This process, to be described in more detail below, results in a virialized dark matter halo of a black hole. However, in reality, the collapse is never perfectly spherical. According to the SC model, the density perturbations obey approximately $\delta = (\rho - \langle \rho \rangle) / \langle \rho \rangle$, which would result in the formation of a virialized dark matter halo after shell crossing and virialization. The physical density $\rho \equiv \rho_m$ of a mass m is not conserved but the entropy $S \equiv S_m$ per unit mass is preserved: $\rho(a)/\rho_0 = a^3 - \delta_m(a)/\delta_m(0)$, and thus $\rho(a)/\rho_0 = a^3 - \delta_m(a)/\delta_m(0)$, and thus $\rho(a)/\rho_0 = a^3 - \delta_m(a)/\delta_m(0)$.

Our density perturbation will then evolve like a closed universe with $\Omega_m = 1 + \delta$. The scale factor $a(t)$ of such a universe reaches a maximum value a_{max} and then decreases again—in other words, our perturbation will grow to a maximum size $r = a_{\text{max}}$ at time $t = t_{\text{max}}$ and then collapse.

Consider the idealised case of a spherical volume where the density is infinitesimally higher than the cosmic mean. The linearly extrapolated density field collapses when $\delta = 1.686 \times 10^{-2}$. For $\delta > 1$, the density field is no longer a spherical collapse, and then decreases again—in other words, our perturbation will grow to a maximum size $r = a_{\text{max}}$ at time $t = t_{\text{max}}$ and then collapse.
Formation of DM Halos

Top-Hat Spherical Collapse in EoS Universe

\[\Omega(t) = 5 \ln(t) = 1, \quad H = H_0 \cdot a^{-\frac{1}{2}}, \quad a = \left(\frac{3}{\bar{c}^2} \right) \left(\frac{t}{t_0} \right)^{\frac{1}{2}} \]

\[\bar{\rho}(t) = \rho_c = \frac{3H_0^2}{8\pi G} = \frac{1}{6\pi G a^2 t^2} = \frac{3H_0^2}{8\pi G} \cdot a^{-3}, \quad t \approx t_0 \approx \frac{2}{3} t_0 (1 - a^{-3}) \]

Density contrast:

\[\delta(t) = \frac{\rho(t) - \bar{\rho}(t)}{\bar{\rho}(t)} \text{ or } 1 + \delta = \frac{\rho}{\bar{\rho}} \]

Mass conservation:

\[M = \frac{4}{3} \pi r_1^3 \bar{\rho}(1 + \delta) = \frac{4}{3} \pi r_1^3 (1 + \delta) \]

the above eq. shows that in order for \(\delta \) to evolve, the expansion of the shell must decouple from the cosmic expansion (i.e. Hubble flow) \(\Rightarrow r(t) \propto a \propto t^{\frac{1}{3}} \)

Energy conservation:

\[\frac{1}{2} \left(\frac{dr}{dt} \right)^2 - \frac{GM}{r} = E \quad \text{where } E \text{ is the specific energy of shell} \]

Solution in parametric form: \(r(\theta) \& t(\theta) \) instead of \(r(t) \) or \(t(r) \)

\[\frac{dr}{dt} = \left(2E + \frac{2GM}{r} \right)^{\frac{1}{2}} = \left[-\left(\frac{A}{B} \right)^2 + \frac{2A^3 \sin^2 \phi}{B^2 r} \right]^{\frac{1}{2}} \]

\[= \frac{A}{B} \left(\frac{2A}{r} - 1 \right)^{\frac{1}{2}} \quad \text{define } A: \text{size par}, \ B: \text{time par} \]

where we defined two positive constants:

\[A = -\frac{GM}{2E} \quad \& \quad B = \frac{GM}{(-2E)^{\frac{3}{2}}} \quad \text{E<0 for bounded sys.} \]

\[\Rightarrow \frac{dt}{B} = 2 \sqrt{\frac{2A}{r} - 1} \quad \text{define } r = 2A \sin^2 \phi \text{ because } 2A \text{ is the max radius when KE=0} \]

\[= \frac{d \sin^2 \phi}{(\frac{1}{\sin^2 \phi} - 1)^{\frac{1}{2}}} = 4 \sin^2 \phi \sin \phi = (1 - \cos 2\phi) d(2\phi) \]

\[\Rightarrow t = B(\theta - \sin \theta) \quad \& \quad r = A(1 - \cos \theta) \]

initial condition: \(\theta = 0, \ t = 0, \ r = 0 \)
The solution implies:

- Shell expands from $r = 0$ at $t = 0$ (at $\theta = 0$)
- Reaches max radius R_{max} at $t = t_{\text{max}} = \frac{2A}{\pi B}$ (at $\theta = \pi$)
- Collapses back to $r = 0$ at $t = t_{\text{coll}} = 2\pi B$ (at $\theta = 2\pi$)
- t_{max} is the turnaround time
- t_{coll} is the visualization time

The same solution can be obtained from Friedmann Equation (matter-only):

\[
\frac{1}{a} \left(\frac{da}{dt} \right)^2 = \frac{4}{3} \pi G \rho a^2 = -\frac{1}{2} k c^2 = \frac{1}{2} H_i^2 (1 - S_i) a_i^2
\]

Rearrange:

\[
\frac{1}{2} \left(\frac{da}{dt} \right)^2 - \frac{4\pi G\rho_i a_i^3}{a} = \frac{1}{2} H_i^2 a_i (1 - S_i)
\]

\[\Rightarrow GM = \frac{4\pi G\rho_i a_i^3}{a}, \quad -2E = H_i^2 a_i (S_i - 1) > 0\]

Solution again is:

\[a = A (1 - \cos \theta), \quad \text{where} \quad A = \frac{GM}{-2E} = a_i \frac{S_i}{2(S_i - 1)} \sim S_i^{-1}\]

\[t = B (\theta - \sin \theta)\]

\[B \propto S_i \Rightarrow \text{larger perturbations collapse earlier}\]

\[B = \frac{GM}{-2E} a_i = \frac{S_i}{2H_i (S_i - 1)} \sim S_i^{-\frac{3}{2}}\]

Density evolution:

- mean density of shell: \(\rho = \frac{3M}{4\pi a^3} = \frac{3M}{4\pi A^3} (1 - \cos \theta)^{-3} \)
- mean density of background (Fierz): \(\bar{\rho} = \frac{1}{6\pi G} a^2 = \frac{1}{6\pi G} B^2 (\theta - \sin \theta)^2 \)

\[\Rightarrow \text{density contrast} \quad (1 + \delta) = \frac{\rho}{\bar{\rho}} = \frac{9 (\theta - \sin \theta)^2}{2 (1 - \cos \theta)^3} \text{ because } A^3/B^2 = GM\]

At turnaround, \(\theta = \pi \Rightarrow (1 + \delta)_{\text{ta}} = \frac{9}{16} \pi^2 = 5.55 \)

At visualization, \(t = 2t_{\text{max}}, \quad r = \frac{1}{2} r_{\text{max}} = A, \)

\[(1 + \delta)_{\text{vir}} = (1 + \delta)_{\text{ta}} \times (\frac{1}{2})^{\frac{3}{2}}/2^{-2} = 18\pi^2 = 178\]
Virialization radius of DM halo:

Virial theorem: \(2K_v + \Phi_v = 0 \Rightarrow K_v = -\frac{1}{2} \Phi_v \)

Energy conservation: \(E_i = K_i + \Phi_i = E_{ta} = 0 + \Phi_{ta} \)
\[E_i = K_v + \Phi_v = \frac{1}{2} \Phi_v \]

\[\Rightarrow \Phi_{ta} = \frac{1}{2} \Phi_v \rightarrow -\frac{GM}{R_{ta}} = -\frac{GM}{2R_v} \]

\[\Rightarrow R_v = \frac{1}{2} R_{ta} = A \]

top-hat density increases by \(8 \times \) from turn-around to virialization.

Expectation of linear growth when \(S \ll 1 \)

Assume a background flat universe (\(k = 0 \))
\[H^2 = \frac{8\pi G \bar{\rho}}{3} \]

Inside the overdensity (\(k > 0 \))
\[H^2 + \frac{k c^2}{a^2} = \frac{8\pi G}{3} (\bar{\rho} + \delta \rho) \]

\[\Rightarrow S = \frac{\delta \rho}{\bar{\rho}} = \frac{3 kc^2}{8\pi G (\bar{\rho} a^2)} \propto \begin{cases} a^2 & \text{when radiation dominates} \\ a & \text{when matter dominates (i.e. Eds)} \end{cases} \]

Further implications:

1. Larger perturbations collapse earlier:
\[t_{\text{coll}} = 2\pi B \propto S_i^{-3/2} \Rightarrow \text{larger perturb collapese earlier} \]

2. Only \(S > 10^{-3} \) perturbations would have collapsed by today
 of recombination (\(z \sim 10^3 \))
\[a_{\text{coll}} = \frac{1}{2} a_{\text{ta}} = A = A_i \frac{S_i}{S_i}, \quad S_i \ll 1 \]

For \(a_{\text{coll}} < a(\text{today}) = 1 \), we have \(S_i > a_i = 10^{-3} \rightarrow z \sim 1000 \)

Same result can be derived from \(t_{\text{coll}} < t_H = \frac{2}{\dot{a}_H}, \quad t_{\text{coll}} = 2\pi B \)
Virial Theorem: \(2\langle k \rangle + \langle u \rangle = 0 \)

Proof: Define \(Q = \sum_{i=1}^{N} \vec{p}_i \cdot \vec{r}_i \) (recall that \(\vec{L} = \sum_{i=1}^{N} \vec{r}_i \times \vec{p}_i \)).

\[
\frac{dQ}{dt} = \frac{d}{dt} \left(\sum_{i=1}^{N} \left(m_i \frac{d\vec{r}_i}{dt} \cdot \frac{d\vec{r}_i}{dt} + m_i \frac{d^2\vec{r}_i}{dt^2} \cdot \vec{r}_i \right) \right) = 2\dot{K} + \sum_{i=1}^{N} \vec{F}_i \cdot \vec{r}_i
\]

\[
\frac{dQ}{dt} = \frac{d}{dt} \left(\sum_{i=1}^{N} m_i \frac{d\vec{r}_i}{dt} \cdot \vec{r}_i \right) = \frac{d}{dt} \left(\sum_{i=1}^{N} \frac{1}{2} \dot{r}_i \right) = \frac{1}{2} \frac{d^2I}{dt^2}
\]

where \(I = \sum_{i=1}^{N} m_i \dot{r}_i^2 \) is the moment of inertia.

For gravitational systems, \(\vec{F}_i = \sum_{j \neq i} G m_i m_j \frac{(\vec{r}_{ij} \cdot \vec{r}_i)}{|\vec{r}_{ij} - \vec{r}_i|^3} = \sum_{j \neq i} F_{ij} \)

Virial theorem: \(\sum_{i} \vec{F}_i \cdot \vec{r}_i = \sum_{j \neq i} \left(\sum_{i} \sum_{j \neq i} F_{ij} \right) \left(\frac{1}{2} |\vec{r}_i + \vec{r}_j|^2 + (\vec{r}_i - \vec{r}_j) \right) \)

\[
= \frac{1}{2} \sum_{i} \sum_{j \neq i} \left(\sum_{i} \sum_{j \neq i} F_{ij} \right) \dot{r}_i^2 + \frac{1}{2} \sum_{i} \sum_{j \neq i} \left(\sum_{i} \sum_{j \neq i} F_{ij} \right) \dot{r}_j^2 + \frac{1}{2} \sum_{i} \sum_{j \neq i} \sum_{i} \sum_{j \neq i} F_{ij} \left(\dot{r}_i \cdot \dot{r}_j \right)
\]

\[
= \frac{1}{2} \sum_{i} \sum_{j \neq i} \sum_{i} \sum_{j \neq i} F_{ij} \left(\dot{r}_i \cdot \dot{r}_j \right) + \frac{1}{2} \sum_{i} \sum_{j \neq i} \sum_{i} \sum_{j \neq i} \left(\frac{G m_i m_j}{|\vec{r}_{ij}|} \right) \left(\vec{r}_{ij} \cdot \vec{r}_i \right)
\]

\[
= 0 + \frac{1}{2} \sum_{i} \sum_{j \neq i} \vec{U}_{ij} = U
\]

\[
\Rightarrow \quad \frac{dQ}{dt} = 2K + U
\]

Therefore, the integral over a period of \(T \)

\[
\langle U \rangle = \frac{1}{T} \int_0^T U \, dt
\]

Because \(Q = \sum_{i} \vec{F}_i \cdot \vec{r}_i \) is bounded for a system that reached an equilibrium or steady-state configuration.

Application: Virial mass \(\sigma^2 = \frac{G M_{\text{vir}}}{R_{\text{vir}}} \Rightarrow M_{\text{vir}} = \sigma^2 R_{\text{vir}} \).

Faber-Jackson relation: \(R \propto \frac{L}{M}, L = 4\pi R^2 B \Rightarrow L \propto L^2 / \sigma^4 B \).
Non-Linear vs. Linear Growth (in EdS)

What is the density contrast at the time of collapse?

\[t_{\text{coll}} = 2\pi B = \frac{\pi}{H_i} \cdot \delta; \]

Implicit assumption:
\[t_{\text{vir}} = t_i + t_{\text{coll}} \approx t_{\text{coll}} \]

\[a(t_{\text{coll}}) = \left(\frac{3}{2} \right)^{2/3} \left(\frac{t_{\text{coll}}}{t_i} \right)^{2/3} = \left(\frac{3\pi}{2} \right)^{2/3} \frac{H_0}{H_i} \frac{1}{\delta}; \]

because \(H_i = H_0 \cdot a_i^{-\frac{1}{2}} \), we have

\[a(t_{\text{coll}}) = \left(\frac{3\pi}{2} \right)^{2/3} \frac{a_i}{\delta}; \]

in linear growth theory, \(\delta \propto a \), therefore

\[\delta(t_{\text{coll}}) = \delta_i \cdot \frac{a(t_{\text{coll}})}{a_i} = \left(\frac{3\pi}{2} \right)^{2/3} = 2.811 \]

Note that the final \(\delta \) is independent of \(\delta_i \), just like in non-linear.

A better approximation; starting from the result of non-linear theory:

\[1 + \delta = \frac{9}{2} \left(\frac{\Theta - \sin \Theta}{1 - \cos \Theta} \right)^2 \]

then apply the first 3 orders of Taylor expansion (\(\Theta << 1 \))

\[\sin \Theta = \Theta - \frac{\Theta^3}{3!} + \frac{\Theta^5}{5!} \]

\[\cos \Theta = 1 - \frac{\Theta^2}{2!} + \frac{\Theta^4}{4!} \]

\[\Rightarrow 1 + \delta = \frac{9}{2} \cdot \frac{8}{36} \left(1 - \frac{\Theta^2}{10} \right) \approx \left(1 - \frac{\Theta^2}{10} \right) \left(1 + \frac{\Theta^2}{4} \right) \approx 1 + \frac{3\Theta^2}{20} \]

\[\Rightarrow \delta \approx 3\Theta^2/20 \]

On the other hand, \(t = B(\Theta - \sin \Theta) = B \Theta^{3/6} \), \& \(t_{\text{max}} = \pi B \)

\[\Rightarrow \Theta = \left(\frac{6t}{B} \right)^{1/3} = \left(\frac{6\pi t}{t_{\text{max}}} \right)^{1/3} \]

Therefore,

\[\delta(t) = \frac{3}{20} \left(6\pi \right)^{2/3} \left(\frac{t}{t_{\text{max}}} \right)^{4/3} = \begin{cases} 1.062 & @ t_{\text{max}} = t_{\text{vir}} \\ 1.686 & @ t_{\text{coll}} = 2t_{\text{max}} \end{cases} \]
Virial radius, virial mass, circular velocity

\(R_\Delta \) is the radius of a sphere containing an overdensity with \(P = \Delta_c \cdot S_m \cdot P_{\text{crit}} \)

\[\langle P(R_\Delta) \rangle = \Delta_c \cdot S_m \cdot P_{\text{crit}}, \text{ where } \Delta_c = (1 + 8) \nu \]

where \(\Delta_c \), \(S_m \), & \(P_{\text{crit}} \) are all functions of \(z \), so \(R_\Delta \) is calculated at the epoch of virialization.

In EDS, \(\Delta_c = 18 \pi^2 = 178 \) at all \(z \), and \(S_m(z) = 1.0 \)

In \(\Lambda \)CDM, \(\Delta_c(z) = 18 \pi^2 + 82 y - 39 y^2 \), where \(y = S_m(z) - 1 \)

\[S_m(z) = \frac{S_m(0) (1 + z)^3}{S_m(0)(1 + z)^3 + 2} \]

\(\Delta_c = 100 \text{ at } z = 0 \) & \(\Delta_c = 178 \text{ at high } z (z > 4) \)

Define virial mass \(M_\Delta = \frac{4\pi}{3} \Delta_c \cdot P_{\text{crit}} \cdot S_m \cdot R_\Delta^3 \)

Define circular velocity \(V_\Delta = \left(\frac{G M_\Delta}{R_\Delta} \right)^{1/2} \) (recall \(2K + U = 0 \))

We have \(R_\Delta = \left[\frac{2GM_\Delta}{\Delta_c S_m H^2(z)} \right]^{1/3} \)

\[V_\Delta = (G M_\Delta H)^{1/3} \cdot \left(\frac{\Delta_c S_m}{2} \right)^{1/6} \]

Again, the above two parameters should be calculated at virialization.

Once virialized & without mergers, \(R_\Delta \) & \(V_\Delta \) will remain constant.

For simplicity, often in the literature, \(\Delta_c = 200 \) is assumed at all \(z \), thus calculated virial radius & mass are indicated by \(R_{200} \) & \(M_{200} \)

From the solution of spherical collapse, we also have (for EDS):

\[M_{\text{vir}} = \frac{4\pi}{3} R_{\text{vir}}^3 (1 + 8) \nu \text{ir} P_{\text{crit}} = \Delta_c \frac{H^2}{2} \left(\frac{\Omega_m}{\Omega_i} \right)^{1/3} R_{\text{vir}}^3 \alpha(R_\Delta/S_i)^3 \]