathrm{v}^{2} / \mathrm{r}$
$v(r)=\sqrt{G M(r) / r} \Rightarrow v(r) \propto 1 / \sqrt{r}$ beyond the boundary of the disk

Flat Rotation Curves Provide Evidence for Dark Matter

- If mass distribution follows light distribution, rotation speeds should decrease at larger radii; But they remain constant!
- There must be an additional source of gravity that does not make light, called dark matter.
- Dark matter dominates mass in the outer regions of the galaxy and does not emit or absorb light (they are not dark, they are transparent!).

Rotation Curve Decomposition of M31 (Andromeda Galaxy)

Vera C. Rubin (1928-2016) - Dark Matter in Spiral Galaxies

"Her work helped usher in a Copernican-scale change in cosmic consciousness, namely the realization that what astronomers always saw and thought was the universe is just the visible tip of a lumbering iceberg of mystery."

- New York Times

Vera Rubin Observatory (formerly known as LSST)

An important caveat: How to measure rotation velocity at large galacto-centric distances?

Neutral Hydrogen disk is much more extended than the optical stellar disk

Cram+1980

Neutral Hydrogen disk extends farther out than the optical stellar disk

M31's Rotation Curve Revealed by the HI 21cm Emission Line

M31's Full Rotation Curve: Original Data Sources

The First Observational Evidence of Dark Matter

Zwicky 1933: velocity dispersion of galaxies in the Coma Cluster Virial Theorem: $2 \mathrm{~K}+\mathrm{U}=0=>\mathrm{V}^{2}=\mathrm{GM} / \mathrm{R}=>\mathbf{M}=\mathbf{V}^{2} \mathbf{R} / \mathbf{G}$
The virial mass is 400 x greater than visible stellar mass

Zwicky (1933) Section 5:

Comments on the Velocity Dispersion in the Coma Cluster of Nebulae

In order to obtain, as observed, a medium-sized Doppler effect of 1000 km / s or more, the average density in the Coma system would have to be at least 400 times greater than that derived on the basis of observations of luminous matter [This would be in approximate accordance with the opinion of Einstein and de Sitter as discussed in Sect. 4.]. If this should be verified, it would lead to the surprising result that dark matter exists in much greater density than luminous matter.

Non-Dynamical Evidence for Dark Matter: Gravitational Lensing

Lensing allows us to measure the total mass in the foreground lens galaxy or cluster

2024.4.8 Total Solar Eclipse "the greatest conjunction"

Crowd reaction, Cape Girardeau, MO

ABC News: Total eclipse captures hearts, minds of millions

Evidence of Dark Matter (continued)

Method 1: Circular Velocity

Circular motion under gravity alone: $\mathrm{GM}(\mathrm{r}) / \mathrm{r}^{2}=\mathrm{v}(\mathrm{r})^{2} / \mathrm{r}$, where $\mathrm{M}(\mathrm{r})$ is enclosed mass

$$
v(r)=\sqrt{G M(r) / r} \Rightarrow v(r) \propto 1 / \sqrt{r}
$$

So beyond the edge of the spiral galaxy, one expects the circular velocity to decline

Method 2: Strong Gravitational Lensing

Lensing allows us to measure the total mass in the foreground lens galaxy

Various lensing configurations reproduced by a wine glass

Modeling Strong Gravitational Lensing

Lens Galaxy - Deflector

Gravitational Lenses in the COSMOS Survey Hubble Space Telescope • ACS/WFC

Summary：The Components of M31

－Total Dynamical Mass： $1.2 \times 10^{12} \mathrm{M}_{\circ}$

－Normal Baryonic Matter（ $\sim 16 \%$ or $1 / 6$ ）

- Stellar Mass：～1011 M。
- Interstellar Medium（ISM）：～1010 M。 atomic／molecular H ，helium
－Circumgalactic Medium（CGM）：～1011 M。
Mostly ionized gas，some at million K
－Dark Matter（ $\sim 84 \%$ or $5 / 6$ ）
，Dark Matter Halo Mass：$\sim 10^{12}$ M。
Optical \rightarrow Stars

Dark Matter \& Normal Matter in Galaxy Clusters

Method 3: Virial Theorem in Coma Cluster

Zwicky 1933: velocity dispersion of galaxies in the Coma Cluster Virial Theorem: $2 \bar{K}+\bar{U}=0 \rightarrow \sigma^{2}=G M / R \rightarrow M=\sigma^{2} R / G$

The virial mass is 400 x greater than visible stellar mass

Gaussian Probability Density Function

$$
p(x)=\frac{1}{\sigma \sqrt{2 \pi}} e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^{2}}
$$

In galaxy clusters, the mass of the X-ray-emitting plasma in the ICM is $\sim 10 x$ more massive than the stars in the galaxies

Unlike galaxies, most of the normal matter in clusters is in gas instead of stars

Method 4: Weak Gravitational Lensing

Lensing allows us to measure the total mass in the foreground lens galaxy or cluster

Image distortion due to weak lensing

Total mass distribution of a galaxy cluster from weak lensing

Abell 1689 Weak Lensing vs. Optical
Abell 1689 X-ray vs. Optical

If dark matter and normal matter are distinctly separated in a galaxy cluster, we would expect the mass distribution from lensing to be completely different from the X-ray gas distribution

Cluster collision separates normal matter from dark matter

Blue: gravitational . : • Cluster Components:
lensing map showing.
total matter
distribution

When clusters collide, the ICM could be separated from the dark matter

A Key Component of M31 is Missing

－Total Dynamical Mass： $1.2 \times 10^{12} \mathrm{M}_{\circ}$

－Normal Baryonic Matter（ $\sim 16 \%$ or $1 / 6$ ）

- Stellar Mass：～1011 M。
- Interstellar Medium（ISM）：～1010 M。 atomic／molecular H ，helium
－Circumgalactic Medium（CGM）：～1011 M。
Mostly ionized gas，some at million K
－Dark Matter（ $\sim 84 \%$ or $5 / 6$ ）
－Dark Matter Halo Mass：～1012 M。
Optical \rightarrow Stars

Interstellar (2014)

Hunting for SMBHs in Galaxies methodology

Method 1: Resolving the Event Horizon (Schwarzschild Radius)

- In 1916, Karl Schwarzschild obtained the solution to Einstein's field equation for a non-rotating, spherically symmetric body.
- The solution has two singularities, one at $\mathrm{r}=0$, the other at $\boldsymbol{r}=\boldsymbol{r}_{s}=2 G M / \boldsymbol{c}^{2}$, and r_{s} is called the Schwarzschild radius. \boldsymbol{r}_{s} defines the event horizon of a Schwarzschild black hole:

$$
r_{s}=\frac{2 G M_{\mathrm{BH}}}{c^{2}}=3 \mathrm{~km}\left(\frac{M_{\mathrm{BH}}}{1 M_{\odot}}\right)=2 \mathrm{AU}\left(\frac{M_{\mathrm{BH}}}{10^{8} M_{\odot}}\right)
$$

- Note the implied mass-radius relation for black holes: $r_{s} \propto M$

Mass-Radius Relations of Planets, Stars, White Dwarfs, Neutron Stars, and Black Holes (from stellar mass to supermassive black holes)

Practice: the Size of a Supermassive Black Hole

- How big are supermassive black holes? We can use the Schwarzschild radius formula if we know the mass of the black hole.
- The black hole in M87 has a mass of 6.6 billion $M_{\text {Sun }}$
- The Schwarzschild radius is:

$$
r_{s}=\frac{2 G M_{\mathrm{BH}}}{c^{2}}=3 \mathrm{~km}\left(\frac{M_{\mathrm{BH}}}{1 M_{\odot}}\right)=2 \mathrm{AU}\left(\frac{M_{\mathrm{BH}}}{10^{8} M_{\odot}}\right)
$$

- For M87:

$$
r_{s}=130 \mathrm{AU}
$$

- This is just about 4 times the radius of Neptune's orbit! or about the same size as the heliosphere ($\mathrm{r} \sim 123 \mathrm{AU}$)

Method 1: Resolving the Event Horizon (Schwarzschild Radius)

- In 1916, Karl Schwarzschild obtained the solution to Einstein's field equation for a non-rotating, spherically symmetric body.
- The solution has two singularities, one at $\mathrm{r}=0$, the other at $\boldsymbol{r}=\boldsymbol{r}_{s}=2 G M / \boldsymbol{c}^{2}$, and r_{s} is called the Schwarzschild radius. \boldsymbol{r}_{s} defines the event horizon of a Schwarzschild black hole:

$$
r_{s}=\frac{2 G M_{\mathrm{BH}}}{c^{2}}=3 \mathrm{~km}\left(\frac{M_{\mathrm{BH}}}{1 M_{\odot}}\right)=2 \mathrm{AU}\left(\frac{M_{\mathrm{BH}}}{10^{8} M_{\odot}}\right)
$$

- Note the implied mass-radius relation for black holes: $r_{s} \propto M$

Practice: Can we spatially resolve the SMBH closest to us?

- Our distance to our Milky Way's center is 8 kpc .
- Suppose the SMBH at the center of MW is $1 \mathrm{e} 8 \mathrm{M}_{\text {sun }}$ (much larger than actual mass), its event horizon would have a radius of 2 AU .
- At this distance, what's the angular radius of the event horizon?

> 1 AU at $1 \mathrm{pc}=1 \mathrm{arcsec}$
> 1 AU at $1 \mathrm{kpc}=1 \mathrm{mas}$
> 2 AU at $8 \mathrm{kpc}=0.25 \mathrm{mas}$
> $=250$ micro-arcsec
> Hubble Space Telescope's diffraction limit: lambda/D $\sim 52 \mathrm{mas}$

The Sphere of Influence of an Entity is Larger than the Entity Itself

Sphere of Influence of a SMBH inside a Galactic Bulge

The Central SMBH live inside a Stellar Bulge made of stars on randomly oriented orbits

The Milky Way Galaxy

Spiral Galaxies:

Regular Circular Orbits of Disk Stars + Irregular Orbits of Bulge stars

Recall Velocity Dispersion of Galaxies in a Cluster

Zwicky 1933: velocity dispersion of galaxies in the Coma Cluster Virial Theorem: $2 \bar{K}+\bar{U}=0 \rightarrow \sigma^{2}=G M / R \rightarrow M=\sigma^{2} R / G$

The virial mass is 400 x greater than visible stellar mass

Gaussian Probability Density Function

$$
p(x)=\frac{1}{\sigma \sqrt{2 \pi}} e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^{2}}
$$

Method 2: Resolve the Sphere of Influence of a SMBH

- The Schwarzschild radius defines the event horizon of a Schwarzschild blackhole:

$$
r_{s}=\frac{2 G M_{\mathrm{BH}}}{c^{2}}=3 \mathrm{~km}\left(\frac{M_{\mathrm{BH}}}{1 M_{\odot}}\right)=2 \mathrm{AU}\left(\frac{M_{\mathrm{BH}}}{10^{8} M_{\odot}}\right)
$$

- The sphere of influence of a black hole defines the region around the BH where its gravity strongly affect the kinematics of stars:

$$
r<r_{*}=\frac{G M_{\mathrm{BH}}}{\sigma_{*}^{2}}=11 \operatorname{parsec}\left(\frac{G M_{\mathrm{BH}}}{r^{2}} \geq \frac{\sigma_{*}^{2}}{r} \Rightarrow M_{\mathrm{BH}} 10^{8} M_{\odot}\right)\left(\frac{200 \mathrm{~km} / \mathrm{s}}{\sigma_{*}}\right)^{2}
$$

- For a $10^{8} \mathrm{M}_{\text {sun }} \mathrm{BH}$ inside a stellar bulge that has a velocity dispersion σ_{*} of $200 \mathrm{~km} / \mathrm{s}$, the radius of the sphere of influence is \boldsymbol{a} million times greater than the radius of the event horizon.
- But note that the sphere of influence is still tiny compared to the size of the galaxy, which is at least $\boldsymbol{\sim} 10 \mathrm{kpc}$ in radius (1000x larger), depending on how you define its boundary.

Method 3: Detect Enormous Accretion Energy

How gravitational accretion produces energy?

Simulation of the formation of an accretion disk

The accretion disk around a black hole has an inner edge

the same cloud m ends up on the innermost stable circular orbit at $d=3 r_{s}=6 G M / c^{2}$

A gas cloud of mass m initially at $d \sim \infty$

Schwarzschild radius of a black hole of mass M

Energy Release from Black Hole Accretion

- Initial energy of a gas cloud m before accretion:

$$
\begin{gathered}
K+U=m v^{2} / 2-G M m / d=0 \\
\text { because } v=0 \text { at } d=\infty .
\end{gathered}
$$

- Final energy at the last stable orbit at $d=3 r_{s}=6 G M / c^{2}$:

We can use either Virial Theorem ($2 \mathrm{~K}+\mathrm{U}=0$) or Newton's law and circular orbits to obtain the following

$$
K+U=U / 2=-G M m / 2 d=-m c^{2} / 12
$$

- The difference between the initial energy and the final energy must be released to allow accretion to occur. So the amount of energy released is $m c^{2} / 12$ during the accretion of mass m.
- This shows that roughly $\mathbf{1 0 \%} \mathbf{(\sim 1 / 1 2)}$ of the rest mass is converted into energy. For comparison, the pp chain converts $\mathbf{0 . 7 \%}$ of the rest mass into energy (because $\delta m / m=0.7 \%$ between 4 xH and 1 xHe).
- This is huge! Just 1 Solar mass is accreted in a year, the released energy would be as luminous as 10^{12} Suns combined!

This explains the 10% mass-energy conversion factor of Type II SNe

Summary: Tools for detecting supermassive black holes

- Resolve the event horizon
. $r_{s}=\frac{2 G M_{\mathrm{BH}}}{c^{2}}=3 \mathrm{~km}\left(\frac{M_{\mathrm{BH}}}{1 M_{\odot}}\right)=2 \mathrm{AU}\left(\frac{M_{\mathrm{BH}}}{10^{8} M_{\odot}}\right)$
- Aperture synthesis with a network of radio observatories
- Minimizing the diffraction limit: $\theta=\lambda / D$
- Resolve the sphere of influence
. $r_{*}=\frac{G M_{\mathrm{BH}}}{\sigma_{*}^{2}}=11 \operatorname{parsec}\left(\frac{M_{\mathrm{BH}}}{10^{8} M_{\odot}}\right)\left(\frac{200 \mathrm{~km} / \mathrm{s}}{\sigma_{*}}\right)^{2}$
- Studies of Stellar and Gas Kinematics
- Adaptive Optics or Space Telescopes like HST
- Detect the incredible energy generation from accretion
- $L_{\mathrm{bol}}=0.1 \dot{M}_{\mathrm{BH}} \mathrm{c}^{2}=10^{12} L_{\odot}\left(\frac{\dot{M}_{\mathrm{BH}}}{1 M_{\odot} \mathrm{yr}^{-1}}\right)$
- Studies of Active Galactic Nuclei (AGN)
- Detect the gravitational wave generated from BH mergers
- Gravitational wave detectors like the Pulsar Timing Array

Evidence of SMBHs in the Nearest Massive Galaxies

Resolving the event horizon

Michelson interferometer (demo)

The Very Large Array (VLA)

The Very Long Baseline Array (VLBA)

Now the North Liberty Station of the Very Long Baseline Array

- The VLBA is an interferometer consisting of 10 identical 25 -meter antennas, separated by distances from 200 km to transcontinental 8600 km (with the longest baseline between Mauna Kea, Hawaii and St. Croix, Virgin Islands).

Beam 0.43×0.21 mas $\sim 60 \times 29 R_{\text {s }}$

@ 17° viewing angle, 5 mas $\sim 1.35 \mathrm{pc} \sim 2400 R_{\mathrm{s}}$ along jet.
0

The Univ. of Iowa North Liberty Radio Observatory in 1973

Angular resolution required to resolve the event horizon of M87*
Discerning the fingers of an astronaut at the distance of the moon

The Event Horizon Telescope

Wavelength: 1.3 mm Frequency: 231 GHz Theoretical diffraction limit: 25 microarcsec
https://iopscience.iop.org/journal/2041-8205/page/Focus_on_EHT

Firșt Image of a Supermassive Blackhole by the EHT

M87 (Giant•Elliptical)
Dist $=16.8 \mathrm{Mpc}$
$M_{\text {stellar }}=10^{12} \mathrm{M}_{\text {sun }}$
$\mathrm{M}_{\mathrm{BH}}=6.5 \times 10^{9} \mathrm{M}_{\text {sun }}$
The radio jets . suggest the existence of an accreting SMBH

GRMHD simulations of different spin parameters and accretion flows
GRMHD models

Simulated EHT observations

Directly Imaging the Event Horizon of SMBHs

Event Horizon Telescope

"More than 200 members from 59 institutes in 20 countries and regions have devoted years to the effort, all unified by a common scientific vision."

First M87 Event Horizon Telescope Results. I. The Shadow of the Supermassive Black Hole

The Event Horizon Telescope Collaboration

(See the end matter for the full list of authors.)
Received 2019 March 1; revised 2019 March 12; accepted 2019 March 12; published 2019 April 10

Abstract

When surrounded by a transparent emission region, black holes are expected to reveal a dark shadow caused by gravitational light bending and photon capture at the event horizon. To image and study this phenomenon, we have assembled the Event Horizon Telescope, a global very long baseline interferometry array observing at a wavelength of 1.3 mm . This allows us to reconstruct event-horizon-scale images of the supermassive black hole candidate in the center of the giant elliptical galaxy M87. We have resolved the central compact radio source as an asymmetric bright emission ring with a diameter of $42 \pm 3 \mu$ as, which is circular and encompasses a central depression in brightness with a flux ratio $\gtrsim 10: 1$. The emission ring is recovered using different calibration and imaging schemes, with its diameter and width remaining stable over four different observations carried out in different days. Overall, the observed image is consistent with expectations for the shadow of a Kerr black hole as predicted by general relativity. The asymmetry in brightness in the ring can be explained in terms of relativistic beaming of the emission from a plasma rotating close to the speed of light around a black hole. We compare our images to an extensive library of ray-traced general-relativistic magnetohydrodynamic simulations of black holes and derive a central mass of $M=(6.5 \pm 0.7) \times 10^{9} M_{\odot}$. Our radiowave observations thus provide powerful evidence for the presence of supermassive black holes in centers of galaxies and as the central engines of active galactic nuclei. They also present a new tool to explore gravity in its most extreme limit and on a mass scale that was so far not accessible.

Key words: accretion, accretion disks - black hole physics - galaxies: active - galaxies: individual (M87) galaxies: jets - gravitation

Weighing the SMBH in the Milky Way

 resolving the sphere of influence
Milky Way in optical vs. infrared wavelengths

- The IR light is less attenuated by dust, revealing the central stellar bulge of the galaxy.
- Illustrating the importance of dust extinction

Pinpoint the Galactic Center:

Radio images of the Galactic central region shows an unusually bright single point source surrounded by extended spirals.
Think about why do we need radio observations?

8 arcsec
1 light year
6 cm VLA image (Ekers et al. 1983)

Ground-based optical and near-IR telescopes need Adaptive Optics to

 reach diffraction limit because of atmospheric turbulence

The Galactic Center at 2.2 microns

Resolving individual stars near Sgr A* with IR Adaptive Optics

Mass and distance of the SMBH in the Milky Way Galaxy

Data from Genzel's \& Ghez's Groups

Mass and distance of the SMBH in the Milky Way Galaxy

The Nobel Prize in Physics 2020

© Nobel Prize Outreach. Photo: Fergus Kennedy

Roger Penrose

Prize share: 1/2

© Nobel Prize Outreach. Photo: Bernhard Ludewig
Reinhard Genzel
Prize share: 1/4

© Nobel Prize Outreach. Photo: Annette Buhl
Andrea Ghez
Prize share: 1/4

Weighing SMBHs in Other Galaxies

 resolving the sphere of influence
NGC 4258

Distance: 7 Mpc
Angular size: 18'x7'
SAB galaxy accreting SMBH (4e7 Msun)

NGC 4258: Keplerian Disk of $\mathrm{H}_{2} \mathrm{O}$ Masers w/i the central pc

Kormendy \& Ho 2013, with data from Argon+07, Moran 08

Elevated Stellar Velocity Dispersion in the Sphere of Influence

Bender+05

Elevated Gas Velocity Dispersion in the Sphere of Influence

NGC 4374, HST/STIS, Walsh+2010

Making Progress in Resolving the Sphere of Influence

Adaptive Optics

Tools for detecting Supermassive Black Holes (>10³ $\mathbf{M}_{\text {sun }}$)

- Resolve the event horizon
. $r_{s}=\frac{2 G M_{\mathrm{BH}}}{c^{2}}=3 \mathrm{~km}\left(\frac{M_{\mathrm{BH}}}{1 M_{\odot}}\right)=2 \mathrm{AU}\left(\frac{M_{\mathrm{BH}}}{10^{8} M_{\odot}}\right)$
- Aperture synthesis with a network of radio observatories
- Minimizing the diffraction limit: $\theta=\lambda / D$
- Resolve the sphere of influence
. $r_{*}=\frac{G M_{\mathrm{BH}}}{\sigma_{*}^{2}}=11 \operatorname{parsec}\left(\frac{M_{\mathrm{BH}}}{10^{8} M_{\odot}}\right)\left(\frac{200 \mathrm{~km} / \mathrm{s}}{\sigma_{*}}\right)^{2}$
- Studies of Stellar and Gas Kinematics
- Adaptive Optics or Space Telescopes like HST
- Detect the incredible energy generation from accretion
- $L_{\mathrm{bol}}=0.1 \dot{M}_{\mathrm{BH}} \mathrm{c}^{2}=10^{12} L_{\odot}\left(\frac{\dot{M}_{\mathrm{BH}}}{1 M_{\odot} \mathrm{yr}^{-1}}\right)$
- Studies of Active Galactic Nuclei (AGN)
- Detect the gravitational wave generated from BH mergers
- Gravitational wave detectors like the Pulsar Timing Array

Making Progress in Resolving the Sphere of Influence

Adaptive Optics

Evidence of SMBHs in Active Galaxies

Detecting gravitational accretion power

Discovery of Quasars: the Cambridge Interferometer

After WWII, Martin Ryle and Antony Hewish (1974 Nobel Prize) took 5 truckloads of surplus equipment from the Royal Aircraft Establishment, including several 3-7.5
m Würzburg radio antennae to build the Cambridge interferometer

Würzburg-Riese at Military History Museum, Gatow Airport, Berlin

Discovery of 3C 273: the First Quasar

Edge et al (1959) - $\mathbf{1}^{\prime}$

Optical Counterpart of 3C273

Quasar 3C 273 w/Jet \& MP 17971 1999 JZ 50

Discovery of 3C 273: the First Quasar

$z=0.158(760 \mathrm{Mpc})$
Schmidt (1963)

HST coronagraphic image reveals the host galaxy of 3C273

NASA, A. Martel (JHU), the ACS Science Team, J. Bahcall (IAS) and ESA

Quasars Show Rapid Variations in Brightness

What Could Power Quasars?

Accreting supermassive black holes

$$
L_{\mathrm{bol}}=0.1 \dot{M}_{\mathrm{BH}} \mathrm{c}^{2}=10^{12} L_{\odot}\left(\frac{\dot{M}_{\mathrm{BH}}}{1 M_{\odot} \mathrm{yr}^{-1}}\right)
$$

Hoyle et al (1964), Lynden-Bell (1969)

Active Galactic Nuclei: a Rare but Important Class of Galaxies

- Quasars are only a subset of active galactic nuclei (AGN).
- The luminosity of a quasar can be as large as the rest of the galaxy.
- The most luminous AGN are called quasars, the less luminous AGN are called Seyferts.
- All AGN are powered by central supermassive black holes with accretion disks.

Radio-Loud Quasars: Radio Jets and Lobes

- Radio-loud Quasars show large jets and lobes of radio emission, powered by the central engine.

Radio Galaxies: Similar Radio Jets and Lobes

- Radio galaxies are elliptical galaxies that have large jets and lobes of radio emission, powered by the central engine.
- Their radio properties are similar to radio-loud quasars but they do NOT show the central brilliant point source

Mrk 231: a Type 1 Seyfert

NGC 1672: a Type 2 Seyfert

Could Quasars \& Radio Galaxies be the same type of objects but viewed at different angles?
Could Type 1 \& Type 2 Seyferts be the same type of objects but viewed at different angles?

Unified Model of AGN: applicable to both Seyferts and Quasars/RGs

- The unified model of AGN attempts to explain the different types of AGN.
- What we see depends on our viewing angle of the AGN.
- Edge on: viewing emission from the torus
- Face on: viewing emission from the accretion disk and jet
- Blazar when viewing straight down the jet

Summary: Components of M31

- Total Dynamical Mass: $1.2 \times 10^{12} \mathrm{M}_{\circ}$
- Normal Baryonic Matter ($\sim 16 \%$ or $1 / 6$)

Optical \rightarrow Stars

Chap 5: Galaxies - Summary

- How to determine distances to galaxies? What is the distance ladder?
- What are the morphologies of galaxies today?
- How morphology is related to the stellar population?
- How orbits of stars and galaxy morphology are intertwined?
- Evidence of dark matter
- Evidence of supermassive black holes \& accretion energy

Chap 5 Galaxies: Key Equations

- Period-Luminosity relation of Cepheids: $M_{V}=-2.43 \log \left(P_{\text {day }}\right)-1.62$
- Distance modulus: $m-M=5 \log d_{\mathrm{pc}}-5 \Rightarrow d_{\mathrm{pc}}=10^{1+0.2(m-M)}$
- Virial Mass: $M_{\text {vir }}=\bar{v}^{2} R / G$
- Keplerian rotation curve:
$v(r)=\sqrt{G M(r) / r} \Rightarrow v(r) \propto 1 / \sqrt{r}$ when $M(r)$ no longer increases
- The Schwarzschild radius:

$$
r_{s}=\frac{2 G M_{\mathrm{BH}}}{c^{2}}=3 \mathrm{~km}\left(\frac{M_{\mathrm{BH}}}{1 M_{\odot}}\right)=2 \mathrm{AU}\left(\frac{M_{\mathrm{BH}}}{10^{8} M_{\odot}}\right)
$$

- The sphere of influence:

$$
r_{*}=\frac{G M_{\mathrm{BH}}}{\sigma_{*}^{2}}=11 \operatorname{parsec}\left(\frac{M_{\mathrm{BH}}}{10^{8} M_{\odot}}\right)\left(\frac{200 \mathrm{~km} / \mathrm{s}}{\sigma_{*}}\right)^{2}
$$

- Black hole accretion energy generation rate:

$$
L_{\mathrm{bol}}=0.1 \dot{M}_{\mathrm{BH}} c^{2}=10^{12} L_{\odot}\left(\frac{\dot{M}_{\mathrm{BH}}}{1 M_{\odot} \mathrm{yr}^{-1}}\right)
$$

