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Chap 6: The Expanding Universe - Outline
• Observations (facts) 

• Hubble’s Law &  
the Hubble “constant” 

• The Cosmic Microwave 
Background (CMB)

• Interpretations (theories) 
• The cosmological principle 
• Robertson-Walker metric 
• Friedman equation 

• Observations + Theory 
• Accelerating Expansion: 

Evidence of dark energy 

• The cosmic composition

• Predictions of the Big Bang 
theory: how everything began?



Evidence for an expanding Universe: 
 

Discovery of Hubble’s Law:  
distance vs. redshift at 0.02 < z < 0.2



Edwin Hubble (1889-1953)

• Born	in	Marshfield,	Missouri	
• B.S.	&	Ph.D.	from		
University	of	Chicago	

• Key	accomplishments:	
• M31’s	distance:	galaxies	are	
island	universes	

• Hubble’s	Law:	the	
expansion	of	the	universe	

• Hubble’s	sequence	of	
galactic	morphology	

• The	age	of	the	Crab	nebula	
and	its	association	with	SN	
1054.	

• Photo	on	the	left:	portrait	in	
front	of	the	100-in	telescope	
on	Mt	Wilson,	LA.





Distance measurements from Cepheid variables (Standard Candles)

• Hubble	(1929):	“A	Spiral	Nebula	as	a	Stellar	System,	Messier	31”	
• He	discovered	a	Cepheid	variable	inside	of	the	Andromeda	(M31-V1).		
• He	used	Leavitt	(1908)’s	Luminosity-Period	relation	to	calculate	the	distance	to	
M31.	This	distance	was	much	greater	than	the	size	of	the	Milky	Way	per	Shapley.



Spectroscopy: radial velocity measurements to trace the flow

• Use	galaxies	as	“massless”	particles	to	trace	the	flow	caused	by	gravity	or	other	things;	this	is	
similar	to	measuring	the	peculiar	velocities	of	solar	neighborhood	stars	in	the	Milky	Way.



Spectroscopy: radial velocity measurements to trace the flow

• Instead	of	finding	similar	numbers	of	blueshifted	and	redshifted	
galaxies,	Hubble	found	that	most	of	the	galaxies	are	redshifted	—	i.e.,	
they	appear	to	be	moving	away	from	us.

redshift	z	=	(λobserved	-	λrest)/λrest



Redshift and recession velocity at z << 1
• In	1920s,	two	technological	advancements	enabled	the	
discovery	of	Hubble’s	law	
• Distance	D	from	standard	candles	like	Cepheids	(L-P	
relation,	aka	Leavitt’s	Law)	

• redshift	z	from	moderate	resolution	spectroscopy:	
																			z	=	(λobserved	-	λrest)/λrest	

• inspecting	the	definition	of	z,	does	it	look	similar	to	the	
Doppler	shift	equation?		
																							vr/c	=	(λobserved	-	λrest)/λrest	

• so	small	redshifts	are	usually	converted	to	recession	
velocities	using	the	following	formula:		
																										vr	=	z	×	c	(when	z	<<	1)	

• This	relation	breaks	at	z	>	1,	when	it	implies	galaxies	
are	moving	away	from	us	at	speeds	greater	than	that	of	
light.	Cosmological	redshifts	are	not	due	to	Doppler	
effects,	but	due	to	the	increase	in	scale.





Hubble’s Law, also discovered in 1929
The	slope	of	the	velocity-distance	relation	measures	the	expansion	rate	of	
the	universe,	and	it’s	called	the	Hubble	constant	H0.	Initially,	Hubble	
measured	a	value	that	is	10x	too	high	at	500	km/s/Mpc.	
Hubble	(1929):	“A	Relation	between	Distance	and	Radial	Velocity	among	Extra-Galactic	Nebulae”



What are the implications of Hubble’s Law?

• Not	only	most	galaxies	are	redshifted,	but	also	their	redshifts	
increase	linearly	with	distance!	 	

• Hubble’s	Law	indicates	(1)	the	universe	is	expanding	uniformly	
everywhere	and	(2)	the	universe	had	a	beginning.

cz = H0D



Hubble Flow: Visualizing Expansion in 1D

• Simple	expansion	model:	paper	clips	on	a	rubber	band	
• As	the	rubber	band	stretches,	an	ant	riding	on	clip	B:	

• observes	itself	as	stationary	
• observes	clip	F	moving	away	twice	as	fast	as	clip	D	
• observes	clip	A	and	C	moving	away	at	the	same	speed	

• An	ant	on	any	paper	clip	would	make	similar	observations.



Hubble Flow: Visualizing Expansion in 3D

• Galaxies	as	tracers	of	space	shows	that	universe	is	expanding.		
• Galaxies	are	moving	away	from	us	because	space	is	created	
• New	space	is	created	uniformly	in	the	Universe,	leading	to	the	
linear	proportionality	between	redshift	and	distance.



Hubble Flow: no “center” of the expansion, and non-Doppler redshifts

•It	might	appear	that	we	are	in	the	center	of	the	universe,	with	all	
galaxies	moving	away.	But	there	is	no	center:	from	any	point	in	the	
universe,	it	would	look	the	same.		

•So	the	redshifts	of	galaxies	are	not	due	to	motion	(Doppler	shift),	
but	due	to	space	creation	(increasing	in	scale)



Cosmological redshift is NOT 
Doppler shift, it is caused by an 

increasing scale factor



Redshift and the Expansion

• Redshifts	of	galaxies	are	
not	due	to	Doppler	
shifts	(relative	motions)	

• Instead,	the	light	is	
“stretched	out”	as	it	
travels	through	the	
expanding	universe:	
this	is	known	as	
cosmological	redshift.	

• The	wavelength	of	light	
is	getting	longer	over	
time	because	the	scale	
factor	is	increasing.	

• A	higher	redshift	
indicates	a	smaller	scale	
factor.	Light	emitted	at	
high	redshift	will	be	
very	stretched	out.



An uniform expansion of the Universe must be scalable

• Imagine	space	like	a	rubber	sheet,	stretching	the	sheet	
increases	the	scale	factor	everywhere	on	the	sheet,	
causing	distances	between	grid	points	to	increase



Cosmological	redshift	of	
photons	emitted	from	a	

distant	galaxy	is	caused	by	the	
increasing	scale	factor	of	the	

universe	(Ru):	
	

RU(z)
RU(0)

= RU(z) =
1

1 + z
=

λrest

λobserved
=

λ(z)
λ(0)



The Scale Factor

• The	scale	factor	(RU)	is	a	
measure	of	how	much	the	
universe	has	expanded.	

• The	scale	factor	gets	smaller	
as	we	look	back	in	time.	
• For	example,	when	RU	=	
0.5,	the	universe	was	half	
of	its	current	size.	

• The	expansion	pulls	galaxies	
apart	but	does	not	destroy	
galaxies	(yet!):	
• At	scales	smaller	than	the	
Local	Group,	gravitational	
forces	can	overcome	the	
space	expansion.



RedshiX gives the scale factor of the Universe at the emiYed Zme

• The	redshift	tells	us	how	much	the	universe	has	
expanded	since	a	galaxy’s	light	was	emitted.	

• Write	RU	as	the	scale factor,	then	
	
																							 	
	

• Example:	z	=	0	means	today,	when	RU	=	1.0.	This	
is	the	maximum	scale	factor.	

• Example:	z	=	1	means	RU	=	0.5.		The	universe	was	
half	its	current	size	when	light	was	emitted	from	
this	galaxy.	

• Example:	z	=	9	means	RU	=	0.1

RU =
1

1 + z
=

λrest

λobserved



What is redshift? Classical vs. Relativistic Doppler Shift, and Scale Factors

• The	classical	Doppler	
shift	formula,	

	

gives	recession	velocity:	
													 	

• The	relativistic	Doppler	
shift	formula,	

	

gives	recession	velocity:	

			 	

• But,	cosmological	redshift	
should	be	understood	as	a	
ratio	of	scale	factors:	

1 + z =
λobs

λ0
= 1 +

vr

c

vr = cz

1 + z =
λobs

λ0
=

1 + vr /c
1 − vr /c

vr = c
(1 + z)2 − 1
(1 + z)2 + 1

1 + z =
λobs

λ0
=

1
RU(z)



The Hubble Time (tH = 1/H0) 
 

An estimate of the age of the Universe



Expansion of space means that Universe was very small in distant past

• If	galaxies	are	getting	farther	apart	now,	they	must	be	closer	together	in	
the	past.	Hubble’s	law	implies	that	the	entire	Universe	started	from	a	
single	point.	Can	we	estimate	when	the	Universe	was	a	single	point?	



Visual Summary
• Because	Hubble’s	law	is	a	linear	relation,	it	does	not	matter	which	two	
galaxies	you	use	to	make	this	measurement;	the	end	result	will	be	the	same.



• Assume	space	creation	rate	is	constant:	 	

• Then,	move	dt	to	the	right	side	and	integrate	both	side	from	t=0	to	t=t0,	we	have:	
																																															 	

• Given	that	D(t=0)	=	0,	we	can	solve	the	age	of	the	Universe	t0	today:		
																																												

dD
dt

= constant = H(t)D(t) = H0D(t0)

D(t0) − D(t = 0) = H0D(t0) ⋅ (t0 − 0)

t0 = 1/H0 = 1/(70 km/s/Mpc) ≈ 14 Gyr

The Hubble Time: How long ago did the Universe start expanding?

z=0.1

z=0.07



Cosmological Redshifts measure the Scale Factor of the Universe

• cosmological	redshift	should	be	
understood	as	a	ratio	of	scale	factors:	
											1 + z =

λobs

λ0
=

1
RU(z)



Alternative derivation of the Hubble time using Scale Factor

• Hubble’s	law:		cz	=	H0	D	=	H0	[c	(t0-t)],	where	we	used	the	lookback	time	
times	c	to	replace	distance	D.	Canceling	c	on	both	sizes,	we	have	z	=	H0	(t0-t)	

• Scale	factor:	Ru	=	1/(1+z)	≈	1-z	for	z	≪	1	
• which	give	the	most	recent	expansion	history	of	the	Universe:	Ru	=	1-H0	(t0-t),	
• Extrapolating	the	relation	to	Ru(t=0)	=	0,	we	solve	for	Hubble	time:	t0	=	1/H0

Time	(t)
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Age	of	the	Universe	(t0)

Extrapolated 
Expansion History 

Galaxies at low redshift (z < 0.1) 
give us a measurement of the  

slope of the expansion history: H0

t0t
The Most Recent  
Expansion History 



The various possible expansion histories of the Universe
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The	Hubble	time	(t0	=	1/H0)	provides	only	an	estimate	of	the	Universe’s	age.	



A Changing Hubble Parameter H(z)
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Billions of years ago

• The	Hubble	constant,	 ,		is	the	expansion	rate	of	the	Universe	today.	In	this	
definition,	the	expansion	rate	of	the	Universe	is	expected	to	change	over	time	because	the	
universe	obviously	was	younger	in	the	past.	

• For	the	expansion	rate	at	any	time,	we	thus	define	 	as	the	Hubble	parameter.		
• At	t	=	t0	(today),	this	definition	gives	Hubble’s	Law:	
																				

H0 = cz /D

H(t) = ·RU(t)/RU(t)

·RU(t0) = H(t0)RU(t0) ⇒ ·D = H0D where D = RUDcomoving



Mathematical Description of  
the dynamics of the Universe:  

 
The Friedmann Equation

Alexander Friedmann (1888 – 
1925) was a Russian physicist 
and mathematician. Fought in 
WWI as an aviator. Died at age 
37 from typhoid fever.

https://en.wikipedia.org/wiki/Russians
https://en.wikipedia.org/wiki/Physicist
https://en.wikipedia.org/wiki/Mathematician


Fundamental Assumption: The Cosmological Principle

• Although	galaxies	tend	to	clump,	on	the	largest	cosmic	scales,	the	
Universe	is	both	homogeneous	and	isotropic	
• Homogeneous:	there	is	no	preferred	location	in	the	Universe	
• Isotropic:	there	is	no	preferred	direction	in	the	Universe



Friedmann Equation: Classic Derivation based on Energy Conservation

• Imagine	a	spherical	shell	
with	unit	mass	in	a	matter-
only	universe	with	a	
comoving	radius	of	x,	as	
the	universe	expands:	
• its	physical	radius	at	
time	t	is	r(t)	=	RU(t)	x,		

• its	expanding	velocity	is	
,	and		

• the	mass	enclosed	in	the	
shell	is	

v(t) = ·RU(t) ⋅ x

M(r) =
4π
3

[RU(t)x]3 ⋅ ρ(t)

M(r) =	(4π/3)	ρ r3

r = Ru x



Friedmann Equation: Classic Derivation based on Energy Conservation

• Imagine	a	spherical	shell	with	unit	mass	in	a	matter-only	universe	
with	a	comoving	radius	of	x,	as	the	universe	expands:	
• its	physical	radius	at	time	t	is	r(t)	=	RU(t)	x,		
• its	expanding	velocity	is	 ,	and		

• the	mass	enclosed	in	the	shell	is	 	

• We	can	write	down	the	kinetic	+	gravitational	potential	energy	for	
the	unit-mass	spherical	shell:	
													 	

• This	energy	per	unit	mass	must	be	the	same	for	every	shell	with	the	
same	comoving	radius	x,	so	we	can	define	E	with	a	k	parameter:	
																																																	 	

• Combining	the	two	Eqs.	and	cancel	out	x2	on	both	sides,	we	obtain:	

																																						

v(t) = ·RU(t) ⋅ x

M(r) =
4π
3

[RU(t)x]3 ⋅ ρ(t)

E =
1
2

v2 −
GM(r)

r
=

1
2

·RU(t)2x2 −
4π
3

Gρ(t)RU(t)2x2

E ≡ −
1
2

kc2x2

(
·RU

2

R2
U

−
8
3

πGρ) R2
U = − kc2



• Recall	the	definition	of	the	Hubble	parameter:		
																																																	 	

• define	a	new	parameter	called	critical	density:		

																																																					 	
note	that	because	H	varies,	the	critical	density	is	not	a	constant.	

•we	can	now	rewrite	the	energy	conservation	

																																						 	

as:	
																																									 	

• next,	define	the	density	ratio	as	a	dimensionless	density	parameter	
called	Omega:		
																																																				 		

• Finally,	we	have	the	Friedmann	equation	in	a	matter-only	universe:	
																																								 	

H(t) ≡ ·RU /RU

ρc =
3H2

8πG

(
·RU

2

R2
U

−
8
3

πGρ) R2
U = − kc2

H2 (1 −
ρ
ρc

) R2
U = − kc2

Ωm ≡ ρm /ρc

H2 (1 − Ωm) R2
U = − kc2

Friedmann Equation: Classic Derivation based on Energy Conservation



Calculating the Critical Density in Today’s Universe

• The	critical	density,	 ,	varies	as	the	universe	evolves,	just	like	the	
Hubble	parameter.	Its	value	Today,	 ,	can	be	calculated	from	the	
Hubble	constant:	

																																																										

• If	we	rewrite	 	as	 	by	converting	
Mpc	to	km,	then	the	critical	density	of	Today’s	universe	is:	

																		  

              

• Given	that	 ,	this	is	equal	to	a	hydrogen	number	density	of	5.7	
hydrogen	atoms	per	cubic	meter	(mH	=	1.67e-27	kg).	

• It	seems	small,	but	the	observed	mass	density	of	ordinary	matter,	
averaged	over	large	volumes,	is	less	than	one	hydrogen	atom	per	cubic	
meter	(n	<	1	m-3	=	1e-6	cm-3).

𝜌𝑐
ρc(t0)

𝜌𝑐 =
3𝐻2

0

8𝜋𝐺
𝐻0 = 70 km/s/Mpc 𝐻0 = 2.3  ×  10−18/s

𝜌𝑐 =
3  ×  (2.3  ×  10−18/s)2

8  ×  𝜋  ×  [6.67  ×  10−20km3/(kg s2)]
𝜌𝑐 = 9.5  ×  10−27kg/m3

ρ = μmHn



Expansion histories predicted by the 
Friedmann Equation 

 
Part I: matter-only universe



• The	Friedmann	Equation	(FE)	in	a	matter-only	universe	is:	
																																 	
where	the	original	terms	were	replaced	by	three	key	parameters:	
• Hubble	parameter:	 ,		

• critical	density:		 ,	and		

• density	parameter:	 	,		
• To	solve	the	Friedmann	Equation,	we	need		

• the	boundary	condition	at	t	=	t0:		
																							H	=	H0,	RU	=	1,	thus	 	

• the	density	relation	for	matter:	

																									 	

• Replacing	 	and	 	with	the	above	two	relations,	we	arrive	at	a	
solution	of	the	Hubble	parameter	as	a	function	of	redshift	or	scale	factor:	

																													

H2 (1 − Ωm) R2
U = − kc2

H(t) ≡ ·RU /RU

ρc =
3H2

8πG
Ωm ≡ ρm /ρc

H2
0(1 − Ωm,0) = − kc2

Ωm

Ωm,0
=

ρmρc,0

ρm,0ρc
=

ρm

ρm,0

H2
0

H2
=

1
R3

U

H2
0

H2

−kc2 Ωm

H2 =
H2

0

R2
U

[(1 − Ωm,0) + Ωm,0 /RU]

Solving the Friedmann Equation in a Matter-Only Universe



Solutions of the Friedmann Equation: H vs. z and t vs. z

• Plug	in	the	boundary	condition	and	the	density	parameter	relation:	

																																	 	

• The	above	is	the	solution	for	the	Hubble	parameter.	For	example,	for		
																												 	
	

• To	solve	for	the	time	evolution,	we	need	to	express	 :	

																										 	

• For	simplicity,	we	assume	 	(a	universe	where	density	equals	
critical	density).	Separate	time	t	and	scale	factor	RU	to	two	sides:	

																																																			 	

• Then	integrate	the	differential	equation	from	RU	=	0	(i.e.,	t	=	0)	to	RU	=	1/
(1+z)	[i.e.,	t(z)],	we	can	solve	for	time	as	a	function	of	scale	factor	or	
redshift:	
														 	or		 	or	

H2 =
H2

0

R2
U

[(1 − Ωm,0) + Ωm,0 /RU]

Ωm,0 = 1 ⇒ H = H0/R3/2
U = H0(1 + z)3/2

H(t) ≡ ·RU /RU

( 1
RU

dRU

dt )2 =
H2

0

R2
U

[(1 − Ωm,0) + Ωm,0 /RU]

Ωm,0 = 1

dt =
RUdRU

H0

t =
2

3H0
R3/2

U t(z) =
2
3

tH(1 + z)−3/2 RU = (3H0t/2)2/3



Predicted Expansion History if Only Matter Is Involved

The expansion history depends 
on Ωm,0, while H0 sets the overall 
scale.

✤ Ωm,0 < 1: sub-critical, expanding 
forever.

✤ Ωm,0 = 1: critical, expanding 
forever, but expansion rate 
approaches zero as time goes. 
This critical universe is called 
Einstein-de Sitter universe 

✤ Ωm,0 > 1: super-critical 
expansion stops and the universe 
collapse. (Big Crunch)

H2 =
H2

0

R2
U

[(1 − Ωm,0) + Ωm,0/RU] t = tH ∫
RU

0

dRU

(1 − Ωm,0) + Ωm,0 /RU



The Total Normal Matter Density is Sub-Critical

• Ordinary	matter	in	galaxies,	IGM,	and	ICM:	Ωm,0	=	4.5%	(today).	
• Dark	matter	increases	Ωm,0	to	32%	(today).



Space-Time Geometry of the Universe 
 

the Robertson-Walker Metric



Redshift—Scale-factor Relation from the Robertson-Walker Metric

• In	General	Relativity,	a	metric	is	a	function	which	measures	differential	space-
time	distance	between	two	events	and	is	Lorentzian	invariant.	The	Robertson-
Walker	metric	is	the	metric	that	describes	the	geometry	of	a	homogeneous,	
isotropic,	expanding	universe.	The	metric	in	spherical	coordinate	system	is:	
	
																 	

	
where	RU	is	the	scale	factor,	x	is	the	comoving	radial	distance	 ,	k	is	the	
comoving	curvature	 .	The	same	terms	are	in	Friedmann	Equation.	

• Photons	travel	along	null	geodesics	(ds	=	0,	i.e.,	proper	time	is	frozen).	Along	the	
radial	direction	( ),	we	have:		
																																																																 	

• Follow	the	path	of	two	adjacently	emitted	photons	(separated	by	one	wavelength:	
)	by	integrating	from	emitter	to	observer:		

	

	
which	gives	us	the	redshift—scale-factor	relation	
																						

(ds)2 = (c ⋅ dt)2 − R2
U(t)[( dx

1 − kx2 )2 + (xdθ)2 + (x sin θdϕ)2]
x ≡ r(t)/RU(t)

k ≡ K(t)RU(t)2

dθ = dϕ = 0
dx

1 − kx2
=

c dt
RU(t)

δte = λe/c, δto = λo/c, 1 + z = λo/λe

∫
xo

xe

dx

1 − kx2
= ∫

to

te

cdt
Ru(t)

= ∫
to+δto

te+δte

cdt
Ru(t)

= ∫
to

te

cdt
Ru(t)

+ ∫
to+δto

to

cdt
Ru(t)

− ∫
te+δte

te

cdt
Ru(t)

⇒
cδto

RU(to)
=

cδte
RU(te)

⇒ RU(te) =
δte
δto

=
λe

λo
=

1
1 + z



The curvature parameter k in the Friedmann Equation

• The	universe	has	three	possible	geometry	types	determined	by	
,	given	the	boundary	condition	today	 	

(Unit	of	k:	1/Mpc2)	
• k	=	0	(Ω0	=	1):	Flat	universe,	infinite.		
• k	<	0	(Ω0	<	1):	Open	universe,	infinite,	like	the	surface	of	a	saddle.	
• k	>	0	(Ω0	>	1):	Closed	universe,	finite,	like	the	surface	of	a	sphere.

Ω0 & H0 k = − H2
0(1 − Ω0)/c2

2D Analogies



Expansion histories predicted by the  
Friedmann Equation 

 
Part II: matter + radiation + dark energy 

universe



The Complete Friedmann Equation with matter and dark energy

• By	defining	a	new	parameter	called	critical	density:	 ,	
we	have	derived	the	Friedmann	Equation	for	matter-only	universe:	
	
																																 	

• The	full	General	Relativity	version	of	the	Friedmann	Equation	is:	

																							 	

• There	are	now	three	density	ratios,	i.e.,	define	three	Omega’s:	
• 	,	ordinary	matter	(baryons	and	dark	matter)	
• ,	relativistic	matter	(light	and	neutrinos)	

• ,	dark	energy	( 	is	the	cosmological	constant	and	
has	the	same	physical	unit	as	the	curvature	constant	k)		

• Replacing	those,	we	have	the	final	Friedmann	Equation:	
																										 	

ρc =
3H2

8πG

H2 (1 −
ρ
ρc

) R2
U = − kc2

H2 [1 − (ρm

ρc
+

ργ

ρc
+

Λc2

8πGρc
)] R2

U = − kc2

Ωm ≡ ρm /ρc

Ωγ ≡ ργ /ρc

ΩΛ ≡ Λc2/(8πGρc) Λ

H2 [1 − (Ωm + Ωγ + ΩΛ)] R2
U = − kc2



How to Solve the Complete Friedmann Equation? H(z) solution

• Boundary	Condition	at	t	=	t0:		
																							H	=	H0,	RU	=	1,	thus	 	

• Relations	between	density	parameters	and	scale	factor:		

																														 	

	

																															 				and						 	

• Write	down	the	Friedmann	Equation	with	the	boundary	condition:	
														 	
then	plug	in	the	density	parameter	relations	and	rearrange:	

															 	

• Examples:	
• For	an	empty	universe:	
									 	

• For	a	matter-only	flat	universe	(Einstein-de	Sitter	universe):	
					

H2
0(1 − Ω0) = − kc2

Ωm

Ωm,0
=

ρmρc,0

ρm,0ρc
=

ρm

ρm,0

H2
0

H2
=

1
R3

U

H2
0

H2

Ωγ

Ωγ,0
=

1
R4

U

H2
0

H2

ΩΛ

ΩΛ,0
=

H2
0

H2

H2 [1 − (Ωm + Ωγ + ΩΛ)] R2
U = − kc2 = H2

0(1 − Ω0)

H2 =
H2

0

R2
U

[(1 − Ω0) + Ωm,0/RU + Ωγ,0/R2
U + ΩΛ,0R2

U]

Ω0 = Ωm,0 = Ωγ,0 = ΩΛ,0 = 0 ⇒ H = H0/RU = H0(1 + z)

Ω0 = Ωm,0 = 1,Ωγ,0 = ΩΛ,0 = 0 ⇒ H = H0/R3/2
U = H0(1 + z)3/2



How to Solve the Complete Friedmann Equation? t(z) or Ru(t) solution

• Write	down	the	Friedmann	Equation	with	the	boundary	condition	and	
replace	Hubble	parameter	with	scale	factor,	 ,	we	have	

								 	

• For	simplicity,	assume	a	flat	universe:	 .		
• Separate	time	and	scale	factor	into	two	sides	of	the	equation:	
																											 	

• Integrating	it	from	RU=0	(i.e.,	t=0)	to	RU	=	1/(1+z)	[i.e.,	t(z)],	we	can	
solve	for	the	t(z)	relation	for	any	given	values	of	the	density	parameters.		

• For	example,	for	a	matter-only	critical/flat	universe	(a.k.a.	the	
Einstein-de	Sitter	universe),	we	have	solved	for	both	H(z)	and	t(z):	
																																 	
	
																														 	
	
																														

H(t) ≡ ·RU /RU

( 1
RU

dRU

dt )2 =
H2

0

R2
U

[(1 − Ω0) + Ωm,0/RU + Ωγ,0/R2
U + ΩΛ,0R2

U]

Ω0 = Ωm,0 + Ωγ,0 + ΩΛ,0 = 1

dt =
1

H0

RUdRU

Ωm,0RU + Ωγ,0 + ΩΛ,0R4
U

Ω0 = Ωm,0 = 1, Ωγ,0 = ΩΛ,0 = 0

⇒ H = H0/R3/2
U = H0(1 + z)3/2

⇒ t(z) =
2
3

tH(1 + z)−3/2



Ru(t) solutions: Expansion history with the cosmological constant



Time (t/Gyr)
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Ru(t) soluZon from FE: The Expansion History



Constraints on Cosmological Parameters:  
 

distance-redshift relation up to z ~ 1



Distance Modulus Measurements from Standard Candles

• Type Ia supernovae (SNe) have been used as standard 
candles to measure cosmological distances to other galaxies. 

• They work as standard candles because presumably the 
white dwarfs have to reach 1.44 solar mass (the 
Chandrasekhar mass) to trigger the thermonuclear explosion 

• At its peak, the absolute magnitude in V-band (550 nm) is    
MV = -19, and you measured a peak apparent magnitude of 
mV = 10, what’s the distance in parsec?

m − M = 5 [log d(parsec) − 1]

10 parsec * 10^(0.2*(10-(-19))) = 6.3 Mpc

d(parsec) = 101+0.2(m−M)



Simple Distance Predictions from Hubble’s Law: ,  
this approximation is valid at  0.02 < z < 0.2 (why there is a lower limit?)

cz = H0D → D = cz /H0

R
ed

sh
ift

 (k
m

/s
)



Hubble Diagram: Distance Modulus vs. Cosmological Redshifts

Perlmutter & Schmidt 2003

Cosmological	parameters	can	be	constrained	by	comparing	DM	measurements	(data	points)	
with	model	predictions	(curves)	for	a	range	of	redshifts.	For	standard	model,	one	uses	these	Eqs:

DL = (1 + z)∫
z

0

cdz′ 

H(z′ )
H2 =

H2
0

R2
U

[(1 − Ω0) + Ωm,0 /RU + Ωγ,0 /R2
U + ΩΛ,0R2

U]

μ = m − M = 5 log DMpc
L (z; H0, ΩM, ΩΛ) + 25



2011 Nobel Prize in Physics

The High-z Supernova Search ProjectThe Supernova Cosmology Project



The Density Parameters of the Universe Today 

How do they evolve over time? 
What’s the predicted future?



Density Parameters Today

Dark  
matter:  
27%

Gas:  
4%

Galaxies: 
0.5%

Neutrinos: 
<0.5%

Planck Collaboration (2013)  
 ∑ Ωi,0 = 1.0



Density Parameters vs. Time
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• Dark	Matter-dominated	in	the	first	10	Gyrs,	then	Dark	Energy	dominated



Predicted EvoluZon of Density Parameters

Matter-dominatedDE- 
dominated

Radiation- 
dominated

• Dark	Matter-dominated	in	the	first	10	Gyrs,	then	Dark	Energy	dominated



The Struggle to Determine the 
Hubble Constant (H0) 

 
Why H0 is so important? Because it 

determines not only the current 
expansion rate, but also the 
geometry of the Universe.



Hubble (1929) 
Hubble	initially	got	H0	=	500	km/s/Mpc,		
which	led	to	a	young	universe:	1/H0	=	2	Gyrs.	



1017 Solar Masses, 105 Member Galaxies, 520 million light years across
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Peculiar Velocities — Motions Deviating from the Hubble Flow



Peculiar Velocities — Motions Deviating from the Hubble Flow



Galaxies at greater distances provide more accurate H0 
Galaxy Clusters in Kourkchi et al. (2020a) Fig 29
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Historical evolution of Hubble constant measurements

https://arxiv.org/abs/1506.02978



Allan Sandage (1958) - The First Reasonable Determination of H0

Allan is a student of Edwin Hubble



Evidence for a Hot Beginning: 
 

Discovery of the Microwave Background 



If the universe started from a Big Bang, the hot early universe should 
have generated a blackbody radiation field that is detectable everywhere

• If	all	matter	started	in	a	small	volume,	conditions	would	be	very	
hot.	This	hot,	dense	gas	would	have	emitted	blackbody	radiation,	
which	should	be	detectable	even	today	(after	the	long	expansion	
stretched	these	photons).	

• In	1948,	Alpher,	Gamow,	and	Herman	made	a	prediction:	The	
Planck	spectrum	of	the	thermal	emission	should	be	everywhere	
and	it	would	be	uniformly	redshifted	by	the	expansion	of	the	
universe	to	a	temperature	of	about	5–50	K,	peaking	at	microwave	
wavelengths.	Their	prediction	was	ignored	or	mostly	forgotten.	

• Wien’s	displacement	law:	 	
• Cosmological	redshift:	 	
• Combining	the	above	two,	we	have	the	relation	the	blackbody	
temperature	when	emitted	and	the	observed	temperature:	
																																											 	
in	other	words,	the	observed	temperature	today	is	much	lower	
than	the	original	temperature	due	to	cosmic	expansion.	

λpeak = (2.9 mm K)/T
λobs = λemit(1 + z)

Tobs = Temit /(1 + z)



Measuring the Cosmic Microwave Background

• This	predicted	spectrum	was	accidentally	discovered	in	1963	by	Arno	
Penzias	and	Robert	Wilson.	They	measured	microwave	emission	in	all	
directions	and	the	observed	temperature	of	the	emission	was	about	3	K.	

• We	call	this	predicted	spectrum	the	cosmic	microwave	background	(CMB).	
• This	was	the	first	clear	evidence	of	the	Big	Bang.



Temperature Map from Single-wavelength Intensity Measurement



The Planck Curve Predict Intensity as a function of T and  λ

Bλ(T ) ≡
2hc2

λ5

1

ehc/λ
kT − 1

▪ It is determined by 
Temperature, so 
blackbody emission is 
also called thermal 
emission 

▪When T increases: 
1. Peak shifts to shorter 

wavelength - Wien’s 
Displacement Law 

2. Surface Flux, the total 
area under each Planck 
curve, increases rapidly - 
Stefan-Boltzmann Law 

3. Surface brightness 
(intensity) increases at 
all wavelengths - e.g., 
infrared thermometers



The CMB Temperature from the Full Blackbody Spectrum

• The	COBE	satellite	(launched	in	1989)	was	the	first	instrument	to	
provide	very	accurate	measurements	of	the	CMB	spectrum.	It	
determined	the	temperature	of	the	CMB	today	is	2.73	K	by	fitting	a	
beautiful	Planck	curve	to	the	data.	



Problem is that the observed CMB temperature can’t tell the original 
temperature of the blackbody

• Wien’s	displacement	law:	 	
• Cosmological	redshift:	 	
• Combining	the	above	two,	we	have	the	relation	the	blackbody	
temperature	when	emitted	and	the	observed	temperature:	
																																											 	
in	other	words,	the	observed	temperature	today	is	much	lower	
than	the	original	temperature	due	to	cosmic	expansion.		

• The	above	equation	cannot	constrain	the	temperature	when	the	
cosmic	radiation	background	first	emerged.	In	fact,	infinite	
number	of	(Temit,	z)	combinations	could	give	us	the	same	3	K	
observed	temperature,	for	examples:	
• Temit	=	10	K,	z		=	2.3	
• Temit	=	100	K,	z		=	32	
• Temit	=	1000	K,	z		=	330	

• We	call	that	the	two	parameters	(Temit,	z)	are	degenerate.

λpeak = (2.9 mm K)/T
λobs = λemit(1 + z)

Tobs = Temit /(1 + z)



How do we know when the CMB first 
started to propagate in the universe? 

The epoch of hydrogen recombination



How did the CMB emerge?  
First, EM waves are trapped in an ionized universe

• When	the	universe	was	hot	and	the	gas	was	ionized,	photons	were	trapped	with	matter.	
• Free	electrons	interact	strongly	with	photons	(Thomson	scattering).	
• We	cannot	observe	anything	during	this	era.	It’s	as	if	the	universe	is	filled	with	a	
dense	fog.



How did the CMB emerge? 
Then, protons and electrons recombined to form hydrogen
• Eventually,	the	expansion	causes	the	temperature	to	cool	enough	that	protons	
and	electrons	could	form	neutral	H	atoms:	this	phase-transition	of	the	
Universe	is	called	the	epoch	of	recombination	(EoR).	

• At	that	time,	light	was	no	longer	blocked	from	its	travel	by	free	electrons.	
• EoR	marks	the	earliest	point	in	the	universe	that	we	can	observe.



CMB Photons travel straight to us from the last scattering surface

• Analogous	to	the	last	scattering	surface	that	marks	the	surface	of	
the	Solar	photosphere



Recall this slide in Chap 2 - The Sun? Last Scattering Surface

•The	Sun	has	no	solid	surface,	but	the	apparent	surface	of	the	Sun	is	
the	surface	at	which	light	can	directly	escape	into	space.	

•Let’s	call	this	surface	the	last	scattering	surface	(a	concept	also	
used	in	cosmology).	Note	that	its	depth	depends	on	(1)	the	angle	
we	look	into	the	Sun	and	(2)	the	wavelength	of	the	photons	

•The	layers	above	this	point	are	known	as	the	atmosphere,	which	
can	be	directly	observed.

Last  
Scattering 

Surface

depth  mean free path≈



The EM radiation background emerges when recombination completed

• Before	recombination,	photons	cannot	travel	far	before	it	is	scattered	by	
e-;	after	recombination,	photons	can	freely	travel	and	eventually	reach	us.		

• Given	the	baryon	density	of	the	Universe,	it	can	be	shown	that	Hydrogen	
recombination	completed	when	the	universe	was	~3000	K.	This	is	the	
original	temperature	of	the	cosmic	EM	radiation	gield.	

• Since	we	have	proven	Tobserved	=	Temitted/(1+z),	and	we	know	the	CMB	has	a	
temperature	is	2.7	K	today,	the	redshift	at	which	the	CMB	emerged	must	be	
around	1100:	1+z	=	Temitted/Tobserved	=	3000	K/	2.7	K	~	1100



Recombination drastically reduced the Jeans mass for gravitational 
instability, allowing galaxies to form. What would happen next?

M J
∝

a
3

M
J ∝ a −3/2

Trad = 2.7a−1 K = 2.7(1 + z) K



Reionization of the Universe by Galaxies 
(but why the universe is still transparent?)



Big Bang - Particles created - Ionized universe (opaque) - 
Recombination (z ~ 1100) - Dark Ages - Reionization (z ~ 20-7)



The CMB Temperature from the Full Blackbody Spectrum

• The	COBE	satellite	(launched	in	1989)	was	the	first	instrument	to	
provide	very	accurate	measurements	of	the	CMB	spectrum.	It	
determined	the	temperature	of	the	CMB	today	is	2.73	K	by	fitting	a	
beautiful	Planck	curve	to	the	data.	



If the entire sky glows in microwave radiation,  
why not get an all-sky map of the CMB? 

The discovery of CMB anisotropies



The All-sky Temperature Map of the CMB 
in Mollweide (equal-area) projecZon



AXer subtracZng the Milky Way, there is a 
strong dipole signal in the CMB (mean T = 2.7K)

What	is	the	relative	velocity	between	the	Solar	
System	and	the	CMB	rest	frame?

Dipole Maximum Direction: 

Dipole Maximum Amplitude: 3.362 mK 



The CMB Solar Dipole shows the Combined Motion of (1) the Solar System in 
the Milky Way and (2) the Milky Way Galaxy in the Local Supercluster



SubtracZon of the dipole reveals smaller scale 
fluctuaZons in the CMB (the anisotropies)



Improved angular resolutions over three generations of satellites



A much sharper map showing temperature 
fluctuaZons on the level of δT/T ≈ 0.00001



  

Most recent CMB map from the 
Planck satellite

CMB anisotropy shows density fluctuations of 3x10-5 at zrec ~ 1000

δu
u

=
δ(aT4)

aT4
= 4

δT
T

Hotter T regions have 
higher-than-average 
density, making them 
the seeds of dark 
matter halos

The entropy density s (=entropy per unit volume) is dominated by relativistic 
particles, and scales with photon temperature as                 (see MBW §3.3.3).s / T 3

�

Hence, the entropy per unit mass is simply given by S =
s

�m
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Thus, for isentropic perturbations we have that �r = (4/3)�m

At early times, during the radiation dominated era, we have that ⇢m ⌧ ⇢r
so that isocurvature perturbations obey approximately           . 

For this reason, isocurvature perturbations are also sometimes called 
isothermal perturbations (especially in older literature). 

�r = 0

Note though that isocurvature is only ~isothermal for t ⌧ teq

For isocurvature perturbations                           , which implies that 

                                                                 , and thus 

�⇢ = ⇢� ⇢̄ = 0
�r + �m � �̄r � �̄m = �̄r �r + �̄m �m = 0 �r/�m = �(�̄m/�̄r) = �(a/aeq)

ASTR 610: Theory of  Galaxy Formation ©  Frank van den Bosch, Yale University

Types of Perturbations
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Types of Perturbations

isentropic/adiabatic perturbations: entropy per unit mass is preserved: 

2018 Planck Map



Gaussian random field: white noise

Img = randomn(seed, nx=1024, ny=1024, 
/normal, sigma=0.2)

histogram(img, bin=0.2)



Planck CMB  map is clearly not white noiseδT/T

Gaussian random fields w/ increasing correlation lengths



Fourier Transform: from time domain to frequency domain

Decomposing a periodic time/space signal into series of sine & cosine functions

frequencytime/space



Harmonics of a string showing the periods of the pure-tone harmonics

acoustic resonators based on strings, 
which some call “music instruments”



The harmonic spectrum of a Violin

https://www.intmath.com/fourier-series/6-line-spectrum.php



Quantifying CMB anisotropies w/ 
angular power spectrum



CMB Anisotropy in Mollweide (equal-area) projecZon

δT/T ≈ 0.00001



Quantum Mechanics: spherical harmonics Ym
l (θ, ϕ)

  3           2            1           0          -1           -2         -3m =

  
0 (s) 

1 (p) 

2 (d) 

3 (f)

l =
eigenfunctions	that	describe		

the	angular	distribution	of	electrons:	
l:	orbital	angular	momentum	

m:	z-axis	projection	of	l

l ≈ π/θ



Representing CMB anisotropies as a sum of spherical 
harmonics  [Laplace 1782]Ym

l (θ, ϕ)



Spherical harmonics in Mollweide projection
m = l



Expressing anisotropies as sum of spherical harmonics

δT(θ, ϕ) =
∞

∑
l=1

l

∑
m=−l

al,mYm
l (θ, ϕ)

P(l) =
l(l + 1)

2π
Cl =

l(l + 1)
2π

1
2l + 1

l

∑
m=−l

|al,m |2Temp. Power  
Spectrum:

Harmonic 
Decomposition:



Power spectrum of CMB anisotropy (WMAP: launched in 2001)



Power spectrum of CMB anisotropy (Planck: launched in 2009)



Constraints on Cosmological Parameters:  
 

CMB Anisotropies



The cosmic harmonics frozen in time
“What makes the music of heaven?” - Chuang Tzu (300 BC)



Because overdensities of the baryon+photon fluid cannot collapse 
(Jeans length > Horizon size), they undergo acoustic oscillations

x(t) = x0 sin(cst/L)

τ = 2πL/cs

c2
s =

∂P
∂ρ

=
γkT
μmH

γ = CP /CV

Ideal Gas Solution

Simple gas cylinder + piston model derivation



After recombination

random acoustic oscillations frozen at recombination



The Power Spectrum of the CMB from WMAP (2003)



The Power Spectrum of the CMB from Planck (2015)

https://arxiv.org/abs/1502.01589

Planck 2015 Results. Figure 1

Sonic horizon: 
  

h = H0/(100 km/s/Mpc)
θs = xh,s/xrec ∼ (Ωm,0h2, h)

Ωb,0h2
Ωm,0h2

Silk Damping: 
photon diffusion of 
short wavelength 

sound waves

https://arxiv.org/abs/1502.01589


The Power Spectrum: Sensitivities to Cosmological Parameters

Hu & Dodelson (2002)



The Era of Precision Cosmology (1-2% errors)

https://arxiv.org/abs/1502.01589

Planck 2015 Results. Table 4

https://arxiv.org/abs/1502.01589


The Tension between local and CMB measurements of H0
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Freedman et al. (2019)

The tension between 68 and 73 km/s/Mpc in H0 
could be reconciled by small systematic errors of  

0.154 in magnitude or 0.0001 in redshift



The Expanding Universe
• Observations (facts) 

• Hubble-Lemaître Law &  
the Hubble “constant” 

• The Cosmic Microwave 
Background (CMB)

• Interpretations (theories) 
• The cosmological principle 
• Robertson-Walker metric 
• Friedman equation 

• Observations + Theory 
• Accelerating Expansion: 

Evidence of dark energy 

• The cosmic composition

• Predictions of the Big Bang 
theory: how everything began?



What is redshift? Classical vs. Relativistic Doppler Shift, and Scale Factors

• The	classical	Doppler	
shift	formula,	

	

gives	recession	velocity:	
																 	
• The	relativistic	Doppler	
shift	formula,	

	

gives	recession	velocity:	

			 	

• But,	cosmological	redshift	
should	be	understood	as	a	
ratio	of	scale	factors:	

1 + z =
λobs

λ0
= 1 +

vr

c

vr = cz

1 + z =
λobs

λ0
=

1 + vr /c
1 − vr /c

vr = c
(1 + z)2 − 1
(1 + z)2 + 1

1 + z =
λobs

λ0
=

1
RU(z)



•	The	full	GR	version	of	the	Friedmann	(1922)	Equation	is:	

																							 	

where	 	is	the	critical	density	at	redshift	z	and		
	the	Hubble	parameter	at	time	t	or	redshift	z.	

•Define	 ’s	as	critical	density	ratios:	
• 	,	ordinary	matter	(baryons	and	dark	matter)	
• ,	relativistic	matter	(light	and	neutrinos)	
• ,	cosmological	constant	(dark	energy)	

•Replacing	those,	we	have	the	final	Friedmann	Equation:	
																										 	

•Apply	the	boundary	condition	today,	the	Hubble	parameter	is:	

													

H2 [1 − (ρm

ρc
+

ργ

ρc
+

Λc2

8πGρc
)] R2

U = − kc2

ρc =
3H2

8πG
H ≡ ·RU /RU

Ω
Ωm ≡ ρm/ρc
Ωγ ≡ ργ /ρc

ΩΛ ≡ Λc2/(8πGρc)

H2 [1 − (Ωm + Ωγ + ΩΛ)] R2
U = − kc2

H2 =
H2

0

R2
U

[(1 − Ω0) + Ωm,0/RU + Ωγ,0/R2
U + ΩΛ,0R2

U]

How to Solve the Friedmann Equation? H(z) solution



How to Solve the Friedmann Equation? t(z) or Ru(t) solution

•Write	down	the	Friedmann	Equation	with	the	boundary	condition	and	
replace	Hubble	parameter	with	scale	factor,	 ,	we	have	

								 	

• For	simplicity,	assume	a	flat	universe:	k	=	0	and	 .		
• Separate	time	and	scale	factor	into	two	sides	of	the	equation:	
																											 	

• Integrating	it	from	RU=0	(i.e.,	t=0)	to	RU	=	1/(1+z)	[i.e.,	t(z)],	we	can	
solve	for	the	t(z)	relation	for	any	given	values	of	the	density	parameters.		

• For	example,	for	a	matter-only	flat	universe	(Einstein-de	Sitter	
universe),	we	have	solved	for	both	H(z)	and	t(z):	
																																 	
	
																														 	
	
																														

H(t) ≡ ·RU /RU

( 1
RU

dRU

dt )2 =
H2

0

R2
U

[(1 − Ω0) + Ωm,0/RU + Ωγ,0/R2
U + ΩΛ,0R2

U]

Ω0 = 1

dt =
1

H0

RUdRU

Ωm,0RU + Ωγ,0 + ΩΛ,0R4
U

Ω0 = Ωm,0 = 1,Ωγ,0 = ΩΛ,0 = 0

⇒ H = H0/R3/2
U = H0(1 + z)3/2

⇒ t(z) =
2
3

tH(1 + z)−3/2



Temperature-Redshift Relation of the Cosmic Background Radiation

• Wien’s	displacement	law:	 	
• Cosmological	redshift:	 	
• Combining	the	above	two,	we	have	the	relation	the	blackbody	
temperature	when	emitted	and	the	observed	temperature:	
																																											 	
in	other	words,	the	observed	temperature	today	is	much	lower	
than	the	original	temperature	due	to	cosmic	expansion.		

• The	above	equation	cannot	constrain	the	temperature	when	the	
cosmic	radiation	background	first	emerged.	In	fact,	infinite	
number	of	(Temit,	z)	combinations	could	give	us	the	same	3	K	
observed	temperature,	for	examples:	
• Temit	=	10	K,	z		=	2.3	
• Temit	=	100	K,	z		=	32	
• Temit	=	1000	K,	z		=	330	

• We	call	that	the	two	parameters	(Temit,	z)	are	degenerate.

λpeak = (2.9 mm K)/T
λobs = λemit(1 + z)

Tobs = Temit /(1 + z)


