

Outline

- Spacetime Geometry
- Friedmann-Lemaitre-Robertson-Walker metric
- Cosmological redshift
- Distances

OComoving distance
OHorizon distance
OProper distance
OLuminosity distance
OAngular diameter distance
OLight travel time distance

Distances in Cosmology

- Geometry

Odifferential interval $=$ metric $=\mathrm{ds}^{\wedge} 2$
Ospacetime interval $=$ int $\operatorname{sqrt}\left(\mathrm{ds}^{\wedge} 2\right)$ along a worldline W
Otimelike (proper time), lightlike (frozen time), spacelike (proper distance)

- Friedmann-Lemaitre-Robertson-Walker metric

OIntroduce scale factor $\mathrm{a}(\mathrm{t})$ and comoving coordinates
○Derivation of Hubble's law: $\mathrm{v}=\mathrm{dr} / \mathrm{dt}=\mathrm{x} \mathrm{da} / \mathrm{dt}=\mathrm{r}[\mathrm{da} / \mathrm{dt} / \mathrm{a}$]

- Cosmological redshift: $(1+z)=1 / \mathrm{a}(\mathrm{t})$
- Distances

OComoving distance: $\mathrm{x}=\mathrm{c}$ int $\mathrm{dz} / \mathrm{H}(\mathrm{z})$
■ Observer's horizon in comoving distance
OProper distance: D_p $=a(t 0) x=x$ for flat universe ■ Hubble law distance
OLuminosity distance: $\mathrm{D} _\mathrm{L}=(1+\mathrm{z}) \mathrm{x}$
OAngular diameter distance: $\mathrm{D} _\mathrm{A}=\mathrm{x} /(1+\mathrm{z})=$ emission distance
OLight travel time distance: $\mathrm{D} _\mathrm{ltt}=\mathrm{c}$ (t_now-t_emi)

A6782 F21: Cosmology p0

Distances in curved space
example usiy polar coondinates in 2D

$$
(d l)^{2}=(d r)^{2}+(r d \phi)^{2} \text {, flat. }
$$

On a curval plane with curvature $K \equiv \frac{1}{R^{2}}$

$$
\begin{array}{rlr}
(d l)^{2} & =(R d \theta)^{2}+(r d \phi)^{2} & \text { stan of a spitere } \\
& =\left(\frac{d r}{\cos \theta}\right)^{2}+(r d \phi)^{2} & r d d \theta-R \cdot d \theta \\
& =\left(\frac{d r}{\sqrt{1-r^{2} / R^{2}}}\right)^{2}+(r d \phi)^{2} & \\
& =\left(\frac{d r}{\sqrt{1-K r^{2}}}\right)^{2}+(r d \phi)^{2} \quad r \quad r \cdot d \phi+\ln d \phi \\
r=R \cdot \sin \theta \\
R d \theta=d r / \cos \theta
\end{array}
$$

extembing to curvel $3 D$ space

$$
\begin{aligned}
& (d l)^{2}=(d r)^{2}+(r d \theta)^{2}+(r \sin \theta d \phi)^{2}, \text { flat } \\
& (d l)^{2}=\left(\frac{d r}{\sqrt{1-k r^{2}}}\right)^{2}+(r d \theta)^{2}+(r \sin \theta d \phi)^{2}, \text { curved }
\end{aligned}
$$

space fime metric for an isotrogic, twomogeneons, expandiy universe

$$
\begin{aligned}
(d s)^{2} & \equiv(c d t)^{2}-(d l)^{2} \leftarrow \text { definel tobbe invariant multer Loratz ttrens. } \\
& =(c d t)^{2}-\left(\frac{d r}{\sqrt{1-k r^{2}}}\right)^{2}-(r d \theta)^{2}-(r \sin \theta d \phi)^{2}
\end{aligned}
$$

define comoving radial coordinate $x \equiv r / a(t) \Rightarrow r=a(t) \cdot x$
\& time independeat curvature $k \equiv k \cdot a^{2}(t)$

$$
\Rightarrow(d s)^{2}=(c d t)^{2}-a^{2}(t)\left[\left(\frac{d x}{\sqrt{1-k x^{2}}}\right)^{2}+(x d \theta)^{2}+(x \sin \theta d \phi)^{2}\right]
$$

This is the Robertson-Watker metric.
Propor fime: $\Delta \tau=\Delta s / c \quad$ tine recorcle by a a atch manin along worlline
Proper distance: $\Delta l=\sqrt{-(\Delta S)^{2}}$ distonce between two simutturneous events.

AG782F21: Cosmology pl

Lecture I outline:
redshift \& distance

Lecture 2:
Friedmann Eq. \& solutions

Metric: differential spacetime interval

$$
(d s)^{2}=(c d t)^{2}-(d l)^{2}=(c d t)^{2}-(d x)^{2}-(d y)^{2}-(d z)^{2}
$$

total interval along a worbbline 11.

$$
\Delta s=\int_{A}^{B} \sqrt{(d s)^{2}} \text { dong } \mathcal{H} \quad\left\{\begin{array}{l}
\text { fine like: }(\Delta s)^{2}>0 \\
\text { spacelike: }(\Delta s)^{2}<0
\end{array}\right. \text { null:(ss)=0}
$$

proper time (measured by a watch moving along w) is $\Delta \tau \equiv \frac{\Delta s}{c}$ proper distance (measured between two events in a ref. frame where they occur simultaneously) is $\Delta \mathcal{L}=\sqrt{-(\Delta s)^{2}}$

For a flat, expanding universe, we have Robention-walker metric

$$
\begin{aligned}
(d s)^{2} & =(c d t)^{2}-(d r)^{2}-(r d \theta)^{2}-(r \sin \theta d \phi)^{2} \\
& \equiv(c d t)^{2}-a^{2}(t)\left[(d x)^{2}+(x d \theta)^{2}+(x \sin \theta d \phi)^{2}\right]
\end{aligned}
$$

where we have defined comorin radius x \& scale factor a :
$\longrightarrow \gamma(t) \equiv a(t) x, r$ is called physical/proper coordinate. $a\left(t_{0}\right) \equiv 1$, current day scale factor is 1 .
This definition directly gives thuble-Lemaitre Law, see pL.
Redshift: light travels along a null geodesic [i.e., frozen proper five]

$$
d x=\frac{c d t}{a(t)}
$$

consider two photons emitted from canning distance X_{e} to χ_{0}

$$
\begin{aligned}
& \text { consider two photons emitted from coming distance } x_{e}^{t_{0}} \frac{c d t}{a(t)}=\int_{x_{e}}^{x_{0}} d x=\int_{t_{e}+\Delta t_{e}}^{t_{0}+\Delta t_{0}} \frac{c d t}{a(t)}=\int_{t_{e}}^{t_{0}}-\int_{t_{e}}^{t_{e}}+\int_{t_{0}}^{t_{0}+\Delta t_{0}} \\
& \Rightarrow \quad \frac{\Delta t_{0}}{a\left(t_{0}\right)}-\frac{\Delta t_{e}}{a\left(t_{e}\right)}=0 \Rightarrow \frac{1}{\Delta t_{e}}=\frac{\Delta t_{0} / c}{\lambda_{e} / c}=(1+z)
\end{aligned}
$$

cosmological redshift is a fine dilation effect.

A6782 F21: Cosmology pa

Distances: consider a photon emitted by a comorin object at time t_{2} \&t observed by us at tolls, whet's the comorin distance between them?

$$
x=\int_{t_{e}}^{t_{d d s}} \frac{c d t^{\prime}}{a\left(t^{\prime}\right)}=c \int_{a}^{1} \frac{d a^{\prime}}{\dot{a}^{\prime} a^{\prime}}=c \cdot \int_{a}^{1} \frac{d a^{\prime}}{f\left(a^{\prime}\right) a^{\prime 2}}
$$

where we have used Hubble's law: [velocitabetween two comorin obis']

$$
v(t)=\frac{d r}{d t}=\frac{x d a}{d t}=\frac{a}{a} \cdot r(t)=H(t) \cdot r(t)
$$

Hubble para. propose dintmee at t.
we already have the retetition betuon a \& z, so we can replace a

$$
\begin{aligned}
& a=\frac{1}{(1+z)} \Rightarrow d a=-(1+z)^{-2} d z \\
& x=c \cdot \int_{z}^{0} \frac{-(1+z)^{-2} d z^{\prime}}{H(z) \cdot\left(1+z^{\prime}\right)^{-2}}=c \int_{0}^{z} \frac{d z^{\prime}}{H\left(z^{\prime}\right)}
\end{aligned}
$$

our coloring distance to the horizon, is

$$
\gamma_{\text {hor }}=c \int_{0}^{\infty} \frac{d z^{\prime}}{f\left(z^{\prime}\right)}=c \cdot \int_{0}^{\text {tob }} \frac{d t^{\prime}}{a\left(t^{\prime}\right)}
$$

Hubble law distance is comorin distance

$$
\begin{aligned}
& \left.d_{H}=\gamma(t) \equiv a\left(t_{0}\right) x \equiv \frac{v\left(t_{0}\right)}{H\left(t_{2}\right)}=\frac{c}{H H_{0}} \ln (1+z)\right] \\
& \text { where }(1+z)=e^{v / c} \text { for zero-densily model }[H(a)=H 0 / a] \\
& \text { derivation: } \quad V
\end{aligned}
$$

Note that the above differs from the relativistic Doppler shift law

$$
(1+z)=\sqrt{(1+v / c) /(1-v / c)}
$$

and the Hubble law distance is identical to comoving distance, so it depends on cosmology parameters.

A6782 F21: Cosmology p2.5

Cosmolagial Distances:
F1RW Metric: $d s^{2}=(c d t)^{2}-a^{2}(t)\left[\frac{d x^{2}}{1-k x^{2}}+x^{2}\left(d \theta^{2}+\sin ^{2} \theta d \phi^{2}\right)\right]$
Proper distance (along radial direction) $[d t=0, d \theta=d \phi=0]$

$$
\begin{aligned}
& \text { vs. comingdist } s\left(t_{0}\right) \equiv \int_{0}^{s} d s^{\prime}=a\left(t_{0}\right) \int_{0}^{x} \frac{d x}{\sqrt{1-k x^{2}}} \\
& =\sigma(t) \begin{cases}\frac{1}{\sqrt{k}} \sin ^{-1}(x \sqrt{k}) & \text { for } k>0, \text { closed universe } \\
x & \text { for } k=0 \text {, flat } \\
\frac{1}{\sqrt{|k|}} \sinh ^{-1}(x \sqrt{|k|}) & \text { for } k<0 \text {, open }\end{cases} \\
& \Rightarrow d p=a\left(t_{0}\right) \cdot x \quad \text { (for flat universe only) } \text { where } x \text { is comorin distance } \& f_{0} \text { is time of }
\end{aligned}
$$

Horizen distance (comorin distance \&
the furthest observatife event

$$
\begin{aligned}
& \text { photons move along null geodesic } \Rightarrow d s=0 \\
& \int_{0}^{t} \frac{c d t}{a(t)}=\int_{0}^{x_{h}} \frac{d r}{\sqrt{1-k r^{2}}} \\
& \Rightarrow x_{h}= \begin{cases}\sin \left(c \cdot \int_{0}^{t} \frac{d t}{a(t)}\right) & \text { for } k=1 \\
c \cdot \int_{0}^{t} \frac{d t}{a(t)} & \text { for } k=0 \\
\sinh \left(c \cdot \int_{0}^{t} \frac{d t}{a(t)}\right) & \text { for } k=-1\end{cases} \\
& \text { Today: [co29.159] } \\
& x_{h, 0}=14.6 \mathrm{Gpc} \\
& \overrightarrow{P C \cdot C H}+b_{l} \text { e } \\
& \text { Inthe futile: } \\
& x_{h} \rightarrow 19.3 \mathrm{Gpe} \\
& \text { ide. it converges ta } \\
& \text { a maximum }
\end{aligned}
$$

Angular diameter distance \& Luminosity disteme
Photon power loss due so expansion.

$$
\begin{aligned}
& P_{e m}=\frac{h \nu_{e}}{\delta t_{e}}, P_{0 b s}=\frac{h \nu_{0}{ }^{2}}{\delta t_{0} \lambda}=\frac{h \nu_{e}}{\delta t_{e}} \cdot \frac{a\left(t_{e}\right)^{2}}{a\left(f_{0}\right)^{2}}=P_{e} \cdot a(t)^{2} \\
& \Rightarrow f_{0 b_{s}}=\frac{l_{e} \cdot a\left(t_{e}\right)^{2}}{4 \pi d_{p}^{2}}=\frac{h_{e}}{4 \pi \cdot x^{2} / a\left(t_{e}\right)^{2}} \equiv \frac{h_{e}}{4 \pi d_{e}^{2}} \\
& \Rightarrow d_{e}=x / a(t e)=x \cdot(1+z)=x / a(t e) \\
& d_{A}=d_{L} /(1+z)^{2}=x /(1+z)=x \cdot a\left(t_{e}\right)
\end{aligned}
$$

A6782 F21: Cosmology p^{3}
distance square $\left\{F=\frac{L}{4 \pi d_{p}^{2}(1+z)^{2}}\right.$
$\begin{aligned} & \text { law \& inverse } \\ & \begin{array}{l}\text { distmem taw of } \\ \text { expand universe }\end{array}\end{aligned} \quad \theta=\frac{l}{d p /(1+z)}$
Luminosity \& Angular Drancter Distances

$$
\begin{aligned}
& d_{L}=\sqrt{\frac{1}{4 \pi}}, \quad d_{A}=\frac{l}{\theta} \\
& d_{E}=x \cdot(1+z)=c \cdot(1+z) \cdot \int_{0}^{z} \frac{d z^{\prime}}{H\left(z^{\prime}\right)} \\
& d_{A}=d_{L} /(1+z)^{2}=x /(1+z)
\end{aligned}
$$

derivation of $d_{A}-d_{L}$ relation:
Luminosity of $B B: \quad I=4 \pi k^{2} \cdot \sigma T_{e}^{4}$
surface brightness seen by observer. $I=\frac{\sigma T_{0 \text { obs }}^{4}}{\pi}$
flux received by observer: $f=\frac{\pi k^{2}}{d_{A}^{2}} \cdot I=\frac{k^{2}}{d_{A}^{2}} \cdot \sigma T_{\text {obs }}^{4}$
definition of $d_{L}: 4 \pi d_{L}^{2} \cdot F=L=4 \pi R^{2} \sigma T_{e}^{4}$

$$
\begin{aligned}
& \Rightarrow 4 \pi d_{L}^{2} \cdot \frac{k^{2}}{d_{A}^{2}} \cdot \sigma T_{\text {obs }}^{4}=4 \pi R^{2} \cdot \sigma T_{e}^{4} \\
& \Rightarrow \frac{d_{L}}{d_{A}}=\left(\frac{T_{e m}}{T_{\text {db s }}}\right)^{2}=(1+z)^{2}=\left[\frac{1}{a\left(T_{e}\right)}\right]^{2}
\end{aligned}
$$

surface brightness dimming:

$$
I \propto \frac{F}{\theta^{2}} \propto \frac{l}{d_{L}^{2}} \cdot \frac{d_{A}^{2}}{l^{2}}=\frac{L}{l^{2}} \cdot(1+z)^{-4}
$$

adiabatic expansion of photon gas where $a=\frac{4 \sigma_{S B}}{C}$
energy density: $u=a \cdot T^{4}$, radiative pressure: $P=\frac{1}{3} a T^{4}$
Is law of $T D: d Q=d E+P d V$, adiabatic: $d Q=0$

$$
\begin{array}{r}
\frac{d E}{d t}=-P \frac{d V}{d t} \Rightarrow 4 T^{3} \cdot V \cdot \frac{d T}{d t}+T^{4} \frac{d V}{d t}=-\frac{1}{3} T^{4} \cdot \frac{d V}{d t} \\
\Rightarrow \frac{1}{T} \frac{d T}{d t}=-\frac{1}{3 V} \frac{d V}{d t}=-\frac{1}{a} \frac{d a}{d t},\left[V=x^{3} a^{3}(t) \text { is used }\right] \\
\Rightarrow T \propto a^{-1}=(1+z)
\end{array}
$$

Solutions of the Friedmann

 Equation

Fig 8.7 'Galaxies in the Universe' Sparke/Gallagher CUP 2007

- for $z \ll 1, z \times c=v_{r}=H_{0} D=H_{0}\left(t_{0}-t\right) c$, so $z=H_{0}\left(t_{0}-t\right)$
- for $\mathrm{z} \ll 1, R=1 /(1+z) \approx 1-\mathrm{z}$, so $R=1-H_{0}\left(t_{0}-t\right)$
- At $t=0, R=0$, so we have $t_{0}=1 / H_{0}=13.7 \mathrm{Gyr}$

Friedman Eq. (Energy conservation)
imagine an expanding shell with a comorin radius of $x \equiv r / a$

$$
\begin{aligned}
E & =\frac{1}{2} V^{2}-G \frac{M(r)}{r} \text {, where } v=\frac{d r}{d t}=x \cdot \dot{a}, M(r)=\frac{4}{3} \pi \rho \cdot(a x)^{3} \\
& =\frac{1}{2} H^{2} a^{2} x^{2}-\frac{4}{3} \pi G \rho a^{2} x^{2} \\
& \equiv-\frac{1}{2} k c^{2} x^{2} \leftarrow \text { energy per unit mass } E / m \sim c^{2} \\
& {\left[\left(\frac{1}{a} \frac{d a}{d t}\right)^{2}-\frac{8}{3} \pi G \rho\right] a^{2}=-k c^{2} }
\end{aligned}
$$

define critical density: $\rho_{c} \equiv \frac{3 H^{2}}{8 \pi G}\left[\begin{array}{l}H_{0}=70 \mathrm{~km} / \mathrm{s} / \mathrm{mpc} \\ \rho_{c, 0}=10^{-29} \mathrm{~g} / \mathrm{cm}^{3}\end{array}\right]$

$$
\Rightarrow \quad H^{2}\left[1-\rho\left(\rho_{c}\right) a^{2}=-k c^{2}\right.
$$

Full GR version:

$$
\left[\left(\frac{1}{a} \frac{d a}{d t}\right)^{2}-\frac{8}{3} \pi G\left(\rho_{m}+\rho_{r e l}\right)-\frac{1}{3} A c^{2}\right] a^{2}=-k c^{2}
$$

or $H^{2}\left[1-\left(\Omega_{m}+\Omega_{r e l}+\Omega_{A}\right)\right] a^{2}=-k c^{2}$
where $\Omega_{m}=\frac{\rho_{m}}{\rho_{c}}, \Omega_{r e l}=\frac{\rho_{\text {rel }}}{\rho_{c}}, \Omega_{\Lambda}=\frac{A c^{2}}{8 \pi G \rho_{c}}=\frac{A c^{2}}{3 H^{2}}$
Evolution of Ω 's (density parameters)

$$
\left\{\begin{array}{l}
\frac{\rho_{m}}{\rho_{m, 0}}=\frac{1}{a^{3}} \Rightarrow \frac{\Omega_{n}}{\Omega_{m, 0}}=\frac{\rho_{m}}{\rho_{m, 0}} \cdot \frac{\rho_{c, 0}}{\rho_{c}}=\frac{\rho_{m}}{\rho_{m, 0}} \frac{H_{0}^{2}}{H^{2}}=\frac{1}{a^{3}} \frac{H_{0}^{2}}{H^{2}} \\
\frac{\rho_{r}}{\rho_{r, 0}}=\frac{1}{a^{4}} \Rightarrow \frac{\Omega_{r}}{\Omega_{r, 0}}=\frac{1}{a^{4}} \frac{H_{0}^{2}}{H^{2}} \\
\frac{\Omega_{n}}{\Omega_{n, 0}}=\frac{\Lambda H_{0}^{2}}{\Lambda H^{2}}=\frac{H_{0}^{2}}{H^{2}}
\end{array}\right.
$$

Boundary Condition:

$$
\begin{aligned}
& \text { at } t=t_{0}, H_{0}^{2}\left(1-\Omega_{0}\right)=-k c^{2}, \Omega_{0}=\Omega_{m, 0}+\Omega_{r, 0}+\Omega_{n, 0} \\
& \Rightarrow H^{2} a^{2}\left[1-\left(\Omega_{m}+\Omega_{r}+\Omega_{n}\right)\right]=H_{0}^{2}\left(1-\Omega_{0}\right)
\end{aligned}
$$

$H(a)$ relation:

$$
\begin{aligned}
& H^{2}-H^{2} \Omega_{m}+H^{2} \Omega_{r}-H^{2} \Omega_{\Lambda}=H_{0}^{2}\left(1-\Omega_{0}\right) / a^{2} \\
& \downarrow \\
& \Omega_{m, 0} H_{0}^{2} / a^{3} \quad \Omega_{r, 0} H_{0}^{2} / a^{4} \quad \Omega_{n, 0} H_{0}^{2} \\
& \Rightarrow H^{2}= \\
& H_{0}^{2} / a^{2}\left[\left(1-\Omega_{0}\right)+\Omega_{m, 0} / a+\Omega_{r, 0} / a^{2}+\Omega_{n, 0} a^{2}\right]
\end{aligned}
$$

so for empty universe $\left(\Omega_{0}=0\right)$, we have:

$$
H=H H_{0} / a
$$

for EdS universe $\left(\Omega_{0}=\Omega_{m, 0}=1, \Omega_{r, 0}=\Omega_{n, 0}=0\right)$:

$$
H=H_{0} / a^{3 / 2} \quad \text { Einstein-de Sitter. }
$$

$\Omega(a)$ relation:

$$
\Omega_{m}=\frac{\Omega_{m, 0} H_{0}^{2}}{a^{3} \cdot H^{2}}=\frac{\Omega_{m, 0}}{a\left[\left(1-\Omega_{0}\right)+\Omega_{m, 0} / a+\Omega_{R_{0}, 0} / a^{2}+\Omega_{n, 0} a^{2}\right]}
$$

for Els universe, $\Omega_{m}=\Omega_{m, 0}$ at all time. for $\Lambda C D M$, all $\Omega=s$ vary with time in a complex way

$$
\Omega_{n}=\frac{\Omega_{x_{0}} H_{0}^{2}}{H^{2}}=\frac{\Omega_{n_{0}} a^{2}}{\left(1-\Omega_{0}\right)+\Omega_{m, 0} / a+\Omega_{t, 0} / a^{2}+\Omega_{1,0} a^{2}}
$$

$t(a)$ relation:
consider only $k=0$ case

$$
\begin{aligned}
&\left(\frac{1}{a} \frac{d a}{d t}\right)^{2}-\frac{8}{3} \pi G\left(\rho_{m, 0} / a^{3}+\rho_{r, 0} / a^{4}+\rho_{1,0}\right)=0 \\
& \Rightarrow(d t)^{2}=\frac{3 a^{2}(d a)^{2}}{8 \pi G\left(\rho_{m, 0} a+\rho_{r, 0}+\rho_{n, 0} a^{4}\right)} \\
&=\frac{1}{H_{0}^{2}} \cdot \frac{3 H_{0}^{2}}{8 \pi} \cdot \frac{a^{2}(d a)^{2}}{\rho_{m, 0} a+\rho_{r, 0}+\rho_{n, 0} a^{4}} \\
&=t_{H 1}^{2} \frac{a^{2}(d a)^{2}}{\Omega_{m, 0} a+\Omega_{r, 0}+\Omega_{n, 0} a^{4}} \\
& \Rightarrow t=t_{H} \cdot \int_{0}^{a} \frac{a d a}{\sqrt{\Omega_{m} a+\Omega_{r, 0}+\Omega_{1,0} a^{4}}}
\end{aligned}
$$

(1) EdS universe: $\Omega_{0}=\Omega_{m, 0}=1$

$$
t=t_{H} \cdot \int_{0}^{a} \sqrt{a} d a=\frac{2}{3} a^{3 / 2} t_{H} \Rightarrow a=\left(\frac{3}{2}\right)^{2 / 3} \cdot\left(\frac{t}{t_{H}}\right)^{2 / 3}
$$

$\Rightarrow t(a=1)=\frac{2}{3} t_{H}$ age of the Universe
\Rightarrow lookeback time: $t(a=1)-t(a)=\frac{2}{3} t_{H 1}\left(1-a^{3 / 2}\right)$
radiation only
(2) Employ universe: $\Omega_{0}=\Omega_{r, 0}=1$

$$
t=t_{1} \cdot \int_{0}^{a} a d a=\frac{1}{2} a^{2}
$$

(3) \triangle-only universe: $\Omega_{0}=\Omega_{\Lambda, 0}=1$

$$
t=t_{H} \cdot \int_{0}^{a} \frac{d a}{a}=t_{H}\left(\ln a-\ln a_{\min }\right)
$$

$\Rightarrow \operatorname{exponentinal}$ growth: $a=a_{\text {min }} \exp \left(t / t_{H}\right)$

