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Cosmological Framework:  
A Simple, Naive Picture



Fundamental Assumption: The Cosmological Principle

• Although	galaxies	tend	to	clump,	on	the	largest	cosmic	scales,	the	
Universe	is	both	homogeneous	and	isotropic	
• Homogeneous:	there	is	no	preferred	location	in	the	Universe	
• Isotropic:	there	is	no	preferred	direction	in	the	Universe



Robertson-Walker Metric: Differential Space-Time Distance

• In	General	Relativity,	a	metric	is	a	function	which	measures	differential	
space-time	distance	between	two	events:	
	
																																																	 	

• The	Robertson-Walker	metric	is	the	metric	that	describes	the	geometry	
of	a	homogeneous,	isotropic,	expanding	universe.	The	metric	in	
spherical	coordinate	system	is:	
	
																 	

	
where		
	
RU	is	the	scale	factor,	defined	to	be	1	at	present	day,	and	<1	in	the	past		
x	is	the	comoving	radial	distance,	 ,		
k	is	the	comoving	curvature,	 	,	where	 	for	positive,	
flat,	and	negative	curvatures	
	
R	is	the	comoving	radius	of	the	curvature.	

(ds)2 = (c ⋅ dt)2 − (dl)2

(ds)2 = (c ⋅ dt)2 − R2
U(t)[( dx

1 − kx2 )2 + (xdθ)2 + (x sin θdϕ)2]

x ≡ r(t)/RU(t)
k ≡

κ
R2

κ = + 1,0, − 1



Friedmann’s Equations Derived from GR

Einstein’s Field Equations derived from the principle of least action  
(see Landau & Lifshitz, The Classical Theory of Fields, 1975 Edition)

RW Metric -> Friedmann’s Equations: 

a2H2 [1 − (Ωm + Ωγ + ΩΛ)] = H2
0[1 − (Ωm,0 + Ωγ,0 + ΩΛ,0)]

,			 ,			 ,			 		H ≡
·a
a

ρc ≡
3H2

8πG
Ωi ≡

ρi

ρc
ρΛ ≡

Λc2

8πG

Alternative Form of FE1:



The Distribution of Galaxies is 
Neither Homogenous nor Isotropic
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Simulation vs. Observations





The Earliest Deviations from a 
Homogeneous Isotropic Universe



NASA rewrites history of CMB discovery



140-ft telescope in Green Bank



The All-sky Temperature Map of the CMB 
in Mollweide (equal-area) projecLon



AMer subtracLng the Milky Way, there is a 
strong dipole signal in the CMB (mean T = 2.7K)

What	is	the	relative	velocity	between	the	Solar	
System	and	the	CMB	rest	frame?

Dipole Maximum Direction: 

Dipole Maximum Amplitude: 3.362 mK 



SubtracLon of the dipole reveals smaller scale 
fluctuaLons in the CMB (the anisotropies)



Improved angular resolutions over three generations of satellites



A much sharper map showing temperature 
fluctuaLons on the level of δT ≈ 10−5

δx =
dx
x

= d ln x



  

Most recent CMB map from the 
Planck satellite

CMB anisotropy shows density fluctuations of 10-5 at z ~ 1000

δu
u

=
δ(aT4)

aT4
= 4

δT
T

isentropic perturbations  
(hotter is denser):

adiabatic perturbations preserve entropy per unit mass since there is no heat transfer

2018 Planck Map

δT = δr /4 = δm /3

S ≡
Sr

ρmV
= ∫

d(uV ) + pdV
T

/(ρmV ) =
4
3 aT3

ρm
∝ ρ3/4

r ρ−1
m

δS =
dS
S

=
1
S ( ∂S

∂ρr
dρr +

∂S
∂ρm

dρm) =
3
4

δr − δm = 0

entropy is dominated by photons:

how temperature maps tell us about density: 

a =
8π5k4

B

15h3c3



Evolution of Inhomogeneity



dark matter simulation of a comoving volume that is 40 Mpc across



Cosmological Framework: EdS Universe

Matter-dominatedDE- 
dominated

Radiation- 
dominated



Einstein-de Sitter Universe is a Good Approximation for the Bulk of the 
Universe’s History — the framework of our gravitational collapse model

• Given	the	dimensionless	Hubble	parameter	from	FE1:	
			 	

• and	the	rearranged	time-scale	factor	relation:	

																					 	

• A	matter-only,	flat	universe	is	known	as	the	Einstein-de	
Sitter	universe.	It	has	the	following	density	parameters:		
																											 	
which	lead	to	the	following	analytical	solution:	
	
																																										 	
	
																																										 	
	

																						

E(a) =
H
H0

= (1 − Ω0)/a2 + Ωm,0/a3 + Ωγ,0/a4 + ΩΛ,0

t
tH

= ∫
1/(1+z)

0

da
E(a)a

= ∫
∞

z

dz′ 

(1 + z′ )E(z′ )

Ω0 = Ωm,0 = 1, Ωγ,0 = ΩΛ,0 = 0

⇒ H = H0a−3/2

⇒ t =
2
3

tHa3/2

⇒ ρc =
3H2

8πG
= ρc,0a−3 =

1
6πGt2



  

DEFINE DENSITY FLUCTUATION FIELD  δ:

                              δ= (ρ - <ρ>)/ <ρ>

Graphs from Kauffmann

δρ =
dρ
ρ

= d ln ρ

  

Consider the idealised case 
of a spherical volume where 
the density is infinitesimally 
higher than the cosmic mean.

Our density perturbation will then evolve like a closed universe
with Ωm = 1 +δ . The scale factor a(t) of such a universe reaches a 

maximum value amax and then decreases again—in other words, 

our perturbation will grow to a maximum size r=rmax at time t=tmax 

and then collapse.

Top-hat spherical collapse 
model: consider an idealized 
spherical volume that happens 
to have higher than the cosmic 
mean density


The density perturbation 
evolves like a separate universe 
with a slightly different  Ωm

Random Density Fluctuation Field:
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Orange curve shows the expansion history of a super-critical universe



Individual oscillating shells interact gravitationally, exchanging energy (virializing). 

This process, to be described in more detail below, results in a virialized dark matter halo
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turn-around

virialization

The SC model discussed above is only valid up to the point of shell crossing.
Afterall, after shell crossing M(r) is no longer a conserved quantity!
According to the SC model,                    , which would result in the formation 

of a black hole. However, in reality, the collapse is never perfectly spherical. 

�(tcoll) =�
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Shell Crossing & Virialization

size evolution

van den Bosch

Size Evolution of the Overdensity



Parameterized Solution of Top-Hat Spherical Collapse

• initial scale factor (inside=outside):  
• radius of Top Hat = inside scale factor x comoving radius

 

• time  

 

since  in EdS Universe, , we obtain: 

 

• density contrast: 

 

at turn-around ( ):   
at virialization: 

ai = 1/zrecombination ≈ 10−3

a(θ)
ai

=
1 + δi

δi
(1 + cos θ) = A(1 + cos θ)

t(θ) =
1 + δi

2Hiδ3/2
i

(θ − sin θ) = B(θ − sin θ)

H = H0a−3/2 Hi = H0a−3/2
i

t(θ)
1/H0

=
1 + δi

2a−3/2
i δ3/2

i
(θ − sin θ)

1 + δ(θ) =
ρ
ρc

=
9
2

(θ − sin θ)2

(1 − cos θ)3

θ = π 1 + δta = 9π2/16
av = ata/2, tv = 2tta ⇒ 1 + δv = 25(1 + δta) = 18π2
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WARNING  
not to scale

scale factoramax aviraNL

x2.686

background  
density;

x2.062

a�3

shell crossing 
& virialization

�vir � (18�2 + 60 x� 32 x2)/�m(tvir)

�vir � (18�2 + 82 x� 39 x2)/�m(tvir) (�� �= 0)

(�� = 0)

The linearly extrapolated density field collapses when �lin = �c � 1.686

Virialized dark matter haloes have an average overdensity of �vir � 178

Although the SC model 
becomes inaccurate (brakes 
down) shortly after turn-around 
it is still a useful model to 
identify important epochs in the 
linearly evolved density field...
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The Spherical Collapse (SC) Model
turn-around collapse

SC model 4.55 ∞

linear model 1.062 1.686

� = �/�̄� 1

van den Bosch

Density Evolution of the Overdensity



The Linear Theory: Simplifying Solutions by Taylor Expansion

• starting from the density contrast  = 1 + overdensity: 

 

• when , we can use Taylor expansions to show: 

 

• when , we can also express  as a function of time 

, so where  

• combining the results, we have overdensity as function of time: 

 

which equals 1.062 at turnaround ( ) and 1.686 at virialization ( ) 
• EdS: the outside scale factor is 

, so that  (Linear growth of overdensity) 

1 + δ(θ) =
ρ
ρc

=
9
2

(θ − sin θ)2

(1 − cos θ)3

θ ≪ 1
1 + δ(θ) ≈ 1 +

3
20

θ2

θ ≪ 1 θ

t = B(θ − sin θ) ≈ Bθ3/6 θ = ( 6t
B )

1/3

= ( 6πt
tta )

1/3

tta = πB

δ(t) ≈
3
20 ( 6πt

tta )
2/3

t = tta t = 2tta

a(t) = ( 3t
2tH )

2/3

δ ∝ a = 1/(1 + z)


