Chap 16: Key Concepts

- Observations
 - Nothing last forever, even stars
 - H-R diagram of star clusters

- Numerical Models
 - Equations of stellar structure and evolution
 - Stellar evolutionary tracks

- Fine-Tune Models
 - Isochrones (equal-age lines)
 - Fitting cluster H-R diagrams
 - Cluster age estimates

- Model Inferences
 - Main stages and rough lifetimes
 - Changes in the interiors of the stars: e- degenerate core + fusion shells

- Mass-Transfer Binaries
 - Roche Lobe, Lagrange Points
 - Novae, Type Ia SNe, Blue Stragglers
Why do we think stars must evolve?

Logical deduction from our understanding of the Sun
Changes on the Main Sequence due to Fuel Exhaustion

- The chemical composition inside a star changes over time as hydrogen is fused into helium.
- The Sun started with 70 percent hydrogen by mass, but now contains only 35 percent hydrogen in the core.
- What will happen when the hydrogen is exhausted in the core?
Main-Sequence Lifetime of a Star Depends on Its Initial Mass

- The main-sequence lifetime of a star is the amount of time that it spends fusing hydrogen as its primary source of energy.

\[
\text{Lifetime of star} = \frac{\text{Amount of fuel} \ (\propto \text{mass of star})}{\text{Rate fuel is used} \ (\propto \text{luminosity of star})}
\]

- Stars with high masses have shorter lifetimes.
- Higher-mass stars have more fuel, but they use it more quickly:

\[L \propto M^{3.5} \]

\[\Rightarrow \text{MS lifetime} \sim M^{-2.5} \]
Calculating the Main-Sequence Lifetime

• In our homework, we have used the proportionalities to get:

\[
\text{Lifetime}_{MS} = 10^{10} \times \frac{M_{MS}/M_{Sun}}{(M_{MS}/M_{Sun})^{3.5}} \text{ yr} = 10^{10} \times \left(\frac{M_{MS}}{M_{Sun}}\right)^{-2.5} \text{ yr}
\]

• Let's compare the lifetime of a K5 star with the Sun. A K5 star has a mass of 0.67 \(M_{Sun} \):

\[
\text{Lifetime}_{K5} = 10^{10} \times (0.67)^{-2.5} \text{ yr} = 2.7 \times 10^{10} \text{ yr}
\]

• A K5 star has a lifetime of 27 billion years, which is 2.7 times longer than the Sun’s lifetime!

• A O5 main-sequence star has a mass of 60 \(M_{Sun} \), its lifetime is only 360,000 years! BTW, homo sapiens first evolved in Africa about 300,000 years ago.
Stars Must Change and The Rate of Change Depends on Initial Mass

- A star’s life depends on mass and composition because the rates and types of fusion depend on the star’s mass.
- Stars of different masses evolve differently. There are three categories of stars:
 - **low-mass stars** (Mass < 3 M_{Sun})
 - **intermediate-mass stars** (Mass between 3 M_{Sun} and 8 M_{Sun})
 - **high-mass stars** (Mass > 8 M_{Sun})

<table>
<thead>
<tr>
<th>Name</th>
<th>High-mass stars</th>
<th>Medium-mass stars</th>
<th>Low-mass stars</th>
<th>Very low-mass stars</th>
<th>Brown dwarfs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spectral type</td>
<td>O, B</td>
<td>B</td>
<td>A, F, G, K</td>
<td>M</td>
<td>M, L, T, Y</td>
</tr>
<tr>
<td>Minimum mass</td>
<td>8 M_{Sun}</td>
<td>3 M_{Sun}</td>
<td>0.5 M_{Sun}</td>
<td>0.08 M_{Sun}</td>
<td>~0.01 M_{Sun} (~13 M_{Jupiter})</td>
</tr>
</tbody>
</table>
How do we know stars evolve?

H-R diagram of star clusters
The position of a star on the H-R diagram tells its L, T, and R

$$L = 4\pi R^2 \times \sigma_{SB} T^4$$ (L – temperature – radius relation)

- Radius increases
- $R = R_{\text{Sun}}$
- $R = 10 R_{\text{Sun}}$
- $R = 0.1 R_{\text{Sun}}$
Most stars exist on the **Main Sequence**.

- Not all stars are on the main sequence: **Giant Branch** and **White Dwarfs**

- There are six **luminosity classes** in Roman numerals

- The Sun is a **G2 V** star:
 - G2 - spectral type
 - V - luminosity class

- Betelgeuse is a **M1 Ia**:
 - M1 - spectral type
 - Ia - luminosity class
Star clusters are ideal laboratories to study stellar evolution

- Star clusters are bound groups of stars, all made at the same time.
- Each star evolves at a rate set by its mass.
- High-mass stars evolve more quickly along their evolutionary tracks.
Pleiades: An Open Cluster
H-R diagram of open clusters in the MW galaxy

Gaia DR2
Open Clusters
Table 2. Overview of reference values used in constructing the composite HRD for open clusters (Fig. 2).

<table>
<thead>
<tr>
<th>Cluster</th>
<th>DM</th>
<th>log(age)</th>
<th>[Fe/H]</th>
<th>$E(B - V)$</th>
<th>Memb</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hyades</td>
<td>3.389</td>
<td>8.90</td>
<td>0.13</td>
<td>0.001</td>
<td>480</td>
</tr>
<tr>
<td>Coma Ber</td>
<td>4.669</td>
<td>8.81</td>
<td>0.00</td>
<td>0.000</td>
<td>127</td>
</tr>
<tr>
<td>Pleiades</td>
<td>5.667</td>
<td>8.04</td>
<td>−0.01</td>
<td>0.045</td>
<td>1059</td>
</tr>
<tr>
<td>IC 2391</td>
<td>5.908</td>
<td>7.70</td>
<td>−0.01</td>
<td>0.030</td>
<td>254</td>
</tr>
<tr>
<td>IC 2602</td>
<td>5.914</td>
<td>7.60</td>
<td>−0.02</td>
<td>0.031</td>
<td>391</td>
</tr>
<tr>
<td>α Per</td>
<td>6.214</td>
<td>7.85</td>
<td>0.14</td>
<td>0.090</td>
<td>598</td>
</tr>
<tr>
<td>Praesepe</td>
<td>6.350</td>
<td>8.85</td>
<td>0.16</td>
<td>0.027</td>
<td>771</td>
</tr>
<tr>
<td>NGC 2451A</td>
<td>6.433</td>
<td>7.78</td>
<td>−0.08</td>
<td>0.000</td>
<td>311</td>
</tr>
<tr>
<td>Blanco 1</td>
<td>6.876</td>
<td>8.06</td>
<td>0.03</td>
<td>0.010</td>
<td>361</td>
</tr>
<tr>
<td>NGC 6475</td>
<td>7.234</td>
<td>8.54</td>
<td>0.02</td>
<td>0.049</td>
<td>874</td>
</tr>
<tr>
<td>NGC 7092</td>
<td>7.390</td>
<td>8.54</td>
<td>0.00</td>
<td>0.010</td>
<td>248</td>
</tr>
</tbody>
</table>
H-R diagram of globular clusters in the MW galaxy
Table 3. Reference data for 14 globular clusters used in the construction of the combined HRD (Fig. 3).

<table>
<thead>
<tr>
<th>NGC</th>
<th>DM</th>
<th>Age (Gyr)</th>
<th>[Fe/H]</th>
<th>$E(B - V)$</th>
<th>Memb</th>
</tr>
</thead>
<tbody>
<tr>
<td>104</td>
<td>13.266</td>
<td>12.75a</td>
<td>−0.72</td>
<td>0.04</td>
<td>21580</td>
</tr>
<tr>
<td>288</td>
<td>14.747</td>
<td>12.50a</td>
<td>−1.31</td>
<td>0.03</td>
<td>1953</td>
</tr>
<tr>
<td>362</td>
<td>14.672</td>
<td>11.50a</td>
<td>−1.26</td>
<td>0.05</td>
<td>1737</td>
</tr>
<tr>
<td>1851</td>
<td>15.414</td>
<td>13.30c</td>
<td>−1.18</td>
<td>0.02</td>
<td>744</td>
</tr>
<tr>
<td>5272</td>
<td>15.043</td>
<td>12.60b</td>
<td>−1.50</td>
<td>0.01</td>
<td>9086</td>
</tr>
<tr>
<td>5904</td>
<td>14.375</td>
<td>12.25a</td>
<td>−1.29</td>
<td>0.03</td>
<td>3476</td>
</tr>
<tr>
<td>6205</td>
<td>14.256</td>
<td>13.00a</td>
<td>−1.53</td>
<td>0.02</td>
<td>10311</td>
</tr>
<tr>
<td>6218</td>
<td>13.406</td>
<td>13.25a</td>
<td>−1.37</td>
<td>0.19</td>
<td>3127</td>
</tr>
<tr>
<td>6341</td>
<td>14.595</td>
<td>13.25a</td>
<td>−2.31</td>
<td>0.02</td>
<td>1432</td>
</tr>
<tr>
<td>6397</td>
<td>11.920</td>
<td>13.50a</td>
<td>−2.02</td>
<td>0.18</td>
<td>10055</td>
</tr>
<tr>
<td>6656</td>
<td>12.526</td>
<td>12.86c</td>
<td>−1.70</td>
<td>0.35</td>
<td>9542</td>
</tr>
<tr>
<td>6752</td>
<td>13.010</td>
<td>12.50a</td>
<td>−1.54</td>
<td>0.04</td>
<td>10779</td>
</tr>
<tr>
<td>6809</td>
<td>13.662</td>
<td>13.50a</td>
<td>−1.94</td>
<td>0.08</td>
<td>8073</td>
</tr>
<tr>
<td>7099</td>
<td>14.542</td>
<td>13.25a</td>
<td>−2.27</td>
<td>0.03</td>
<td>1016</td>
</tr>
</tbody>
</table>
Simplified H-R diagram of open clusters in the MW galaxy

Can we build a single model to explain all of the star clusters? If so, what parameter makes different clusters look different on the HRD?
How do we model stellar evolution?
Computational code of stellar evolution
Stellar Structure Models - Basic Equations

\[\frac{dP}{dr} = -G \frac{M_r \rho}{r^2} \]
HYDROSTATIC EQUILIBRIUM

\[\frac{dM_r}{dr} = 4\pi r^2 \rho \]
MASS CONSERVATION

\[\frac{dL_r}{dr} = 4\pi r^2 \rho \epsilon \]
ENERGY EQUATION

\[\left. \frac{dT}{dr} \right|_{\text{rad}} = -\frac{3}{4ac} \frac{\kappa \rho}{T^3} \frac{L_r}{4\pi r^2} \]
RADIATIVE TRANSPORT

\[\left. \frac{dT}{dr} \right|_{\text{ad}} = -\left(1 - \frac{1}{\gamma}\right) \frac{\mu m_H}{k} \frac{GM_r}{r^2} \]
ADIABATIC CONVECTION
CONSTITUTIVE RELATIONS (CR)

\[P = \frac{\rho k T}{\mu m_H} + \frac{1}{3} a T^4 \]

\[\overline{\kappa} = \begin{cases}
\overline{\kappa}_{bf} = \text{bound-free} \\
\overline{\kappa}_{ff} = \text{free-free} \\
\overline{\kappa}_{es} = \text{electron scattering}
\end{cases} \]

\[\varepsilon = \begin{cases}
\varepsilon_{\text{pp-chain}} \\
\varepsilon_{\text{CNO cycle}} \\
\varepsilon_{3\alpha}
\end{cases} \]

FROM TABLES OR FITTED TO A FUNCTION
Euler Method: a numerical procedure to solve differential equations

\[\frac{dy}{dx} = f(x, y) \]

\[y(x_k + \Delta x) \approx y_k + \Delta x \cdot f(x_k, y_k) \]
Euler Method: a numerical procedure to solve differential equations

\[y(x_k + \Delta x) \approx y_k + \Delta x \cdot f(x_k, y_k) \]

\[\frac{dy}{dx} = f(x, y) \]
Modules for Experiments in Stellar Astrophysics (MESA)

https://docs.mesastar.org/en/release-r22.11.1/index.html

Motivation

Stellar evolution calculations (i.e., stellar evolution tracks and detailed information about the evolution of internal and global properties) are a basic tool that enable a broad range of research in astrophysics. Areas that critically depend on high-fidelity and modern stellar evolution include asteroseismology, nuclear astrophysics, stellar populations, chemical evolution and population synthesis, astrobiology, binary stars, variable stars, supernovae, novae, compact objects, tidal disruption events, stellar hydrodynamics, and stellar activity.

New observational capabilities are emerging in these fields that place a high demand on exploration of stellar dependencies on mass, metallicity and age. So, even though one dimensional stellar evolution is a mature discipline, we continue to ask new questions of stars. Some important aspects of stars are truly three-dimensional, such as convection, rotation, and magnetism. These aspects remain in the realm of research frontiers with evolving understanding and insights, quite often profound. However, much remains to be gained scientifically (and pedagogically) by accurate one-dimensional calculations, and this is the focus of MESA.
MESA-Web Calculation Submission

To submit a MESA-Web calculation, simply enter your email address in the Email Address field at the bottom of the form below, and then click the Submit button.

The default parameters have been chosen to evolve a 1 M_\odot model from pre main-sequence to white dwarf in less than 2 hours of wall time. To obtain more-Detailed information about each parameter, click on the name of the parameter to visit the corresponding entry on the the MESA-Web Input page.

After a calculation completes, you will receive an email with link to a Zip archive that contains the output from MESA-Web (note that the link expire after one day). For information on the contents of this archive, see the MESA-Web Output page.

Initial Properties

- **Mass**: 1.0 M_\odot
- **Metallicity**: 0.02
- **Rotation Rate ($\Omega_{ZAMS}/\Omega_{\text{crit}}$)**: 0.0

Nuclear Reactions

- **Network**: basic
- **Custom Nuclear Reaction Rate**: none
- **Upload Rate**: Choose File

How do we check stellar evolution models?
Model Isochrones vs. Cluster H-R Diagrams
Computed evolutionary tracks of stars with different initial masses

- An evolutionary track is a computed trajectory of a star on the H-R diagram as it ages over time.
Building isochrones from evolutionary tracks

• An isochrone (iso = equal, chrone = time) is a line drawn on the H-R diagram connecting stars of the same age
Isochrones change with age: this is how we explain the various different observed H-R diagrams of star clusters.

How can you tell if a curve on a HR diagram is an isochrone instead of an evolutionary track?
Using the H-R Diagram to Determine the Age of a Star Cluster

Elapsed Time

100,000 years

Surface Temperature (Kelvin)

O B A F G K M

Luminosity (Solar Units)

10^5 10^4 10^3 10^2 10

Pleiades

M67

View star cluster data
Using the H-R Diagram to Determine the Age of a Star Cluster

- View star cluster data
- Pleiades
- Hide

- Luminosity (Solar Units)

- Surface Temperature (Kelvin)

- Elapsed Time (years)

- 3 billion years

- M67
Using the H-R Diagram to Determine the Age of a Star Cluster

Pleiades

Elapsed Time

60 million years

View star cluster data

- **Hide**
- **M67**

Surface Temperature (Kelvin)

- O
- B
- A
- F
- G
- K
- M

Elapsed Time (years)

- 10^5
- 10^6
- 10^7
- 10^8
- 10^9
- 10^{10}
Summary: Model Isochrones vs. Cluster Data

By comparing the distribution of cluster stars on the HR diagram and model isochrones, we can (1) fine-tune stellar evolution models, and (2) estimate age and chemical composition of clusters.
Introducing complex stellar systems
Solar neighborhood stars’ H-R diagram
Practice - Draw the HR diagram of solar neighborhood stars

• draw and label the axes
• Indicate the direction in which each property increases
• draw the lines connecting stars of the same radii
• draw the three main features where the distribution of stars concentrate
• label the three main features
What does the HR diagram of Solar Neighbors tell us?

Solar neighborhood HR diagram

Cluster HR diagram

Giant branch

Main sequence

White dwarfs

Horizontal branch

Red giant branch

...and calculation of evolved stars on the H-R diagram

Supporting evidence of stellar evolution.
The Solar neighborhood stars are a mixed stellar population, and its HR diagram can be understood as a combination of multiple isochrones.
Solar neighborhood stars tell us the formation history of the Galaxy

HR diagram breakdown based on kinematics
The study of Solar neighbors’ HR diagram made us realize that “Rome wasn’t built in a day”
Note: a significant fraction of stars in the Milky Way actually formed in other galaxies.
Small galaxies get shredded by large galaxies

The Milky Way halo is threaded with stellar tidal streams from accreted dwarf galaxies.

One of the most well-studied is the Sagittarius (Sgr) dwarf, which fell in ~3-5 Gyr ago.

The gravitational tidal forces of the Milky Way tore the stars from Sgr into streamers leading and trailing the dwarf along its orbit.

\[t = -3.10 \text{ Gyr} \]
Inside the Milky Way’s Halo:
Tidally Stripped Stars from Dwarf Galaxies
Distance to M31: 2.5 million light years
The Milky Way and its neighbour Andromeda are destined to merge within the next 5 billion years ...or so.

This simulation shows what might happen to the gas (shades of blue) and newly formed stars (red) when the two galaxies come together.
The evolution of stars described by the best-fit numerical models

A Summary of Model Inferences
Kippenhahn Diagram of a Star with an Initial Mass of 1.0 Solar Mass

- Convection Zone
- Fusion Core
- Fusion Shell
The evolutionary track of a 1 Solar mass star

A single star goes through various evolution phases during its life.
Stellar Evolution: Big Picture

- Protostar
- Blue Supergiant
- Supernova
- Black Hole
- Supershell
- Neutron Star
- Type Ia Supernova
- White Dwarf
- Brown Dwarf

Stellar Evolution: Big Picture

- Protostar
- Blue Supergiant
- Type II Supernova
- Black Hole
- Neutron Star
- Type Ia Supernova
- White Dwarf
- Brown Dwarf

Substellar objects

low mass stars

high mass stars
Six main stages of the evolution of low-mass stars ($M < 8 \, M_{\text{Sun}}$)

- **Star formation region**: ≈ 10 Myr
- **Protostar**: ≈ 10 Myr
- **Main sequence**: ≈ 10 Gyr
- **Red Giant**: ≈ 1 Gyr
- **Planetary nebula**: ≈ 10 Kyr
- **White dwarf**: eternal

Time quoted for a star as massive as the Sun:
- Star formation region: ≈ 10 Myr
- Protostar: ≈ 10 Myr
- Main sequence: ≈ 10 Gyr
- Red Giant: ≈ 1 Gyr
- Planetary nebula: ≈ 10 Kyr
- White dwarf: eternal

![The Sun as a White Dwarf (9 billion years from now)](image)
Sunrise in 7 Billion Years
A key prediction of the model is a degenerate core buried at the center of a post-MS star.

What is degeneracy? Why is it important?
But white dwarfs are the end state of low-mass star evolution, how did the stellar core first become degenerate?
The story of degenerate gas started with the study of Sirius, the brightest star in the night sky.
Sirius B - the weird companion of the Dog Star

50 year orbit of the binary first inferred by Bessel in 1844

same as in the first stellar parallax measurement of 61 Cygni

Sirius B is much fainter than Sirius A, is it surprising that if I tell you that it’s much hotter (27000 K vs. 9900 K)?

From the orbital motion, it was estimated that A has 2.3 solar mass and B has 1.0 solar mass.
Sirius B - the weird companion of the Dog Star

- Inferred properties of Sirius B:
 - 1 Solar Mass
 - 0.03 Solar Luminosity
 - 27,000 K surface temperature
 - 5500 km radius (Earth-size)

- Sirius B represent a class of objects called **White Dwarfs (WDs)**

- The physical conditions of WDs are extreme:
 - extreme density \(\rho \approx 3e9 \text{ kg/m}^3 \)
 - \(n_e \approx 1e36 /\text{m}^3 \)
 - extreme surface gravity (HW)
 - extreme pressure at the center
Given a number density, how to estimate the average distance between particles?

- Extremely high density of WDs:
 - mass density $\rho \approx 3e9$ kg/m3
 - number density of electrons: $n_e \sim 1e36$ /m3

- What is the average distance between electrons? How does it compare with the size of an atom (~0.1 nm)?

- average distance:
 $\delta x = n_e^{-1/3} = 10^{-12}m$
 ($<< 0.1$ nm, size of atom)

- Quantum Mechanics must be important in white dwarfs.
Deriving degenerate pressure using uncertainty principle

- **Quantum mechanics** start to become important when e- and ions are packed in a very smaller volume.

- **Pauli exclusion principle** (1925): no more than one fermion (leptons and baryons) can occupy the same quantum state. So the uncertainty of the fermion’s position cannot be larger than their actual separation:
 \[\Delta x \lesssim n^{-1/3} \]

- **Heisenberg’s uncertainty principle** (1927):
 \[\Delta x \Delta p \approx \hbar / 2\pi \]
 the smaller the uncertainty in position, the larger the uncertainty in momentum.

- Combining the two and approximating \(p \approx \text{min}(\Delta p) \) (ground state):
 \[p \approx \hbar n^{1/3} / 2\pi \]

- Just like ideal gas, the pressure from degenerate gas is 2/3 the kinetic energy density:
 \[P_{\text{degen}} = \frac{2}{3} n \frac{p^2}{2m} \approx \frac{\hbar^2}{4\pi^2} \frac{n^{5/3}}{m} \]
Fermions (half-integer spins; e.g., e-, p+, n, nu) follow Fermi-Dirac distribution, where the probability of a particle having an energy between E and $E+dE$ is:

$$f_E dE \propto \frac{E^{1/2} dE}{e^{(E-E_F)/kT} + 1}$$

- when $kT >> E_F$, it is indistinguishable from the classic Maxwell-Boltzmann distribution: $f_E dE \propto \frac{E^{1/2} dE}{e^{E/kT}}$

The mean kinetic energy is $3kT/2$, as a result, pressure depends on both density and temperature.

- when $kT << E_F$, all energy states greater than the Fermi energy become unoccupied.

The mean kinetic energy is $3E_F/5$, as a result, pressure depends only on density.
The Condition for Degeneracy: Pressure Comparison

• The pressure from non-relativistic degenerate gas is:

\[P_{\text{degen}} = \frac{2}{3} n \frac{p^2}{2m} \approx \frac{h^2}{4\pi^2} \frac{n^{5/3}}{m} \]

• The pressure from ideal gas is:

\[P_{\text{ideal}} = \frac{2}{3} n \left(\frac{3}{2} kT \right) = nkT \]

• The condition for degeneracy is simply:

\[P_{\text{degen}} > P_{\text{ideal}} \]

which can be simplified as:

\[\frac{h^2}{4\pi^2} \frac{n^{2/3}}{m} > kT \]

or equivalently (expressed using Fermi energy):

\[kT \lesssim 0.2 \ E_{\text{Fermi}} \]
What is degenerate pressure? How to understand it intuitively?

- The contraction of non-fusing cores packs a large amount of mass into a small volume. Each electron finds its position well constrained, which leads to large momentum and kinetic energy due to the **uncertainty principle**. **Pressure**, as the **density** of **kinetic energy**, increases rapidly as a result of increased (1) **number density** and (2) **kinetic energy per particle**. This pressure due to quantum mechanics is called **degenerate pressure**.

\[
P_{\text{degen}} \approx \frac{\hbar^2}{4\pi^2} \frac{n^{5/3}}{m}
\]

\[
P_{\text{ideal}} = nkT
\]
What is degenerate pressure? How to understand it intuitively?

- The contraction of non-fusing cores packs a large amount of mass into a small volume. Each electron finds its position well constrained, which leads to large momentum and kinetic energy due to the **uncertainty principle**. Pressure, as the **density** of kinetic energy, increases rapidly as a result of increased (1) **number density** and (2) **kinetic energy per particle**. This pressure due to quantum mechanics is called **degenerate pressure**.

\[
P_{\text{degen}} \approx \frac{\hbar^2}{4\pi^2} \frac{n^{5/3}}{m}
\]

\[
P_{\text{ideal}} = nkT
\]
The Condition for Degeneracy: e- vs. ions

• In the previous slide, we derived the condition for degeneracy:

\[\frac{\hbar^2 n^{2/3}}{4\pi^2 m} > kT \]

• The above inequation can be satisfied when:
 • the temperature is very low, and/or
 • the density is very high

• In the non-fusing core of a star, the density is extremely high, reaching degeneracy condition.

• If ions and electrons share the same temperature in the core, which component will reach degeneracy first?
White dwarfs show a mass-size relation of \(R \sim M^{-1/3} \), which is in contrast to that of main sequence stars, where \(R \sim M^{0.8} \).
Understanding the Mass-Size relation of white dwarfs with degenerate pressure and hydrostatic equilibrium

• The pressure from non-relativistic degenerate gas is:

\[P_{\text{degen}} = \frac{\hbar^2}{4\pi^2} \frac{n^{5/3}}{m} \propto \frac{(M/\mu m_H)^{5/3}}{R^5} \]

• Hydrostatic equilibrium provides an estimate of the central pressure:

\[P_c \propto G \frac{M^2}{R^4} \]

• If degenerate gas provide the central pressure, we can equate the two and solve for the Mass-Radius relation:

\[\frac{M^{5/3}}{R^5} \propto \frac{M^2}{R^4} \Rightarrow R \propto M^{-1/3} \]

• This is in contrast to main sequence stars, where \(R \sim M^{0.8} \)
Mass-Size Relation of White Dwarfs & the Chandrasekhar Limit

- When degenerate electrons provide the pressure, the size of the core decreases as the mass increases, $R \sim M^{-1/3}$. This is in contrast to main sequence stars, where $R \sim M^{0.8}$.
- The relation eventually breaks when degenerate electrons become relativistic, and that places a limit on the maximum mass of the white dwarf, the 1.4 Solar Mass Chandrasekhar limit.
But white dwarfs are the end state of low-mass star evolution, how did the stellar core first become degenerate?
Inference from the best-fit numerical models

What happens inside the stars as they evolve into each of the stages?
Main-sequence stars fuse hydrogen to helium in their cores.

At the end of MS, a non-fusing core of Helium ash starts to built up over time.

The He core is surrounded by a H-burning shell (originally thick and later thin) that keep dumping Helium ash onto the core.

Can the non-fusing core keep growing or is there a limit?
Schonberg-Chandrasekhar Limit

• In 1942, Schonberg and Chandrasekhar found that when the non-fusing Helium core reaches \(\sim 8\% \) of the total mass of the star, the core will contract because under isothermal condition, its pressure can no longer support the envelope:

\[
\left(\frac{M_{\text{core}}}{M} \right)_{SC} = 0.37 \left(\frac{\mu_{\text{env}}}{\mu_{\text{core}}} \right)^2
\]

• The mass-ratio limit above is derived in the following way:
 • Virial theorem (self-gravitating) with external pressure at the core-envelope boundary to calculate the maximum pressure that the core can support:

\[
P_{\text{core, max}} = \frac{A}{G^3 M_{\text{core}}^2} \left(\frac{kT_{\text{core}}}{\mu_{\text{core}} m_H} \right)^4
\]

• Hydrostatic equilibrium to calculate the actual pressure from the envelope plus the ideal gas law:

\[
P_{\text{env}} \approx \frac{G}{4\pi R^4} (M^2 - M_{\text{core}}^2) \approx \frac{B}{G^3 M^2} \left(\frac{kT_{\text{boundary}}}{\mu_{\text{env}} m_H} \right)^4
\]

• Given that at the boundary, the core and the envelope have the same temperature, the condition for collapse \((P_{\text{env}} > P_{\text{core, max}}) \) gives us a maximum core-mass-total-mass ratio that is inversely proportional to the square of the ratio of the mean molecular mass.
Violation of the SC limit causes the core to contract and the packed electrons become degenerate before ions because of their smaller masses.
Highly inflated, but the majority of the mass of a red giant is near the Earth-sized core (\(e^{-}\) degenerate)

1. A luminous red giant star is enormous compared to the Sun...

2. ...but this luminosity comes from hydrogen burning in a thin shell around a tiny degenerate core.
• Cooler T allows more opacity from H⁻ (H ion)
• Radiation bottles up and inflates star to a *red giant*
• Lifetime \(\sim 1 \) Gyr
The H⁻ thermostat in the atmosphere of a red giant

Surface temperature decreases

H⁻ increases

Atmosphere becomes more opaque

Surface temperature increases

H⁻ decreases

Atmosphere becomes more transparent

Surface temperature decreases
Helium Flash: The End of the Red Giant Phase

- Fusion of H in shell creates more He, making the core heavier.
- Pressure doesn’t increase past the electron-degenerate limit, but core temperature is allowed to increase without bound.
- ...until T reaches ~ 100 million K, at which time Helium can fuse.
The triple-alpha process begins when two ^4He nuclei fuse to form an unstable ^8Be nucleus.

If this nucleus collides with another ^4He nucleus before it breaks apart, the two will fuse to form a nucleus of carbon-12 (^{12}C).

The energy released is carried off both by the motion of the ^{12}C nucleus and by a gamma ray.
When the gravitational thermostat is out of order

non-degenerate core
- H fusion rate increases
- T & P increases
- Core expands, work against Gravity
- T decreases
- H fusion rate decreases
- Steady H Burning

electron-degenerate core
- He fusion rate increases
- T(He$^{2+}$) increases, P(e-) do not change
- Core doesn’t expand
- T(He$^{2+}$) still high
- He fusion rate increases
- He Flash

Steady H Burning
He flash - a thermonuclear runaway

- Nuclear fusion out of control (a runaway process)
- The degenerate helium core explodes within the star
- The whole process lasts only a few hours
After Helium flash

- Settles onto horizontal branch
- Stable Helium core burning, similar to a main sequence star
- H burning continues in shell surrounding the He burning core

- Main Sequence – 10 Gyr
- Red Giant – 1 Gyr
- He flash - a few hours
- He flash to HB – 100 Kyrs
- HB - 100 Myrs, a new “MS”
Horizontal branch stars are hotter (bluer) than RGs, and are evolving horizontally to left on HR diagram.
Post-MS evolution

- Red Giant – 1 Gyr
- Helium Flash - a few hours
- Readjust to HB – 100 Kyrs
- HB - 100 Myrs, a new “main-seq”
Main Sequence → Before He flash: Red Giant → After He flash: Horizontal Branch

Outer layers: no thermonuclear reactions

- Hydrogen-burning core
- Hydrogen-burning shell
- Helium core, no thermonuclear reactions
- Helium-burning core
- Red-giant star after helium burning begins
Eventually, Helium will be exhausted at the center of a Horizontal Branch star, and a non-fusing Carbon core will form under a Helium-burning shell?

This marks the end of the horizontal branch phase. Based on what you learned about the post-MS evolution, deduce the post-HB evolution of the star.

Post-**MS** evolution:
- non-fusing Helium core, H-burning shell
- Helium-core contract and become e- **degenerate**
- **Red giant** phase (H\(^-\) controls surface T as L increases)
- uncontrolled Helium-burning in the e- degenerate core (thermonuclear runaway, **Helium flash**)
- core expands and become non-degenerate, allowing steady Helium burning (**Horizontal branch**)
Post-HB evolution

- Asymptotic Giant Branch – 100 Kyr
- Post-AGB / Planetary Nebulae - 10 Kyr
- White Dwarf - eternal graveyard

The bloated asymptotic giant branch star begins losing its outer layers, ejecting a planetary nebula...

...leaving behind only the degenerate carbon core, a tiny cooling white dwarf.

Planetary Nebula Ejection
- Degenerate carbon core
- He-fusing shell
- H-fusing shell
- Nonfusing envelope
- Ejected stellar material

Asymptotic Giant Branch Star
- Nonfusing degenerate carbon ash core
- He-fusing shell
- H-fusing shell
- Nonfusing hydrogen envelope
Post-**MS** evolution:
- non-fusing Helium core, H-burning shell
- He-core contracts and become **e- degenerate**
- **Red giant** phase (H\(^-\) controls surface T as L increases)
- uncontrolled Helium-burning in the e- degenerate core (thermonuclear runaway, **Helium flash**)
- core expands and become non-degenerate, allowing steady Helium burning (**Horizontal branch**)

Post-**HB** evolution:
- non-fusing C core, He-burning shell, H-burning shell
- C-core contracts and become **e- degenerate**
- **Asymptotic Giant Branch** Phase (H\(^-\) controls surface T as L increases, the radius of the star increases even more)
- core temperature never reaches 500 million K needed for Carbon-burning (**no Carbon flash**)
- But eventually the AGB star becomes so bloated that it starts to lose its mass (post-AGB phase)
Asymptotic Giant Branch (AGB)

- Star gets more luminous and cool, and enters the asymptotic giant branch (AGB).
- Electron-degenerate Carbon core with no nuclear fusion (T not hot enough)
- H⁻ keeps the surface temperature almost constant, like in the Red Giant Branch (RGB)
Post-AGB - No “Carbon Flash” but a Planetary Nebula

- Temperature never gets high enough to initiate C burning (500 million K at core density)

- Mass loss becomes a runaway process – forming planetary nebulae

- mass loss -> star puffs up -> less gravity -> more mass loss

\[
\frac{^{12}_6\text{C}}{} + \frac{^{12}_6\text{C}}{} \rightarrow \frac{^{24}_{12}\text{Mg}}{} + \gamma
\]
Planetary Nebulae

- Material farther from the star was ejected earlier.
- Radiation from the white dwarf ionizes the gas. The colors are due to specific atoms and bright spots indicate areas of denser gas.

![Helix Nebula](image1.png)

![Butterfly Nebula](image2.png)
Why the central star appears so dim here?
How narrow-band filters decrease the contrast between the hot central star and the surrounding planetary nebula?
Severe Stellar Mass Loss illustrated in a Planetary Nebula

The planetary nebula extends much farther than the central bright area

NGC 6826 in Cygnus

3 minutes exposure

2.5 hours exposure
Post-AGB and White Dwarfs

- Lasts ~10,000 yrs before the gas expands too far and disperses into the ISM.
- The hot electron-degenerate Carbon core gradually reveals itself as the star’s outer envelope disperses.
- Observer finds a white dwarf that will cool for eternity.
- Can you calculate the time it takes for the temperature to half?
End Product: White Dwarfs (e.g., Sirius B)

- The leftover electron-degenerate carbon core of a star remains as a white dwarf.
 - It is initially very hot but because there is no energy production, it must cool off eventually.
 - It is small: inverse mass-radius relation, about Earth size
 - It is roughly half the mass of its progenitor MS star: 0.6–1.4 M_{Sun}.
 - Its density is a ton per teaspoonful.
 - Its size remains constant as it cools (degenerate pressure).
 - It has much lower luminosity compared to MS stars (why?)

- Models predict that all low-mass stars (Mass < 3 M_{Sun}) evolves into white dwarfs. So they carry lots of mass in a galaxy.
Model-Computed Evolutionary Track of a Low-Mass Star
Mass-Transfer Binary Stars
Blue stragglers and Type-Ia SNe
Lagrange Points of a Binary System

• Equilibrium points for small mass objects under the influence of two massive orbiting bodies
Lagrange Points of a Binary System

The contours of equipotential show the effective gravitational potential on the orbital plane, the Lagrange points are the local maxima where the gradient of effective potential is zero (no acceleration in the co-rotating non-inertial reference frame).
Roche Lobe (or Roche Surface)

- On the orbital plane, there is a critical equipotential contour that intersects itself at the L1 point, forming a figure-of-eight.
Roche Lobe (or Roche Surface)

- In 3D, the critical equipotential surface delineates two lobes in a binary system, in each lobe, small-mass objects are gravitationally bounded to the massive object at the center.
Mass-Transfer Binary Stars

• ~60% of stars are in binaries, a small fraction of which are very close binaries.

• The two stars in a binary have different MS lifetimes because of their different initial masses

• The more massive primary evolves into a RGB while the less massive secondary remains on the MS (middle figure)

• If the Roche lobe is smaller than the possible size of the RGB, the red giant primary can only expand so much before material is lost to the MS secondary’s gravity (bottom fig)
Mass-Transfer Binary Stars

- It’s likely that by the time the less massive star evolves to a red giant, the originally more massive star already evolved into a WD (Fig d)

- So mass transfer reverses: the secondary star begins to lose its envelope to the WD’s gravity, forming an accretion disk (Fig e)

- As the WD grows in mass because of accretion, there are two possible consequences.
I: Classical Novae

- H deposition on the surface of the white dwarf from the red giant star
- Condenses onto degenerate core and explosively burns episodically: **Nova**
- For a few hours, a Nova can be 10^5 times more luminous than the Sun.
GK Persei: Nova Persei 1901
red circle on the chart
In 1901, GK Persei was one of the brightest star on the sky (for a few days)
GK Persei: Nova of 1901
X-ray (blue), optical (yellow), radio (pink)

Radius \sim 40''
Distance \sim 470 \text{ pc}
What’s the physical radius in parsec & AU?

II: Type Ia Supernovae

- **WD mass increases over time** because of accretion from the RGB.
- When its mass reaches 1.4 M_{sun}, the Chandrasekhar limit, gravity overcomes the relativistic electron degeneracy pressure.
- The WD collapses, heats up and triggers a thermonuclear runaway:
 - “C Flash”: C core burns out in <1 sec! Forms Mg, Ne, Na, Ni, Fe.
 - This is a Type Ia supernova.
- 10^{10} times brighter than the Sun – comparable to the luminosity of a galaxy!
- Note: Type Ia may also be WD mergers.
Type Ia Supernovae

- Over just a few days, the explosion releases about the same amount of energy as the Sun does over its entire main-sequence lifetime (10^{44} Joules).
- Type Ia supernovae are excellent **distance indicators** because they are **standard candles** (luminosity can be inferred from the shape of its light curve)
Supernova Remnants

- The entire star explodes in the thermonuclear runaway — there is no central star left (unlike planetary nebulae)
- **Supernova remnants** are leftover shells of dust and gas from the explosion
More X-ray Images of Type Ia Supernova Remnants

Kepler supernova (1604) Tycho supernova (1572)
Can you use mass-transfer to explain blue stragglers (MS stars beyond the turnoff)
Chap 16: Key Concepts

• Observations
 • Nothing last forever, even stars
 • H-R diagram of star clusters

• Numerical Models
 • Equations of stellar structure and evolution
 • Stellar evolutionary tracks

• Fine-Tune Models
 • Isochrones (equal-age lines)
 • Fitting cluster H-R diagrams
 • Cluster age estimates

• Model Inferences
 • Main stages and rough lifetimes
 • Changes in the interiors of the stars: e- degenerate core + fusion shells

• Mass-Transfer Binaries
 • Roche Lobe, Lagrange Points
 • Novae, Type Ia SNe, Blue Stragglers
Chap 16: Key Equations

- **Hydrostatic Equilibrium:**
 \[
 \frac{dP}{dr} = - \rho g(r) = - \rho \frac{GM_r}{r^2}
 \]

- **The pressure from non-relativistic degenerate gas is:**
 \[
 P_{\text{degen}} = \frac{2}{3} n \frac{p^2}{2m} \approx \frac{h^2}{4\pi^2} \frac{n^{5/3}}{m}
 \]

- **The pressure from ideal gas is:**
 \[
 P_{\text{ideal}} = \frac{2}{3} n \left(\frac{3}{2} kT \right) = nkT
 \]

- **The condition for degeneracy is**
 \[
 \frac{h^2}{4\pi^2} \frac{n^{2/3}}{m} > kT
 \]

- **Mass-Radius relation of White Dwarfs:**
 \[
 R \propto M^{-1/3} \text{ when } M < 1.4M_\odot
 \]