








Motivation: explaining the 
observed galaxy luminosity / stellar 

mass functions

stellar mass function

luminosity functions

Observed evolution of galaxy luminosity functions and 
stellar mass functions

comoving density of galaxies with luminosity between L and L+dL is

!e shapes fo"ow #e Schech$r (1976) 'nc(on, but WHY?

The Basic Idea of the Press-
Schechter Formalism

The Goal

Based on the results from the spherical collapse model:


• Estimate the comoving volume density of collapsed halos 
more massive than M, at any z:  
 
                                      
 
                         cumulative mass function  

• Estimate the comoving volume density of collapsed halos 
within a mass range of [M, M+dM], at any z: 
 

                        
 
                          differential mass function

nhalo( > M, z)

ϕhalo(M, z)dM = dnhalo( > M, z)
dM

dM
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linear theory

WARNING  
not to scale

scale factoramax aviraNL

x2.686

background  
density;

x2.062

a�3

shell crossing 
& virialization

�vir � (18�2 + 60 x� 32 x2)/�m(tvir)

�vir � (18�2 + 82 x� 39 x2)/�m(tvir) (�� �= 0)

(�� = 0)

The linearly extrapolated density field collapses when �lin = �c � 1.686

Virialized dark matter haloes have an average overdensity of �vir � 178

Although the SC model 
becomes inaccurate (brakes 
down) shortly after turn-around 
it is still a useful model to 
identify important epochs in the 
linearly evolved density field...
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The Spherical Collapse (SC) Model
turn-around collapse

SC model 4.55 ∞

linear model 1.062 1.686

� = �/�̄� 1van den Bosch

• any region in the density field (linearly extrapolated to today) denser 
than certain threshold should have collapsed by redshift z:  
                             


• collapsed halo mass: 
δ(t0) > δc(z) = 1.686(1 + z)

M = γρ̄R3

Linearly Extrapolated Density Perturbation Field
δ(x; t0) = δ(x; ti) a(t0)/a(ti) = δ(x; ti) (1 + zi)

Density field smoothed on a scale of R ~ (M/rho)1/3

δc(t0) The Basic Idea of the Press-
Schechter Formalism (continued)

stellar mass function

Observed galaxy stellar mass functions

Here          is the density field linearly extrapolated to           , and         is the linear

growth rate normalized to unity at   

�0(⇥x) t = t0
t = t0

According to linear theory, the density field evolves as �(⇥x, t) = D(t) �0(⇥x)

D(t)

�lin

�c

0 �x

halo halo halo

According to the spherical collapse model, regions with                                  will have 

collapsed to produce dark matter haloes by time   . In this lecture we examine how to 

assign a halo mass to this structure. But first, we need to introduce some concepts...

�(⇥x, t) > �c ' 1.686
t

The Linear Cosmological Density Field
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number density of peaks 
above     in density field 

smoothed on mass scale M
�c

number density of 
haloes with mass >M

We now return to our main question of interest:

According to SC model, regions in the linear density field with            have collapsed 

to produce virialized dark matter haloes. How can we associate a mass to those haloes,

and how can we use the statistics of the linear density field to infer the halo mass function, 
i.e., the (comoving) number density of haloes as a function of halo mass? 

� > �c

Idea:
Let       be the linear density field smoothed on a mass scale     , i.e.,  

where                     , then those locations where                    are the locations where, 
at time   , a halo of mass      condenses out of the evolving density field.... 

�M M �M = �(�x;R)
M = �f �̄ R3

M
�M = �c(t)

t

In this case, the halo mass function simply follows from calculating the number

density of peaks in the smoothed density field, i.e., 

n(> M) = npk(�M )
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Assigning Halo Mass to Collapsed Regions

F( > M) = ![δM > δc(z)]; where δc(z) = 1.686 (1 + z)

The Basic Idea of Press-Schechter Formalism (1974)

linearly extrapolated density field smoothed on a mass-scale M



Calculate the probability above the collapse barrier
For Gaussian random fields, the prob. of finding an overdensity greater than a threshold is:

which only depends on (1) the threshold  and (2) the variance of the smoothed field ; 
note that  has been integrated out.

δc(z) σM
δM(x)

δc(z) = 1.686(1 + z)

δM(t0)

pr
ob

. d
en

si
ty

Convolution in spatial 
dimension decreases the 
width of the Gaussian PDF 
(prob. density function); i.e., 
higher mass halos are more 
unlikely than lower mass 
halos

From Probability to Differential Halo Mass Function
The PS postulate: the fraction of mass locked up in halos w/ mass > M is (fudge 
factor 2 is used to account for mass in underdense regions): 
                                      

the fraction of mass locked up in halos in the mass range [M,M+dM] is: 

                           

multiplying the above by the  gives the total locked mass per unit volume, 
which is then divided by M to give the comoving volume density of halos with 
masses between [M, M+dM], i.e., : 

                         ;


 

               ; also 


 
we have the final result: 

                       

F( > M, z) = 2![δM > δc(z)]

dF( > M)
dM

dM = 2 d!
dM

dM = 2 d!
dσM

dσM

dM
dM

ρ̄

ϕ(M, z)dM
ϕdM = ρ̄

M
dF( > M, z)

dM
dM = 2 ρ̄

M
d!
dσM

dσM

dM
dM

d!
dσM

= 1
2π

δc

σ2
M

exp(− δ2
c

2σ2
M

) dσM

dM
= σM

M
d ln σM

d ln M

ϕ(M, z) = 2
π

ρ̄
M2

δc

σM
exp(− δ2

c

2σ2
M

) |
d ln σM

d ln M
|

PS halo mass function

For                 we have that                             , where                              .

⇥ = �2c (t)/⇤
2(M)WARNING: some authors define                              which results in a somewhat


                    modified multiplicity function.....always check how    is defined!!  ⌫

Upon defining the variable                            the PS mass function can be written in a 
more compact form: 

⇥ ⌘ �c(t)/⇤(M)

n(M, t) dM =
⇥̄

M2
fPS(�)

����
d ln �

d lnM

���� dM fPS(�) =

r
2

⇥
� e��2/2where

If we define a characteristic mass,      , by                          (i.e., by                   ) then:M⇤ ⇥(M⇤) = �c(t) �(M⇤) = 1

n(M, t) / M↵�2 � = d ln⇥/d lnM

 For a CDM cosmology            at low mass end so that  ↵ ! 0 n(M) / M�2

M ⌧ M⇤

For                 the abundance of haloes is exponentially suppressed.M � M⇤

Since          decreases with time, the characteristic halo mass grows as function

of time; as time passes more and more massive haloes will start to form...

�c(t)

            is called the multiplicity function and gives the mass fraction associated with 
haloes in a unit range of       . Note that time enters only through ln ⌫
fPS(�)

�c(t) � 1.686/D(t)
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The Press-Schechter Mass Function

Differential Halo Mass Function: ϕ(M, z) = 2
π

ρ̄
M2

δc

σ2
M

exp(− δ2
c

2σM
) |

d ln σM

d ln M
|

stellar mass function

To make quantitative comparisons 
one needs to calculate σM

ϕ(M, z) = 2
π

ρ̄
M2

δc

σM
exp(− δ2

c

2σ2
M

) |
d ln σM

d ln M
|

Variance of a smoothed density field

smoothing is a convolution of the density field w/ a window function of width R ( ):M = γρ̄R3

σ2
M = ⟨δ2

M(x)⟩ = 1
V ∫ δ2

M(x)d3x = 1
V ∫ |δ(x) * WM(x) |2 d3x

 the variance of the smoothed density field is then:

δM(x) = δ(x) * WM(x) = ∫ δ(x′ )WM(x′ − x)d3x′ 

Variance of a smoothed density field
σ2

M = 1
V ∫

∞

−∞
δ2

M(x)d3x = 1
V ∫

∞

−∞
|δ(x) * WM(x) |2 d3x

There are some major problems going forward:  

• the density field is a random field, so would require many 
realizations, and how to realize a random field that matches the 
initial conditions of the universe? 

• what would be the appropriate volume and what scale to use to 
sample this random field? 

• numerical convolution is computationally expensive and how to 
deal with artifacts near boundaries?



Simplify the calculation by converting to Fourier space

the calculation of σM

Consider transforming to Fourier space

Decomposing a periodic time/space signal into Fourier series

frequencytime/space

The Fourier transform

we’ll be interested in signals defined for all t

the Fourier transform of a signal f is the function

F (ω) =
∫ ∞

−∞
f(t)e−jωtdt

• F is a function of a real variable ω; the function value F (ω) is (in
general) a complex number

F (ω) =
∫ ∞

−∞
f(t) cosωt dt − j

∫ ∞

−∞
f(t) sinωt dt

• |F (ω)| is called the amplitude spectrum of f ; # F (ω) is the phase
spectrum of f

• notation: F = F(f) means F is the Fourier transform of f ; as for
Laplace transforms we usually use uppercase letters for the transforms
(e.g., x(t) and X(ω), h(t) and H(ω), etc.)

The Fourier transform 11–2

FT and inverse FT in 1D

F(ω) = ∫ f(t) e−iωtdt

f(t) = 1
2π ∫ F(ω)eiωtdω

time domain:

F(k) = ∫ f(x) e−ikxdx

f(x) = 1
2π ∫ F(k)eikxdk

1D space domain:

ω = 2π
Δt

angular freq.:

k = 2π
Δx

wave number:

Fourier transform of a top-hat filter Fourier Transform Pairs
random density field in real and frequency space:

window function and its F.T.:

power spectrum (P) and correlation function (xi):

ξ(x) = ⟨δ(x′ )δ(x′ + x)⟩ = 1
(2π)3 ∫ P(k)ei ⃗k ⃗x d3 ⃗k

P(k) = V⟨δ(k′ )δ(k′ + k)⟩ = ∫ ξ(x)e−i ⃗k ⃗x d3 ⃗x



Calculation of  in Fourier spaceσM

Convolution theorem: convolution in real space = multiplication in Fourier space 

δM(k) = ℱ{δM(x)} = ℱ{δ(x) * WM(x)} = δ(k)W̃M(k)
Frequency components of periodic density fluctuations: 

Fourier transform of smoothed density field

PM(k) = ℱ{ξM(x)} = P(k)W̃M
2(k)

Power spectrum of the smoothed density field:  
Fourier transform of the correlation function of the smoothed density field

 expressed in correlation function & power spectrumσM

therefore, σ2 = ξ(0)

definition of the variance of the density field:

Correlation Function is the Fourier transform of the Power Spectrum (vice versa)

evaluating the correlation function at 0 using the power spectrum

therefore, the variance of the smoothed density field is:

σ2
M = 1

2π2 ∫
∞

0
PM(k)k2dk = 1

2π2 ∫
∞

0
P(k)W̃M

2(k)k2dk

definition of the two-point correlation function:

ξ(x) = ⟨δ(x′ )δ(x′ + x)⟩ = 1
V ∫ δ(x′ )δ(x′ + x)d3x

the power spectrum of the Gaussian random field

the calculation of σM

Gaussian random field: white noise

Img = randomn(seed, nx=1024, ny=1024,  
/normal, sigma=0.2)

histogram(img, bin=0.2)

Planck CMB delta T Map is not white noise

2dF Galaxy Redshift Survey (1997-2002)

Galaxy distribution also doesn’t look like white noise



A Gaussian random field is fully described by  
the correlation function or its F.T. the power spectrum

and its Fourier transform is the power spectrum:

Define two-point correlation function:

Gaussian random fields w/ increasing correlation lengths

ξ(x) = ⟨δ(x′ )δ(x′ + x)⟩ = 1
V ∫ δ( ⃗x′ )δ( ⃗x′ + ⃗x )d3 ⃗x′ 

P(k) = V⟨δ(k′ )δ(k′ + k)⟩ = ∫ ξ(x)e−i ⃗k ⃗x d3 ⃗x

and its Fourier transform is the power spectrum:

ξ(x) = ⟨δ(x′ )δ(x′ + x)⟩ = 1
V ∫ δ( ⃗x′ )δ( ⃗x′ + ⃗x )d3 ⃗x′ 

Define two-point correlation function:

Gaussian random fields w/ ever steeper power spectrum  
(i.e., decreasing small scale correlations)

A Gaussian random field is fully described by  
the correlation function or its F.T. the power spectrum

P(k) = V⟨δ(k′ )δ(k′ + k)⟩ = ∫ ξ(x)e−i ⃗k ⃗x d3 ⃗x

Evolution of the power spectrum from the primordial density 
perturbations (due to inflation) to the present day

Linearly evolved correlation function and power 
spectrum in the Lambda CDM universe

Harr
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n-Z
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ich

 (1
97

2)

x(z) = c∫
a

0

da
H(a)a2

https://lambda.gsfc.nasa.gov/toolbox/tb_camb_form.cfm

horizon size at zeq 
xeq = 88 h-1 Mpc 

->  
keq = 0.011 h/Mpc

resulting sigma_M function and halo mass function

the calculation of σM Power Spectrum Mass Variance

Hlozek et al. 2012: The Atacama Cosmology Telescope: A Measurement of the Primordial Power Spectrum

Resulting mass variance by integrating power spectrum:  
a monotonically decreasing function of mass scale

σ2
M = 1

2π2 ∫
∞

0
P(k)W̃M

2(k)k2dk ≈ 1
2π2 ∫

2π/R

0
P(k)k2dk ∝ M−(3+ns)/3 for P(k) ∝ kns

slope = -4/3



Resulting Press-Schechter Halo Mass Function

Avila-Reese 2006, Fig 8

ϕ(M, z) = 2
π

ρ̄
M2

δc

σ2
M

exp(− δ2
c

2σ2
M

) |
d ln σM

d ln M
|

Comparison w/ N-body Simulations

10 Mpc comoving box (cluster-scale)
Millennium Simulation 

Simulated 
Universe 
(DM only)

Observed 
Universe

Springel, Frenk, & White (2006)

Cold DM Simulation vs. Observations

A B

So
ur

ce
: M

ill
en

iu
m

 S
im

ul
at

io
n;

  S
pr

in
ge

l V
., 

 e
t 

al
. 2

00
5,

 N
at

ur
e,

 4
35

. 6
29

= Millenium sim.

= PS prediction 

The Millenium Simulation 
followed the evolution of 21603 
(~10 billion) particles in a 
periodic box 500 Mpc/h on a 
side in a ΛCDM cosmology.

At the time it was run (2005) it 
was one of the biggest 
simulations to date. Because 
of its superb statistics, it is 
ideally suited to test the PS 
mass functions...

At low redshift, the PS mass function under- (over)-predicts the abundance of massive 
(low mass) haloes. These problems become more pronounced at higher redshifts...

WARNING: this statement is sensitive to how haloes are identified in the simulation box.

                   Here a Friends-Of-Friends (FOF) algorithm has been used (see lecture 11)  
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Comparison with Numerical Simulations

Springel+2005



= Simulation 

= EPS (SC) 

= EPS (EC) 
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Clearly, the EPS mass function 
based on ellipsoidal collapse is 
in much better agreement with 
numerical simulations than the 
spherical collapse-based model 
prediction...

WARNING: this statement is sensitive to how haloes are identified in the simulation box.

                    Here a Friends-Of-Friends (FOF) algorithm has been used       (see lecture 11)  

The Millenium Simulation 
followed the evolution of 21603 
(~10 billion) particles in a 
periodic box 500 Mpc/h on a 
side in a ΛCDM cosmology.
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Spherical vs. Ellipsoidal Collapse
Extended Press-Schechter formalism improves the agreement w/ N-body simulations

Comparison w/ Galaxy Stellar 
Mass Function

galaxies turned out to be biased tracers of DM halos

Predicted halo mass function vs. Observed galaxy mass function


