
Chap 13: Taking the Measure of Stars



•How do we use parallax to determine distance? Astrometry.

•How do we measure brightness? Photometry.

•How do we combine distance (d) with brightness (apparent 
magnitude, m) to determine luminosity (absolute magnitude, M)?

•How do we measure temperature (T)? color index

•The Hertzsprung-Russell (H-R) diagram: M vs. color index

•Key concepts:

•parallax, magnitude system, distance modulus 

•H-R diagram and the distribution of stars on the diagram 

•Other measurements: size & mass of stars

Chap 13: Taking the Measure of Stars



Distance Measurements: 
Parallax



Geological Survey Method

• Measurements of distance and elevation



Geological Survey Method



Geological Survey Instrument: Theodolite
a surveying instrument with a rotating telescope for measuring 
horizontal and vertical angles.



Geological Survey Method: Theodolite measurements

need to know the baseline length ( ) and the two angles ( )l = AB α, β



Geological Survey Method: Theodolite measurements

What would the angles become when d is much much greater than AB?

parallax

To measure greater distances, we need: 
 (1) longer baselines and (2) the ability to measure tiny angles



The Earliest Parallax Measurement by Hipparchus (~150 BC): 
Baseline limited by the diameter of the Earth

2pA

2pB

seen in Hellespont (100% obscured)

seen in Alexandria (80% obscured)

The Solar Eclipse on Mar 14, 190 BC



Parallax of the Moon using background stars



Night-time Parallax Measurement of the Moon

Selsey, UK Athens, Greece

On May 23, 2007, at Athens, the moon appears closer to the bright star (Regulus) by 18 
arcmin compared to the image taken in Selsey. The separation of the two locations is 2360 
km. This difference seen in the direction of the moon against distance stars is the parallax.

Angular diameter of the moon = 30 arcmin

Regulus

Regulus



Same Concept as our Stereoscopic Vision



Extend the Baseline from Earth Size to Earth’s Orbit Size: Stellar Parallax

distance can be measured given the baseline length ( ) and the 
parallax angle ( ); the baseline increased by 23500 times (2AU / 2REarth)

l = 2 AU
p



The Definition of Parallax in Astronomy

Any directional shift due to a positional shift is a parallax effect, 
but in astronomy, parallax is defined as half of the maximum 
directional shift due to Earth’s orbital motion. 
From this diagram, it’s clear that parallax is inversely proportional 
to distance: p	~	1/d

2pA

2pB



Sun
Star

Earth
How many AU is a parsec?

Let p be the parallax in arcseconds. 
Let d be the distance in parsecs; the unit parsec 
is defined as the distance at which p = 1 arcsec 
Given this definition we have:

d = 1 parsec ( 1 arcsec
p )

Definition of the unit parsec: the distance at which p = 1 arcsec

From the diagram above, we derived: 
1 parsec = 206,205 AU since l/d = tan p ~ p (in radian)

d = 1 parsec
p = 1 arcsec

l = 1 AU



How would you determine the length of the Astronomical Unit?
To learn more, see the scanned Chap 18 of Abell’s textbook on ICON



Practice: convert parallax to distance

The greater the parallax, the smaller the distance. 
A star with a parallax of 1 arcsecond	(arcsec) is at a distance of 1 
parsec	(pc).  

•  1 arcsec = 1/3,600 degree  
•  1 pc = 3.26 light-years 

Parallax angles have been measured for >1 billion stars. 

The first star with measured parallax was  
61 Cygni by Friedrich Bessel in 1838.  
It had a parallax of 0.314 arcsec, what is  
its distance in parsec and light-year? 
 
Bessel functions in Mathematics are  
named after him.



Practice: Convert distance to parallax (WIO 13.1)

Let’s try a reversed problem. After the Sun, the closest star to 
Earth is Proxima Centauri, which is 4.24 light-years away. What is 
the star’s parallax in arcsec? (1 pc = 3.26 ly)



Practice: Convert distance to parallax (WIO 13.1)

Let’s try a reversed problem. After the Sun, the closest star to 
Earth is Proxima Centauri, which is 4.24 light-years away. What is 
the star’s parallax in arcsec?

First, we convert light-years to parsecs: 

Then, we plug in to find the distance: 

The closest star to the Sun has a parallax smaller than 1 arcsec!

𝑑 = 4.24 light−years  ×  
1 parsecs

3.26 light−years
= 1.30 parsecs

𝑝 (arcsec) = 
1

1.30 pc
= 0.77 arcsec



Stellar Parallax: One Slide Summary

Any directional shift due to a positional shift is a parallax effect, but in 
astronomy, parallax (p) is defined as half of the maximum directional shift 
due to Earth’s orbital motion. With this definition, we have the following 
parallax-distance relation:

2pA

2pB

d = 1 parsec ( 1 arcsec
p )



How to Calculate Parallax from Coordinates? 

A star’s position is recorded in celestial 
coordinates (RA, Dec), how to calculate the 
angular offset between two coordinates? 



Celestial Coordinates 
are similar to the 
Longitude and 
Latitude system on 
Earth’s surface 



Equatorial 
coordinates
right ascension (RA) 
declination (Dec)

RA’s units  
(hour, minute, second) 
 
Dec’s units: 
(deg, arcmin, arcsec)



Given two (RA, Dec) coordinates, calculate their angular offset
When the two coordinates are close together, we can use  
plane trigonometry to approximate spherical trigonometry: 

June

December

δ RA”

δ Dec”

Δ′ ′ = δRA′ ′ 
2 + δDec′ ′ 

2



Given two (RA, Dec) coordinates, calculate their angular offset

• Obj 1: RA = 2hr, Dec = 0deg — Obj 2: RA = 3hr, Dec = 0deg; 
what’s their angular distance in degrees? 

• Obj 1: RA = 2hr, Dec = 60deg — Obj 2: RA = 3hr, Dec = 60deg; 
what’s their angular distance in degrees?

δRA∘ = (RAh
1 − RAh

2) ⋅ cos(Dec∘
1) ⋅ 15∘/hour

δDec∘ = Dec∘
1 − Dec∘

2



Δ′ ′ = δRA′ ′ 
2 + δDec′ ′ 

2

δRA′ ′ = (RA1 − RA2) ⋅ cos(Dec) ⋅ 15 ′ ′ /s
δDec′ ′ = Dec1 − Dec2

Given two (RA, Dec) coordinates, calculate their angular offset

Note that (1) RA’s units are (hour, minute, second), and Dec’s units are (deg, 
arcmin, arcsec), and (2) the angular distance between two meridians decreases 
from the equator to the poles. As a result, we have the following formulae to 
calculate both the RA offset and the Dec offset in arcsec:



Δ′ ′ = δRA′ ′ 
2 + δDec′ ′ 

2

δRA′ ′ = (RA1 − RA2) ⋅ cos(Dec) ⋅ 15′ ′ /s
δDec′ ′ = Dec1 − Dec2

Practice: Given two (RA, Dec) coordinates, calculate their 
angular offset

A star’s coordinates have been recorded based on images taken on 
the following dates: 

Mar 21 2022: 06h00m15.205s 23d29’15.155”

Sep 21 2022: 06h00m15.235s 23d29’15.160”


• How far has the star moved in RA & in Dec (both in arcsec)? 

• How large is the parallax? What’s the distance in parsec?

dRA = 0.03 * cos(23.5 deg) * 15 = 0.413” 
dDec = 0.005” 

=> p = 0.413”/2 => d = 2.4*2 parsec 



How to Plan Parallax Observations? 

Given a star’s position in equatorial 
coordinates (RA, Dec), how to decide when to 

make the two observations to detect the 
maximum parallax effect? 

Are these dates and coordinates arbitrary?

Mar 21 2022: 06h00m15.205s 23d29’15.155”

Sep 21 2022: 06h00m15.235s 23d29’15.160”



Equatorial 
coordinates
right ascension (RA) 
declination (Dec)

Ecliptic 
coordinates
Longitude 
Latitude

Ecliptic Longitude ~ RA 
~ means “roughly equal”

|Ecliptic Latitude - Dec| 
< 23.5 degrees



Coordinate Converter: https://ned.ipac.caltech.edu/coordinate_calculator 

https://ned.ipac.caltech.edu/coordinate_calculator


The Equatorial and Ecliptic Coordinates of the Sun

• In the course of a year, the Sun travels on the Ecliptic from 
Spring Equinox, to Summer Solstice, to Fall Equinox, to Winter 
Solstice, and back to Spring Equinox

RA Dec Ecliptic 
Longitude

Ecliptic 
Latitude

Notes

Spring Equinox 
(Mar 20)

0 hr 0 deg 0 hr 0 deg Coordinates 
Origin

Summer Solstice 
(Jun 21)

6 hr +23.5 deg 6 hr 0 deg longest day 
in a year

Fall Equinox 
(Sep 22)

12 hr 0 deg 12 hr 0 deg equal day 
and night

Winter Solstice 
(Dec 21)

18 hr -23.5 deg 18 hr 0 deg longest night 
in a year



Stellar Parallax: Observational Considerations

• On these two days illustrated in the graph below, at what local time do 
Stars A and B transit the meridian? 


• What are the Ecliptic Longitudes of Star A and Star B relative to those 
of the Sun on these two days?

RA Dec Ecliptic 
Longitude

Ecliptic 
Latitude

Notes

Spring Equinox 
(Mar 20)

0 hr 0 deg 0 hr 0 deg Coordinates 
Origin

Summer Solstice 
(Jun 21)

6 hr +23.5 deg 6 hr 0 deg longest day 
in a year

Fall Equinox 
(Sep 22)

12 hr 0 deg 12 hr 0 deg equal day 
and night

Winter Solstice 
(Dec 21)

18 hr -23.5 deg 18 hr 0 deg longest night 
in a year

Coordinates of the Sun

Note: this is the ecliptic plane



Let’s check the coordinates in the practice example 

Are these dates and coordinates arbitrary? Should its RA increase? 
Why its Dec did NOT change much?


Mar 21 2022: 06h00m15.205s 23d29’15.155”

Sep 21 2022: 06h00m15.235s 23d29’15.160”

Mar 21

Sep 21

Jun 21 Dec 21

The star is on the ecliptic, and its RA places it 90deg away from 
the Sun on the two dates, yielding maximum parallax effect. 



Advanced Topics of Parallax

Recap



Δ′ ′ = δRA′ ′ 
2 + δDec′ ′ 

2

δRA′ ′ = (RAs
1 − RAs

2) ⋅ cos(Dec∘) ⋅ 15′ ′ /s
δDec′ ′ = Dec′ ′ 1 − Dec′ ′ 2

Calculate angular offset given Equatorial coordinates

June

December

δ RA”

δ Dec”



Stellar Parallax: Observational Considerations

• To see maximum parallax effect, you must choose two nights when the 
Ecliptic Longitudes of the target is 6 hrs (90 deg) away from the Sun.

RA Dec Ecliptic 
Longitude

Ecliptic 
Latitude

Notes

Spring Equinox 
(Mar 20)

0 hr 0 deg 0 hr 0 deg Coordinates 
Origin

Summer Solstice 
(Jun 21)

6 hr +23.5 deg 6 hr 0 deg longest day 
in a year

Fall Equinox 
(Sep 22)

12 hr 0 deg 12 hr 0 deg equal day 
and night

Winter Solstice 
(Dec 21)

18 hr -23.5 deg 18 hr 0 deg longest night 
in a year

Coordinates of the Sun on Special Dates

Note: this is the ecliptic plane



Annual Parallax Traces 

What kind of pattern does a star draw on the 
sky due to Earth’s annual motion?  

We can record this pattern if we continuously 
monitor its position over a year



Simplest case: sources on the ecliptic 
oscillating along a short line

2pA

2pB



Weten Schaps

Simpler case: sources on the ecliptic poles 
moving along a circle



General cases: 0 < ecliptic latitude < 90 deg 
moving along an ellipse



Summary: Parallactic Traces & Parallax Measurements 

• Sources on the ecliptic oscillate on short lines along the ecliptic;  
the parallax to measure distance is half of the length of the line. 

• Sources on the ecliptic poles draw parallactic circles;  
the parallax to measure distance is the radius. 

• All other sources draw ellipses with major axes parallel to ecliptic;  
For a parallactic ellipse, what is the parallax to measure distance?

Nakagawa+2008



One more thing - Proper Motion
Unlike a tree or a mountain relative to a geographical surveyor, stars 
always move relative to the Sun because of their different trajectories 
in the Milky Way. Such relative motions are called proper motion. 



2 million stars’ motion 5 million years into the future



61 Cygni A+B proper motion



So a star’s position changes on the sky because of its 
own motion relative to us (proper motion) and our 

motion around the Sun (parallax).  

What would the combined motion look like on the sky?



RA offset vs. time & Dec offset vs. time
Proper motion (Linear) + Parallax (Periodic)

Poleski et al., 2011, Acta Astron., 61, 199 (arXiv:1110.2178) 

Time (Days)

http://acta.astrouw.edu.pl/Vol61/n3/a_61_3_1.html
http://arxiv.org/abs/1110.2178


RA offset vs.  
Dec offset
Proper motion (Linear) +  
Parallax (Periodic)

pr
op

er
 m

ot
ion

Sandstrom+2007 
VLBA parallax of the Orion Nebula

What’s the distance 
to the source?  

p = 2.57e-3 arcsec 
d = ? parsec

Can you propagate 
the error of 

parallax to the 
error of distance?





Brightness Measurements: 
Apparent Magnitude



Visual classification of brightness: The Greek Magnitude System

Ancient Greeks: “the 
stars that appear first 
after sunset are the 1st 
magnitude stars, the 
stars that appear 
second are the 2nd 
magnitude stars, and 
so on ……” 

129 BC, first formally 
introduced by 
Hipparchus, then 
refined by Ptolemy in 
150 AD:  
visual classification of 
stars into 6 classes, 
brightest as being of 
1st magnitude, faintest 
of 6th magnitude 



A BRIEF HISTORY

MAGNITUDE & ENERGY FLUX

• 129 BC, first Hipparchus, then refined by Ptolemy in 150 AD:  
visual classification of stars into 6 classes, brightest as being of 1st 
magnitude, faintest of 6th magnitude  

• 1856, Norman Pogson: 5 magnitude difference = 100x in energy flux, 
while preserving historically classified 6th mag stars, some brightest 
stars have negative magnitudes (e.g., Sirius, V-band mag = -1.5)  

• 1850s - 1990s: photographic glass plates 

• 1940s, photoelectric cells, tubes, photomultipliers 

• 1969, Boyle & Smith: CCD detectors (2009 Nobel Prize for Physics). 
First used in astronomy in 1976 at U. of Arizona



magnitude = -1.5



LIGHT CARRIES ENERGY
 where h = 6.6e-34 J/Hz 

Einstein’s 1922 Nobel Price was awarded “for his discovery of the law of the photoelectric effect”
E = hν = hc/λ



Inverse Square Law of Flux

▪Luminosity is the total amount of energy per unit time (i.e., power) 
emitted by the source (unit: Watt = Joule/s) 
▪Flux is the amount of arriving energy per unit time per unit area (unit: 

Watt/m2) at a distance d from source 
▪Flux decreases as the distance from the source increases, obeying 

an inverse square law:

F =
L

4πd2



Observed Brightness of Stars show a HUGE range

▪The Sun is the brightest star, which dominates the sky during the 
day, rendering it impossible to see any other stars 
▪The faintest star your eye can see is 1013 fainter than the Sun 
▪The faintest star that can be detected by the Hubble space 

telescope is 1020 fainter than the Sun. 

▪How do we deal with such a large range? We put everything on a 
logarithmic scale similar to that used by the Greeks, thus 
preserving the history started from Hipparchus in 129 BC. 
▪As a result, brighter stars still have lower magnitudes (a minor 

annoyance astronomy students have to live with). 

▪Mathematically we have the Pogson’s ratio:  
                           
where _0 indicate the reference source’s magnitude and flux.  
For example, Vega is usually defined as the reference star and 
its magnitude is defined as zero.

mλ − mλ,0 = − 2.5 log( fλ/fλ,0)



The magnitude system put everything on a nice logarithmic scale

mλ − mλ,0 = − 2.5 log( fλ/fλ,0)



Practice: From flux ratio to apparent magnitude

• Normally in the optical wavelengths, the reference star is Vega.  
• For simplicity, Vega’s magnitude is set to be zero at all wavelengths

mλ − mλ,0 = − 2.5 log( fλ/fλ,0)

For Vega magnitude : mλ = − 2.5 log( fλ/fλ,Vega)

• What’s the magnitude of a star that is 50x fainter than Vega at 
500nm? 

• What’s the magnitude of a star that is 30x fainter than Vega?

m(50x fainter) = 4.25 
m(30x fainter) = 3.69



Practice: From apparent magnitude to flux ratio

Pogson′ s ratio : mλ,1 − mλ,2 = − 2.5 log( fλ,1

fλ,2
)

• δ Lyrae has an apparent 
magnitude of 4.2 in V-band (551 
nm), how many times fainter is it 
compared to Vega (α Lyrae)?  

• 17 Lyrae has an apparent 
magnitude of 5.2 in V-band, how 
many times fainter is it compared 
to δ Lyare?

⇒
fλ,1

fλ,2
= 10−0.4(mλ,1−mλ,2)

10^(0.4*4.2) = 47.9 
10^(0.4*(5.2-4.2)) = 2.512



Summary: Apparent Magnitude and Flux Ratio

mλ,1 − mλ,2 = − 2.5 log( fλ,1

fλ,2
)

⇒
fλ,1

fλ,2
= 10−0.4(mλ,1−mλ,2)

• 100x in flux ratio corresponds to a magnitude difference of 5 
• 1 magnitude difference corresponds to 2.514x difference in flux 

• To determine the magnitude of one source, you must know the 
magnitude and flux of another source (reference or standard) and 
compare the fluxes of the two sources 



Differential Photometry: Compare the count rates between sources

▪We can point the 
same telescope at two 
difference sources and 
measure their relative 
fluxes.  
▪This approach is 

easier because all 
instrumental effects in 
the two measurements 
cancel out. 
▪ If we know the 

magnitude from one of 
the sources, we can 
infer the magnitude of 
the other source using 
this relative 
measurement.

variable star illustration



Delta Cephei: the prototype Cepheid variable (discovered in 1784)



The Modern Technique of  
Brightness Measurements: 

 
CCD Photometry



Measure the flux from rainfall

▪The level of a rainfall can be measured with a rain gauge, you 
empty it first, let it sit in the rain for an hour, take it back and read 
off the result from the side: XX mm/hour



Measure the energy flux from photons

▪Flux is the amount of arriving energy per unit time per unit area (unit: 
Watt/m2) at the location of the observer, it can be measured by counting 
the number of photons restricted in a wavelength range 
▪Just like measuring rainfall with a rain gauge, we need a device to count 

the accumulated photons, and we also need to know (1) the aperture 
of the telescope and (2) the integration time



CCD as Light buckets (each bucket is a pixel)



A typical CCD image - data illustrated with DS9:

the number of e- collected in each pixel (from 0 to ~65k; 16 bit)  

is represented by only 256 shades of gray (8 bit)



TO COUNT ELECTRONS FROM A SOURCE, WE USE APERTURES



Definition of Magnitudes is based on  
Differential Photometry 

Count rates to magnitude difference

where object a is your science target and  
object b is the standard star with known magnitudes.

the canonical reference star is Vega but it is too bright for 
medium/large telescopes and is not always visible 



Practice: from count rates to magnitude

where object a is your science target and  
object b is the standard star with known magnitudes.

Your standard star has a magnitude of 10.5 mag in V-band, you took a CCD 
image of the standard star with a V-band filter and you got a total of 1500 

counts in 10 seconds. 
 

Next, you slew the telescope to take a V-band image of your science target, 
say a random galaxy far away, and with 30 min exposure, you could barely 

see it. The total count from the galaxy is 50. 


What’s the V-band magnitude of the galaxy?

Vgalaxy = 10.5 - 2.5 log((50/1800)/(1500/10)) = 19.83



The Amazing Design of 
Charged-Couple Devices (CCDs)



2009 NOBEL PRIZE IN PHYSICS
Willard S Boyle and George E Smith (1969 invention at Bell Labs)   

The charge-coupled device (CCD) provided the first way for a light-sensitive silicon chip to 
store an image and then digitize it, opening the door to the creation of digital images.



CHARGED COUPLE DEVICE (CCD): SEMICONDUCTOR LIGHT BUCKETS

a single-crystal silicon 
ingot grown by the 
Czochralski method

The largest CCD camera today: 
189 CCD detectors, each 16 megapixels 
Rubin Observatory, 3.2-gigapixel camera



SILICON: ELECTRONIC CONFIGURATION
Si (Z=14): 1s2 2s2 2p6 3s2 3p2 (electronic configuration; l = 0,1,2,3 = s,p,d,f)



SILICON: CRYSTAL LATTICE STRUCTURE
diamond cubic structure with a nearest neighbor  

interatomic spacing of 235 pm (1 picometer = 1e-12 m), 

for comparison, the atomic radius of Silicon is 111 pm 
What happens to the e-’s energy levels when we pack atoms so close together?



 

 
nlow = quantum number of lower orbit 

nhigh = quantum number of higher orbit 

λ = wavelength of emitted photon

1
λ

= ( 1
n2

low
−

1
n2

high
) 13.6eV

hc

Isolated Hydrogen Atoms: Energy Levels and Spectral Series



SILICON: ELECTRON ENERGY LEVELS



ENERGY GAP OF SILICON CRYSTALS

At the actual interatomic spacing, silicon crystals develop an 
inaccessible energy band gap of 1.1 eV between a lower valence 
band and an upper conduction band in the outermost n=3 shell

4N states 
4N e- at 0K

4N states 
0 e- at 0K

Si (Z=14): 1s2 2s2 2p6 3s2 3p2 (electronic configuration)

3s 
2N states

3p 
6N states



Practice: Energy (eV) - Wavelength (micron) Conversion

• Energy is often given in units of electron-volt (eV), which is the 
amount of kinetic energy gained by a single electron 
accelerating through an electric potential difference of one volt 

• Wavelength is often given in units of micron (um) 
• 1 eV = 1.602e-19 J, h = 6.626e-34 J/Hz, c = 3e8 m/s, given  

, calculate the wavelength (in micron) of photons with 
energies of 1 eV.
E = hc/λ

λ = 1.24 μm ( E
1 eV )

Conclusion: In Silicon, electrons can be excited from valance band to 
conduction band by photons with wavelengths shorter than 1.1 micron, 

which include UV, optical, and near-IR



Semiconductor Detectors for Astronomy



Practice: Energy (eV) - Temperature (Kelvin) Conversion

• Energy is often given in units of electron-volt (eV), which is the 
amount of kinetic energy gained by a single electron 
accelerating through an electric potential difference of one volt 

• Given 1 eV = 1.602e-19 J, k = 1.38e-23 J/K, given , 
calculate the temperature (in K) that corresponds to a thermal 
energy of 1 eV.

E = kT

T = 11604 K ( E
1 eV )

Conclusion: Pure Silicon has very few electrons in the conduction 
band at room temperature (~300 K), making it a poor conductor  

(resistivity: ). ρ = 2 × 105 Ω ⋅ cm



“Pixels” are constructed by channels and electrodes (gates) 

Photon absorption causes electrons in valence band to move to 
conduction band, our device needs to hold these electrons in a bucket

X

Y



To keep electrons at a fixed Y-position, CCDs use electrodes



How to keep electrons at a fixed X-position?



Doping: p-type and n-type semiconductors

• A doping ratio of 2 As (Arsenic, Class V) atoms in 100 million Si atoms 
would decrease Silicon’s resistivity by 40,000 times, making it an n-type 

• Doping Silicon with class III elements (e.g., Gallium) makes it a p-type 



To keep electrons at a fixed X-position, CCD uses p-n interfaces

Thermal conduction-band electrons in n-type diffuse into p-type and combine with the holes 
in p-type; this diffusion forms an electric field near the interface, preventing future electrons in  

n-type from leaking into the p-type substrate



“Pixels” are constructed by vertical channels and horizontal electrodes 

Photon absorption causes electrons in valence band to move to 
conduction band, each pixel is designed to hold these electrons. 
But to obtain a digital image, we need to read the electrons

X

Y



Charge transfer along the columns (Y-direction)



Main functions of CCD: store an image and then digitize it

Output Register

Output Amplifier  
& A/D converter

Active CCD Array



Stuff you should know:  
how single-crystal silicon ingots are made? 

how CCD detectors are made?



How Single-Crystal Silicon Ingots are made?

https://www.youtube.com/watch?v=13-JmHpCmNA

https://www.youtube.com/watch?v=13-JmHpCmNA


How CCD detectors are made?

https://www.youtube.com/watch?v=bqJksXwrx7U

https://www.youtube.com/watch?v=bqJksXwrx7U
https://www.youtube.com/watch?v=bqJksXwrx7U


Luminosity Measurements:  
Absolute Magnitude 

(requires Distance & Brightness)



The Inverse Square Law of Flux & the Conservation of Luminosity

▪Luminosity is the total amount of energy per unit time (i.e., power) 
emitted by the source (unit: Watt = Joule/s) 
▪Flux is the amount of arriving energy per unit time per unit area (unit: 

Watt/m2) at a distance d from source 
▪Flux decreases as the distance from the source increases, obeying 

an inverse square law, which preserves the luminosity

L = F(d1)4πd2
1 = F(d2)4πd2

2



Definition: Absolute Magnitude (M) vs. Apparent Magnitude (m)

• apparent magnitude (m) is the magnitude of the source at its actual 
distance (d)  

• absolute magnitude (M) is defined as the apparent magnitude of the 
source if it were at a distance of 10 parsec

Practice: Calculate the absolute magnitude of the Sun

• The Sun has an apparent magnitude of -26.74 (d = 1 AU = 1/206265 pc) 
• What’s its absolute magnitude? Both are in V-band.



Derivation: Absolute Magnitude (M) vs. Apparent Magnitude (m)

• apparent magnitude (m) is the magnitude of the source at its actual 
distance (d)  

• absolute magnitude (M) is defined as the apparent magnitude of the 
source if it were at a distance of 10 parsec 

• because both are measurements of the same source, we can express 
the same luminosity (L) using its actual flux (f) and its presumed flux 
(F) at 10 parsec: 

mλ − Mλ = 2.5 log( d
10 parsec )

2
= 5 [log d(parsec) − 1]

Lλ = 4πd2fλ = 4π(10 parsec)2Fλ ⇒
Fλ

fλ
=

d2

(10 parsec)2

mλ − mλ,0 = − 2.5 log( fλ/fλ,0)

Mλ − mλ,0 = − 2.5 log(Fλ/fλ,0)

This, m-M, is called the distance modulus, because it only depends on distance



Practice: What’s the absolute magnitude of the Sun?

• distance = 1 AU, V-band magnitude = -26.74 
• What’s its absolute magnitude in V-band? 

mλ − Mλ = 5 [log d(parsec) − 1]
⇒ Mλ = mλ − 5 [log d(parsec) − 1]

M = -26.74-5*(log(1/206265)-1) 
= 4.83 



Practice: Calculate absolute magnitude from p and m

• Suppose you measured a star’s apparent magnitude in V-band 
(550 nm) to be mV = 10.5 

• You also measured its parallax to be p = 5 mas (milli-arcsec).  
• What’s its distance in parsec? 

                               

• What’s its absolute magnitude in V-band (MV)? 
 

d = 1 parsec ( 1 arcsec
p )

mλ − Mλ = 5 [log d(parsec) − 1]
⇒ Mλ = mλ − 5 [log d(parsec) − 1]

d = 200 parsec 
M = 10.5 - 5 * (log(200) - 1) = 4.0



Distance measurement based on the 
distance modulus: 

 
The Standard Candle Methods



Distance Modulus: the difference between m and M

m − M = 5 [log d(parsec) − 1]

• The term on the left side, m-M, is called the distance 
modulus, because it only depends on distance


• m-M offers us a group of methods to measure distances 
called the standard candle

d(parsec) = 101+0.2(m−M)

• The definition of absolute magnitude and the conservation 
of luminosity for an isotropic emitter gives us this equation:



The Standard Candle Methods

• If we had measured or inferred the absolute magnitude of a 
class of astrophysical objects, we can get the distance modulus 
(m-M) from its apparent magnitude. 

• The distance modulus then gives us the distance:

m − M = 5 (log dpc − 1) ⇒ dpc = 101+0.2(m−M)

⇒ d = 10 parsec ⋅ 100.2(m−M)



Standard Candle Method 1 — Spectroscopic “Parallax”

Suppose we find a solar-type star in the constellation Ursa Major, its spectrum 
looks just like that of the Sun, so we assume that this star has the same 

luminosity as the Sun. Given the Sun has MV = 4.83 and this star has  
mV = 10.5, can you estimate its distance?

d(parsec) = 101+0.2(m−M)

d = 10^(1+0.2*(m-M)) = 136 parsec



The Standard Candle Method 2 — Type Ia SNe
• Type Ia supernovae (SNe) have been used as standard candles to 

measure cosmological distances to other galaxies. 
• They work as standard candles because presumably the white dwarfs 

have to reach 1.44 solar mass (the Chandrasekhar mass) to trigger the 
thermonuclear explosion



Practice: The Standard Candle Method of Distance Measurement

• Type Ia supernovae (SNe) have been used as standard candles to measure 
cosmological distances to other galaxies. 

• They work as standard candles because presumably the white dwarfs have 
to reach 1.44 solar mass (the Chandrasekhar mass) to trigger the 
thermonuclear explosion 

• At its peak, the absolute magnitude in V-band (550 nm) is MV = -19, and 
you measured a peak apparent magnitude of mV = 10, what’s the distance?

m − M = 5 [log d(parsec) − 1]
⇒ d = 10 parsec ⋅ 100.2(m−M)

10 parsec * 10^(0.2*(10-(-19))) = 6.3 Mpc



Size comparison: Solar prominence vs. Earth 

1 Solar Radius = 110 Earth Radii  = 10 Jupiter Radii

1 Astronomical Unit = 215 Solar Radii



Sunspots on Jan 19, 2023



Distance Modulus: the difference between m and M

m − M = 5 [log d(parsec) − 1]

• The term on the left side, m-M, is called the distance 
modulus, because it only depends on distance


• m-M offers us a group of methods to measure distances 
called the standard candle

d(parsec) = 101+0.2(m−M)

• The definition of absolute magnitude and the conservation 
of luminosity for an isotropic emitter gives us this equation:



The Standard Candle Method 2 — Type Ia SNe
• Type Ia supernovae (SNe) have been used as standard candles to measure 

cosmological distances to other galaxies. 
• They work as standard candles because the white dwarfs have to reach ~1.44 

solar masses (the Chandrasekhar mass) to trigger the thermonuclear 
explosion, reaching a peak absolute magnitude of MV = -19.



Distance Modulus vs. Cosmological Redshifts (Hubble Diagram)

Perlmutter & Schmidt 2003



"for the discovery of the accelerating expansion of the Universe through 
observations of distant supernovae"



•Celestial Equatorial Coordinates: 

•RA & Dec

•Astronomical Magnitudes:

•apparent magnitude and brightness

•absolute magnitude

•distance modulus

•color index

Check out Appendix 7: Observing the Sky



Temperature 
  

spectroscopic methods: Wien’s law and 
spectral classification



Note that the Y-axis is intensity not flux

Intensity scales with flux per unit angular area

A high temperature source could appear fainter  

than a lower temperature source because of distance,  
although its intensity is always higher at all lambda

Planck Curves at Various T



Temperature from Wien’s Displacement Law

• Given a temperature, calculate the wavelength at which the BB 
emission’s flux density peaks; Or given a peak wavelength, 
calculate the temperature.

λpeak =
2.9 mm K

T
⇒ T =

2.9 mm K
λpeak



What to do when the peak shifts outside of the visible light window? 
e.g. when T > 9000 K or T < 3000 K 



*Optical* spectral classification of stars

▪ The	strength	of	absorption	lines	from	different	elements	depend	
mainly	on	the	temperature	(because	of	ionization	equilibrium).	

▪ The	current	classification	scheme	was	re-ordered	and	simplified	by		
Annie	Jump	Cannon	(1863–1941)	at	Harvard	College	Observatory.	

▪ The	full	sequence	is	O	B	A	F	G	K	M,	which	are	further	subdivided	by	adding	
numbers	to	the	letter.	The	Sun	is	a	G2	spectral-type	star.







An A-type star’s spectrum taken by the Van Allen Observatory



Temperature from Spectral Classes



Temperature 
  

photometric method: color index



Spectroscopy takes 
longer time to 

acquire, because 
each star would 
require its own 
spectroscopic 

observations with a 
traditional longslit 

spectrograph



Two-band photometry offers a much simpler way to estimate temperature

B V



Temperature from Color Index

• Color index is defined as the magnitude difference of the same 
object at two different wavelengths.  

• According to Pogson, the magnitude difference corresponds to 
a flux ratio at two different wavelengths: 
                              
                                      or simply 
                                  

• Typically, we subtract a bluer magnitude (e.g., B) to a redder 
magnitude (e.g., V), so that the higher the value of the color 
index, the redder the object appears (i.e., the object appears 
much fainter in B-band than in V-band)

mB − mV = − 2.5 log( fB/fV)

B − V = − 2.5 log( fB/fV)



Practice: From flux ratio to color index

mλ1 − mλ2 = − 2.5 log( fλ1/fλ2)

• Vega is the usual reference star that sets the zero point of the 
apparent magnitude system. Its surface temperature is at 9600 K, 
much hotter than that of the Sun (5800 K).  

• Consider a star that is 100x fainter than Vega at 440nm (B-band) 
and also 100x fainter than Vega at 550nm (V-band), what are the 
magnitudes of the star in B and V? What is the color index? What 
is its surface temperature? 

⇒ mB − mV = − 2.5 log( fB/fV)



Practice: From flux ratio to color index

mλ1 − mλ2 = − 2.5 log( fλ1/fλ2)

• Vega is the usual reference star that sets the zero point of the 
apparent magnitude system. Its surface temperature is at 9600 K, 
much hotter than that of the Sun (5800 K).  

• Consider another star that is 100x fainter than Vega at 440nm but 
200x fainter than Vega at 550nm (V-band), what are the B and V 
magnitudes? What is the color index? Is this star hotter or cooler 
than Vega?

mB − mV = − 2.5 log( fB/fV)

B = 5, V = 5.75; B-V = -0.75



Temperature vs. Color Index vs. Apparent Color

Spec 
Type

Surface 
Temperature

Color Index 
(Vega Sys) Apparent Color

(B-V ~ 0)

(B-V < 0)

(B-V > 0)



A table that gives the color indices at a range of temperatures



The Hertzsprung-Russell Diagram: 
M vs. color index 

(or, Luminosity vs. Temperature)



What if we plot Abs. Mag. against Color Index?

Temperature [Color Index]

Lum
inosity [Abs. M

ag.]

L = 4πR2 × σSBT4 (L − temperature − radius relation)

radius in
creases

R = R
sun

R = 10 R
sun

R = 0.1 R
sun



Temperature [Color Index]

Lum
inosity [Abs. M

ag.]

L = 4πR2 × σSBT4 (L − temperature − radius relation)

radius in
creases

R = R
sun

R = 10 R
sun

R = 0.1 R
sun

The distribution of stars on this plot could be completely random



But this is the distribution we see …



The H-R Diagram

▪The Hertzsprung- 
Russell Diagram is a 
plot of  
M vs. color index. 
▪The H-R diagram is 

the most important 
graph in stellar 
astronomy. 
▪The H-R diagram is 

key to unraveling 
stellar evolution 
(Chaps 16 & 17)





When ChatGPT tries to solve Prof. Fu’s homework problems … 







Bonus Points Before Spring Break

Activity Additional weight
Teach ChatGPT to solve a homework problem 
and prove it has learned how to solve it 1.5%

Visit one of my office hours and ask 
questions about astronomy in this session 0.5%

Attend a Department Colloquium 1.0%

Attend a Department Seminar 1.0%

For comparison,  
the weight of one homework assignment is ~2.3%, 

and the weight of one lab session is ~1.9%



H-R Diagram Recap



Main Features: Main Sequence, Giant Branch, White Dwarfs

▪Most stars exist on the main 
sequence. 
▪ It runs from luminous/hot in 

upper left corner to low-
luminosity/cool in lower right 
corner. 
▪Massive main sequence stars 

are large, luminous, and hot. 
▪Stars are on the main 

sequence as long as they 
burn hydrogen to helium in the 
core. 

• The Sun is on the main 
sequence.



Giant Stars and Dwarf Stars: the Luminosity Classes

▪Not all stars are on the 
main sequence. 
▪There are different 

luminosity classes. 

▪The Sun is a G2V star: 
G2 - spectral type 
V - luminosity class 
▪Betelgeuse is a M1Ia: 

M1 - spectral type 
Ia - luminosity class



How did we know that the main sequence stars cover a range of masses?



How to measure mass?  
Binary stars and Kepler’s Laws



The various configurations of visual binaries and multiples

B. MacEvoy 2012



Binary Star Formation: Accretion Disk Fragmentation

Fragmentation of the protostar accretion disk is believed to be a frequent if not the 
most common path to binary formation at distances of around 40 AU (Type 4)  ... a 
massive spiral arm forces the protostar off the center of mass to produce a binary 
structure; the spiral arms draw more mass into the accretion disk while reducing 
the binary orbital momentum via gravitational (and possibly magnetic) torque 
(Source: Bonnell & Bate, 1994 [a])



What fraction of stars are binaries?

Kuiper 
(1942)

Heintz
(1969)

Abt & 
Levy

(1976)*

Duquennoy 
& Mayor

(1991)

Nordström 
et al.

(2004)

Raghavan 
et al. (2010)

Systems (N)  274 n.a. 123 164 16682 454

Stars as Singles 70% 30% 45% 57% 66% 56%

Binary 25% 47% 46% 38% 34% 33%

3 4% 16% 8% 4% . 8%

4+ 1% 7% 1% 1% . 3%

All Double Star 
Systems 30% 70% 55% 43% 34% 44%

Median R 50 AU 35 AU 40 AU

Stars in Doubles 52% 85% 73% 62% 51% 65%

B. MacEvoy 2012

For solar-type stars, ~60% of star systems are single stars, and ~60% 
of the stars are components of binary or multiple star systems



The multiplicity fraction increases with the mass of the primary

B. MacEvoy 2012



The logarithmic of Binary Periods follow a “Bell” curve



Binary Star - Center of Mass

▪To measure mass, we must 
look for the effects of gravity. 
▪Many stars are binary stars 

orbiting a common center of 
mass. 
▪A less massive star moves 

faster on a larger orbit.

Center of mass “seesaw” equation: 
m1 d1 = m2 d2



Binary Star - Doppler Shift Measurements vs. Time



Binary Stars: Doppler shift curves from spectroscopy

▪A visual binary system is one 
in which both stars are 
distinguished visually. 
▪ In a spectroscopic binary 

system, stars are too far away 
to distinguish; pairs of 
Doppler-shifted lines trade 
places.



Eclipsing Binary Stars - Light curve from photometry

▪ In an eclipsing binary system, the total light coming from the 
star system decreases when one star passes in front of the 
other. 
▪We also can measure the radii of the stars in these systems.



WIO 13.4: Measuring the Masses of Stars in an Eclipsing Binary Pair

▪ Being an eclipsing binary implies that their orbits are viewed edge-on 
▪ The doppler shift results shown above give key parameters:  
▪ The period of the binary (P) 
▪ The orbital velocities of star 1 and star 2 (V1 and V2) 

▪ What are the circumferences and radii of the two orbits?  

                                
C1 = V1 × P = 2πa1

C2 = V2 × P = 2πa2



From Chap 4: Equations of Kepler’s 3rd Law

3rd Law:  
period-distance  
relation

a3
AU

P2
year

= Msolar−mass
a3

P2
=

GM
4π2

But there are two masses (m1 and m2), and two semimajor axes (r1 & r2), how 
should we use the Kepler’s 3rd law to estimate mass?



WIO 13.4: Measuring the Masses of Stars in an Eclipsing Binary Pair

▪ Next, we can calculate the total mass using Kepler’s third law:  

                

▪ Finally, we obtain the individual masses based on the velocity ratio:  

                         

M1 + M2

1 Msun
= (a1 + a2

1 AU )
3

( P
1 year )

−2

M1

M2
=

a2

a1
=

V2

V1



Two-body Problem - General Reference Frame



Two-body Problem - The Center-of-Mass Reference Frame

m1 ⃗r1 + m2 ⃗r2 = 0
⃗r2 − ⃗r1 = ⃗r

⃗r1 = −
m2

m1 + m2
⃗r

⃗r2 =
m1

m1 + m2
⃗r



Two-Body Problem reduced to One-Body Problem

• The two-body problem is equivalent to a one-body problem with the 
reduced mass  moving about a fixed total mass 

 at a distance .
μ = m1m2/(m1 + m2)

M = m1 + m2 ⃗r = ⃗r2 − ⃗r1

E =
1
2

m1 | ⃗v1 |2 +
1
2

m2 | ⃗v2 |2 − G
m1m2

| ⃗r2 − ⃗r1 |

=
1
2

m1( μ
m1

)
2
v2 +

1
2

m2( μ
m2

)
2
v2 − G

(m1 + m2) ⋅ m1m2/(m1 + m2)
r

=
1
2

μ( μ
m1

+
μ

m2
)v2 − G

Mμ
r

⇒ E =
1
2

μv2 − G
Mμ
r

μ =
m1m2

m1 + m2

⃗r1 = −
m2

m1 + m2
⃗r = −

μ
m1

⃗r

⃗r2 =
m1

m1 + m2
⃗r =

μ
m2

⃗r

⃗v1 = −
μ

m1
⃗v

⃗v2 =
μ

m2
⃗v

Then write down the total kinetic and gravitational potential energy 

define reduced mass



Kepler’s 3rd Law for Binary Stars (Two-body Problem)

• The two-body problem is equivalent to a one-body problem with the 
reduced mass  moving about a fixed total mass 

 at a distance .
μ = m1m2/(m1 + m2)

M = m1 + m2 ⃗r = ⃗r2 − ⃗r1

m
1 Msun

= ( a
1 AU )

3

( P
1 year )

−2
One-body problem: 

m1 + m2

1 Msun
= (a1 + a2

1 AU )
3

( P
1 year )

−2Two-body problem: 



Chap 13: Key Concepts

• stellar parallax 
• Unit parsec defined by AU 
• Pogson’s ratio:  

apparent magnitude and flux ratio 
• CCD photometry: count rate to 

magnitude 
• absolute magnitude 
• distance modulus (m-M) 
• standard candle methods 

• spectroscopic parallax 
• type Ia supernovae 

• color index and temperature 
• luminosity-temperature-size 

relation 
• HR diagram: the main sequence  
• spectroscopic binaries and stellar 

masses



Chap 13: Key Equations

d = 1 parsec ( 1 arcsec
p )

mλ,2 − mλ,1 = − 2.5 log( fλ,2/fλ,1)

mλ − Mλ = 2.5 log( d
10 parsec )

2
= 5 [log d(parsec) − 1]

λpeak = 2.9 mm
1 K
T

L = 4πR2 × σSBT4 R
R⊙

=
L

L⊙
⋅ ( T

T⊙
)

−2

d(parsec) = 101+0.2(m−M)


