Halo Mass Function - Press-Schechter 1974 Results from SC model: ; $1+\delta = \frac{9}{2} \frac{(0-\sin\theta)^2}{(1-\cos\theta)^3}$ $Sa = A(1 - \cos \theta)$ $A = a_1/2S;$ $t = B(\theta - \sin \theta)$ $B = 1/2H_1S_1^3$ 0 a t 1+8 (1+8) π a;/s; $\pi/2H_{1}s_{1}^{3/2}$ $\frac{9}{16}\pi^{2}$ 2.062 (1+8)4in tum-around / max radius π 27 a:/28; 7/H: Si 1872 collapse / virialization 2.686 Mass of the virialized halo: $M_{i} = \frac{4\pi}{3} \overline{P_{i}} (a; r_{o})^{3} (1+S_{i}) \simeq \frac{4\pi}{3} (\overline{P_{i}} a_{i}^{3}) \cdot r_{o}^{3} \propto r_{o}^{3}$ $\mathcal{M}_{\mathcal{V}} = \frac{4\pi}{3} (1+\delta)_{\text{vir}} \cdot \overline{P_{\text{vir}}} \cdot (a_{\text{vir}} \cdot r_{\delta})^{3} = \frac{4\pi}{3} [\overline{P_{\text{vir}}} \cdot (1+\delta)_{\text{vir}} a_{\text{vir}}^{3}] \cdot r_{\delta}^{3} \propto r_{\delta}^{3}$ it's clear that $M_i = M_V$ because $I+S = \frac{P}{P} = \frac{\overline{a}^s}{a^s}$ find mans of the halo depends only on the comining radius of the overdensity. Press-Schechter Formulism (1974) Given an initial Gaussian random density field that's described by P(k), linearly extrapolate it to present day So = Si/ai smooth So on a size scale $R = (M/S\bar{p})^{3}$ [spatial/mass smoothing] any peaks with Sy = So & W(R) > Sc(2) = 1.686(172) should have collapsed by redshift Z & formal hatos w/ mass > M $f(>M, z) = 2 \cdot \operatorname{Pob}\left[S_{M} > S_{c}(z)\right]$ -fraction of mass lockel probability of overdonsity in halos w/>M above threshold, ofter mass smoothing Fulge factor to include masses in underdense regions that get accretel.

Procedure : After mass / spitich smoothing, the initial Gaussian random field still maintains the Gaussian PDF, although w/ lower on that depends on W/R. So the probability of the occurrance of Sm > Sc is: $\mathcal{P}_{rob}(S_{m} > S_{c}) = \frac{1}{\sqrt{2\pi} \sigma_{m}} \int_{\mathcal{L}}^{\infty} \exp\left(-\frac{S_{m}}{2\sigma_{m}^{2}}\right) dS_{m} = \frac{1}{2} \exp\left(-\frac{S_{c}}{2\sigma_{m}}\right)$ $\Rightarrow f(>M, z) = erfc\left[\frac{S_c(z)}{2\sigma_M}\right]; \text{ fraction of mass lakel}$ therefore, the cumulative halo mass function is : $\mathcal{N}(>M, 2) = \frac{\mathcal{P}}{\mathcal{M}} \cdot F(>M, 2)$; comoving volume density and the differential halo mass function is. $\phi(M, z) = \frac{\overline{\rho}}{M} \frac{\partial F}{\partial M} = \frac{\overline{\rho}}{\pi} \frac{\partial F}{M^2} \frac{\nabla c(z)}{\nabla M} \exp\left[-\frac{\nabla c(z)}{2\sigma_m^2}\right] \frac{d\ln\sigma_m}{d\ln M}$ \$ (M, 2) dM = comoving volume density of halos w/ mass E [M, Mtdm] at 2 the exp fine makes it natural to define M*, charateristic mass, as: $S_{m}(M^{*}) = S_{c}(z) = 1.686(1+z) \Rightarrow M^{*} \downarrow as z \uparrow$ at low-mass enl: because JM >> Sc(2) at low mass or large K (= 27/R) for power-law power spectrum P(k) a kn, JM ac M^{-(3+N)/6} at high-mass end: $M \gg M^*$, $\phi(M) \propto \exp\left[-\frac{1}{2}\left(\frac{M}{M^*}\right)^{2d}\right] \cdot M^{d-2}$, $d = \frac{3+\eta}{6}$ -powerlaw at low mass end, exponential autoff at high mass end

How to calculate
$$\operatorname{Sm}^{?}$$
 The mass variance

$$S_{n}^{2} = \langle S_{n}^{2} \rangle = \frac{1}{V} \int_{0}^{\infty} \int_{0}^{\infty} x^{2} |x^{2} | x^{2} x^{2} = \langle S_{n}^{2} \rangle \cdot S_{n}^{2} \langle x^{2} + v \rangle \rangle = \xi_{n}(0)$$
the variance of a density field equals the 2-point correlation function at zero dist.
 $S_{M}(x) = S(x) \otimes W_{n}(x) = \int S(x) W(x^{2} \cdot x^{2} \cdot y_{n}) d^{3} x^{2}$
mass smoothed density field is a consolution u' a window fluction at all facetons.
because convolution is compotentiably expansive, and $S(x)$ is a random Groussive field that is completely dearboard by the correlation fluction at all facetons.
We can utilize the convolution theorem & the total energy theorem to calculate $S_{n}(x) = S(x) \otimes W_{n}(x) \Leftrightarrow S_{n}(x) = S(x) \cdot \widetilde{W}_{n}(x)$
 $\sigma_{n}^{2} = \frac{1}{V} \int_{0}^{\infty} [S(x) \otimes W_{n}(x)]^{2} d^{3} x$
 $f^{2}(80 h)^{2} = \frac{1}{V} \int_{0}^{\infty} [S(x) \otimes W_{n}(x)]^{2} d^{3} x$
 $f^{2}(80 h)^{2} = \frac{1}{V} \int_{0}^{\infty} [S(x) \otimes W_{n}(x)]^{2} d^{3} x$
 $f^{2}(80 h)^{2} = \frac{1}{V} \int_{0}^{\infty} [S(x) \otimes W_{n}(x)]^{2} d^{3} x$
 $f^{2}(80 h)^{2} = \frac{1}{V} \int_{0}^{\infty} [S(x) \otimes W_{n}(x)]^{2} d^{3} x$
 $f^{2}(80 h)^{2} = \frac{1}{V} \int_{0}^{\infty} [S(x) \otimes W_{n}(x)]^{2} d^{3} x$
 $f^{2}(80 h)^{2} = \frac{1}{V} \int_{0}^{\infty} [S(x) \otimes W_{n}(x)]^{2} d^{3} x$
 $f^{2}(80 h)^{2} = \frac{1}{V} \int_{0}^{\infty} [S(x) \otimes W_{n}(x)]^{2} d^{3} x$
 $f^{2}(80 h)^{2} = \frac{1}{V} \int_{0}^{\infty} [S(x) \otimes W_{n}(x)]^{2} d^{3} x$
 $f^{2}(80 h)^{2} = \frac{1}{V} \int_{0}^{\infty} [S(x) \otimes W_{n}(x)]^{2} d^{3} x$
 $f^{2}(80 h)^{2} = \frac{1}{V} \int_{0}^{\infty} [S(x) \otimes W_{n}(x)]^{2} d^{3} x$
 $f^{2}(80 h)^{2} d^{3} x = \frac{1}{V} \int_{0}^{\infty} [S(x) \otimes W_{n}(x)]^{2} d^{3} x$
 $f^{2}(80 h)^{2} d^{3} x = \frac{1}{V} \int_{0}^{\infty} \sigma \int_{0}^{\infty} [A(y) \otimes W_{n}(x)]^{2} d^{3} x$
 $f^{2}(80 h)^{2} d^{3} x = \frac{1}{V} \int_{0}^{\infty} [S(x) \otimes W_{n}(x)]^{2} d^{3} x$
 $f^{2}(80 h)^{2} d^{3} x = \frac{1}{V} \int_{0}^{\infty} [S(x) \otimes W_{n}(x)]^{2} d^{3} x$
 $f^{2}(80 h)^{2} d^{3} x = \frac{1}{V} \int_{0}^{\infty} [S(x) \otimes W_{n}(x)]^{2} d^{3} x$
 $f^{2}(80 h)^{2} d^{3} x = \frac{1}{V} \int_{0}^{\infty} [S(x) \otimes W_{n}(x)]^{2} d^{3} x$
 $f^{2}(80 h)^{2} d^{3} x = \frac{1}{V} \int_{0}^{\infty} [S(x) \otimes W_{n}(x)]^{2} d^{3} x$
 $f^{2}(80 h)^{2} d^$

Summing: Press-Schechter HMF.
O Gradin of mais locked in holos of messes greater than M at 2 is

$$F(>M, 2) = erfe[\frac{Se(2)}{2Gn}]$$

O differential holo mais function:
 $\Phi(M, 2) = \frac{F_M}{M} \cdot \frac{SF}{2Gn} = \frac{F_M}{M} \cdot \frac{SF}{2Gn} \cdot \frac{2Gn}{2M}$
 $= \int_{\overline{X}}^{2} \frac{F_M}{M} \cdot \frac{Se(2)}{Gn} \cdot exp[-\frac{S^2(2)}{2Gn^2}] \left| \frac{d \ln G_M}{d \ln M} \right|$
O calculate G_m^2 , mais variance (dimension less)
 $G_n^2 = \frac{1}{V} \int S_m^2(X) d^3 X = \frac{1}{V} \int [S(X) + W(X)]^2 d^3 X$
 $= \xi_M(0) \leftarrow correlation function at zero separation
 $= \frac{1}{Gn^3} \int P_M(K) e^{ti Kr_F} d^3 \overline{K} \quad for \ \overline{r} = 0$
 $= \frac{1}{2\pi^2} \int_0^{\infty} P(K) \cdot \widetilde{W}_M^2(K) \cdot k^2 dK$
 $\simeq \frac{1}{2\pi^2} \int_0^{\infty} P(K) \cdot \widetilde{W}_M^2(K) \cdot k^2 dK$
 $\simeq \frac{1}{2\pi} \int_0^{\infty} P(K) k^2 dK , \quad R = (M/S_{TM})^{V_3}, S \simeq \frac{4}{3} X$
O higher overdensities collapse earlier
 $S_c(2) = 1.686 (1+2)$
 $S evaluate \quad \Phi(M, 2; Gn, \frac{d \ln G_m}{d \ln M})$$

Motivation: explaining the observed galaxy luminosity / stellar mass functions

Observed evolution of galaxy luminosity functions and stellar mass functions

comoving density of galaxies with luminosity between L and L+dL is Φ $\frac{L}{L^*}$ $\Phi(L) dL =$ dL, exp 106 The shapes follow the Schechter (1976) function, but WH Σ Relative Numb 10-1 10-2 10-3 10-4 10-2 -2.0 =-1.5 -1.010-6 10-7 10-8 10-9 10-4 10-3 10-2 10-1 101 10 1 L/L.

The Goal

Based on the results from the spherical collapse model:

• Estimate the comoving volume density of collapsed halos more massive than M, at any z:

$n_{halo}(>M,z)$

cumulative mass function

• Estimate the comoving volume density of collapsed halos within a mass range of [M, M+dM], at any z:

$$\phi_{halo}(M, z)dM = \frac{dn_{halo}(>M, z)}{dM}dM$$

differential mass function

The Basic Idea of the Press-Schechter Formalism

Spherical Collapse Model

• any region in the density field (*linearly extrapolated to today*) denser than certain threshold should have collapsed by redshift z: $\delta(t_0) > \delta_c(z) = 1.686(1+z)$

• collapsed halo mass: $M = \gamma \bar{\rho} R^3$

Linearly Extrapolated Density Perturbation Field

 $\delta(x; t_0) = \delta(x; t_i) \ a(t_0) / a(t_i) = \delta(x; t_i) \ (1 + z_i)$

Density field smoothed on a scale of R ~ (M/rho)^{1/3}

Observed galaxy stellar mass functions

The Basic Idea of Press-Schechter Formalism (1974)

Let δ_M be the linear density field smoothed on a mass scale M, i.e., $\delta_M = \delta(\vec{x}; R)$ where $M = \gamma_t \bar{\rho} R^3$, then those locations where $\delta_M = \delta_c(t)$ are the locations where, at time t, a halo of mass M condenses out of the evolving density field....

$$F(>M) = \mathscr{P}[\delta_M > \delta_c(z)];$$
 where $\delta_c(z) = 1.686 \ (1+z)$

Calculate the probability above the collapse barrier

For Gaussian random fields, the prob. of finding an overdensity greater than a threshold is:

which only depends on (1) the threshold $\delta_c(z)$ and (2) the variance of the smoothed field σ_{M} ; note that $\delta_M(x)$ has been integrated out.

From Probability to Differential Halo Mass Function

The PS postulate: the fraction of mass locked up in halos w/ mass > M is (fudge factor 2 is used to account for mass in underdense regions): $F(> M, z) = 2\mathcal{P}[\delta_M > \delta_c(z)]$

the fraction of mass locked up in halos in the mass range [*M*,*M*+*dM*] is:

$$\frac{dF(>M)}{dM}dM = 2\frac{d\mathcal{P}}{dM}dM = 2\frac{d\mathcal{P}}{d\sigma_M}\frac{d\sigma_M}{dM}dM$$

multiplying the above by the $\bar{\rho}$ gives the total locked mass per unit volume, which is then divided by *M* to give the comoving volume density of halos with masses between [*M*, *M*+*dM*], i.e., $\phi(M, z)dM$:

$$\phi dM = \frac{\bar{\rho}}{M} \frac{d\bar{F}(>\dot{M},z)}{dM} dM = 2\frac{\bar{\rho}}{M} \frac{d\mathcal{P}}{d\sigma_M} \frac{d\mathcal{P}}{dM} dM$$

$$\frac{d\mathcal{P}}{d\sigma_M} = \frac{1}{\sqrt{2\pi}} \frac{\delta_c}{\sigma_M^2} \exp(-\frac{\delta_c^2}{2\sigma_M^2}); \text{ also } \frac{d\sigma_M}{dM} = \frac{\sigma_M}{M} \frac{d\ln\sigma_M}{d\ln M}$$

we have the final result:

$$\phi(M,z) = \sqrt{\frac{2}{\pi}} \frac{\bar{\rho}}{M^2} \frac{\delta_c}{\sigma_M} \exp(-\frac{\delta_c^2}{2\sigma_M^2}) \left| \frac{d\ln \sigma_M}{d\ln M} \right|$$

Differential Halo Mass Function: $\phi(M, z) = \sqrt{\frac{2}{\pi}} \frac{\bar{\rho}}{M^2} \frac{\delta_c}{\sigma_{H}^2} \exp(-\frac{\delta_c^2}{2\sigma_M}) \left| \frac{d \ln \sigma_M}{d \ln M} \right|$ If we define a characteristic mass, M^* , by $\sigma(M^*) = \delta_c(t)$ • For $M \ll M^*$ we have that $n(M,t) \propto M^{\alpha-2}$, where $\alpha = d \ln \sigma / d \ln M$. For a CDM cosmology $\alpha \to 0$ at low mass end so that $n(M) \propto M^{-2}$ • For $M \gg M^*$ the abundance of haloes is exponentially suppressed. • Since $\delta_{c}(t)$ decreases with time, the characteristic halo mass grows as function of time; as time passes more and more massive haloes will start to form. 10 PS halo mass function stellar mass function 10 10 $\sum_{m=0}^{1} \frac{10^{-3}}{10^{-4}} \frac{10^{-3}}{10^{-5}} \frac{10^{-4}}{10^{-5}} \frac{10^{-6}}{10^{-7}}$ dex⁻¹) 10 z=0 10 z= 10z=2 10-3.0-4.0 z=3 10-Mass $[M_{\odot}/h]$ $\log M_*(M_{\odot})$

$\phi(M,z) = \sqrt{\frac{2}{\pi}} \frac{\bar{\rho}}{M^2} \frac{\delta_c}{\sigma_M} \exp(-\frac{\delta_c^2}{2\sigma_M^2}) \left| \frac{d \ln \sigma_M}{d \ln M} \right|$

To make quantitative comparisons one needs to calculate σ_M

Variance of a smoothed density field

smoothing is a convolution of the density field w/ a window function of width R ($M = \gamma \bar{\rho} R^3$):

$$\delta_{M}(x) = \delta(x) * W_{M}(x) = \int \delta(x') W_{M}(x'-x) d^{3}x'$$
Raw Source - finite Resolution
$$\begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$
Convolved to Small Beam
$$\begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$
Convolved to Larger Beam
$$\begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$
Convolved to a "Large" Beam
$$\begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$
Convolved to a "Large" Beam
$$\begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

the variance of the smoothed density field is then:

$$\sigma_M^2 = \left\langle \delta_M^2(x) \right\rangle = \frac{1}{V} \int \delta_M^2(x) d^3x = \frac{1}{V} \int \left| \delta(x) * W_M(x) \right|^2 d^3x$$

Variance of a smoothed density field

$$\sigma_M^2 = \frac{1}{V} \int_{-\infty}^{\infty} \delta_M^2(x) d^3x = \frac{1}{V} \int_{-\infty}^{\infty} |\delta(x) * W_M(x)|^2 d^3x$$

There are some major problems going forward:

- the density field is a random field, so would require many realizations, and how to realize a random field that matches the initial conditions of the universe?
- what would be the appropriate volume and what scale to use to sample this random field?
- numerical convolution is computationally expensive and how to deal with artifacts near boundaries?

Consider transforming to Fourier space

the calculation of σ_M

Simplify the calculation by converting to Fourier space

Decomposing a periodic time/space signal into Fourier series

The Fourier transform

we'll be interested in signals defined for all \boldsymbol{t}

the **Fourier transform** of a signal f is the function

$$F(\omega) = \int_{-\infty}^{\infty} f(t) e^{-j\omega t} dt$$

- F is a function of a real variable $\omega;$ the function value $F(\omega)$ is (in general) a complex number

$$F(\omega) = \int_{-\infty}^{\infty} f(t) \cos \omega t \, dt - j \int_{-\infty}^{\infty} f(t) \sin \omega t \, dt$$

- $|F(\omega)|$ is called the *amplitude spectrum* of f; $\angle F(\omega)$ is the *phase spectrum* of f
- notation: $F = \mathcal{F}(f)$ means F is the Fourier transform of f; as for

FT and inverse FT in 1D

time domain: $F(\omega) = \int f(t) \ e^{-i\omega t} dt$ $f(t) = \frac{1}{2\pi} \left[F(\omega) e^{i\omega t} d\omega \right]$

1D space domain:

angular freq.: $\omega = \frac{2\pi}{\Delta t}$

$$F(k) = \int f(x) \ e^{-ikx} dx$$
$$f(x) = \frac{1}{2\pi} \int F(k) e^{ikx} dk$$

wave number:

$$k = \frac{2\pi}{\Delta x}$$

Fourier transform of a top-hat filter

rectangular pulse: $f(t) = \left\{ \begin{array}{cc} 1 & -T \leq t \leq T \\ 0 & |t| > T \end{array} \right.$

$$F(\omega) = \int_{-T}^{T} e^{-j\omega t} dt = \frac{-1}{j\omega} \left(e^{-j\omega T} - e^{j\omega T} \right) = \frac{2\sin\omega T}{\omega}$$

Fourier Transform Pairs

random density field in real and frequency space:

power spectrum (P) and correlation function (xi):

$$P(k) = V\langle \delta(k')\delta(k'+k) \rangle = \int \xi(x)e^{-i\vec{k}\cdot\vec{x}}d^{3}\vec{x}$$
$$\xi(x) = \langle \delta(x')\delta(x'+x) \rangle = \frac{1}{(2\pi)^{3}} \int P(k)e^{i\vec{k}\cdot\vec{x}}d^{3}\vec{k}$$

Calculation of σ_M in Fourier space

Convolution theorem: convolution in real space = multiplication in Fourier space

$$\begin{array}{l} \mbox{Frequency components of periodic density fluctuations:} \\ \mbox{Fourier transform of smoothed density field} \\ \delta_M(k) = \mathscr{F}\{\delta_M(x)\} = \mathscr{F}\{\delta(x) * W_M(x)\} = \delta(k) \tilde{W_M}(k) \end{array}$$

Power spectrum of the smoothed density field: Fourier transform of the correlation function of the smoothed density field ~ 2

$$P_M(k) = \mathscr{F}\{\xi_M(x)\} = P(k)W_M(k)$$

$\sigma_{\!M}$ expressed in correlation function & power spectrum

definition of the variance of the density field:

$$\sigma^2 = \langle \delta^2
angle = rac{1}{V} \int \delta^2(ec{x}) \, \mathrm{d}^3 ec{x}$$

definition of the **two-point correlation function**:

$$\xi(x) = \langle \delta(x')\delta(x'+x) \rangle = \frac{1}{V} \int \delta(x')\delta(x'+x)d^3x$$

therefore, $\sigma^2 = \xi(0)$

Correlation Function is the Fourier transform of the Power Spectrum (vice versa)

$$\langle \xi(r) = \langle \delta(ec{x}) \delta(ec{x}+ec{r})
angle = rac{1}{(2\pi)^3} \int P(k) e^{+iec{k}\cdotec{r}} \mathrm{d}^3 ec{x}$$

evaluating the correlation function at 0 using the power spectrum

there

$$\sigma^2 = \xi(0) = \frac{1}{(2\pi)^3} \int P(k) d^3 \vec{k} = \frac{1}{2\pi^2} \int P(k) k^2 dk$$

fore, the variance of the smoothed density field is:
$$\sigma_M^2 = \frac{1}{2\pi^2} \int_0^\infty P_M(k) k^2 dk = \frac{1}{2\pi^2} \int_0^\infty P(k) \tilde{W_M}^2(k) k^2 dk$$

Gaussian random field: white noise

the calculation of $\sigma_{\!M}$

the power spectrum of the Gaussian random field

Planck CMB delta T Map is not white noise

Galaxy distribution also doesn't look like white noise

A Gaussian random field is fully described by the correlation function or its F.T. the power spectrum

Define two-point correlation function:

$$\xi(x) = \langle \delta(x')\delta(x'+x) \rangle = \frac{1}{V} \int \delta(\overrightarrow{x'})\delta(\overrightarrow{x'}+\overrightarrow{x})d^3\overrightarrow{x'}$$

$$P(k) = V\langle \delta(k')\delta(k'+k)\rangle = \int \xi(x)e^{-i\vec{k}\cdot\vec{x}}d^{3}\vec{x}$$

Gaussian random fields w/ increasing correlation lengths

A Gaussian random field is fully described by the correlation function or its F.T. the power spectrum

Define two-point correlation function:

$$\xi(x) = \langle \delta(x')\delta(x'+x) \rangle = \frac{1}{V} \int \delta(\overrightarrow{x'})\delta(\overrightarrow{x'}+\overrightarrow{x'})d^3 \overrightarrow{x'}$$

and its Fourier transform is the power spectrum:

$$P(k) = V\langle \delta(k')\delta(k'+k)\rangle = \int \xi(x)e^{-i\vec{k}\cdot\vec{x}}d^3\vec{x}$$

Gaussian random fields w/ ever steeper power spectrum

Evolution of the power spectrum from the primordial density perturbations (due to inflation) to the present day

Linearly evolved correlation function and power spectrum in the Lambda CDM universe

https://lambda.gsfc.nasa.gov/toolbox/tb_camb_form.cfm

Resulting mass variance by integrating power spectrum: a monotonically decreasing function of mass scale

Hlozek et al. 2012: The Atacama Cosmology Telescope: A Measurement of the Primordial Power Spectrum

the calculation of σ_M

resulting sigma_M function and halo mass function

Comparison w/ N-body Simulations

Extended Press-Schechter formalism improves the agreement w/ N-body simulations

Comparison w/ Galaxy Stellar Mass Function

