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Observational Evidence of  
Dark Matter Halos



Method 1: Rotation Curves of Disk Galaxies

Long Slit



Method 2: Orbit Superposition of Elliptical Galaxies
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Method 3: Virial Theorem & HydrostaGc Equilibrium

Zwicky	1933:	velocity	dispersion	of	galaxies	in	the	Coma	Cluster	
Virial	Theorem:	 	
The	virial	mass	is	400x	greater	than	visible	stellar	mass

2K̄ + Ū = 0 → σ2 = GM/R → M = σ2R/G

Gaussian Probability Density Function



Lensing allows us to measure the total mass in the foreground lens galaxy

Method 4: Strong GravitaGonal Lensing



Lensing allows us to measure the total mass in the foreground lens galaxy or cluster

Method 5: Weak GravitaGonal Lensing



From the SC Model to N-
body Simulations
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identify important epochs in the 
linearly evolved density field...

ASTR 610: Theory of  Galaxy Formation ©  Frank van den Bosch, Yale University

The Spherical Collapse (SC) Model
turn-around collapse

SC model 4.55 ∞

linear model 1.062 1.686

� = �/�̄� 1

van den Bosch

Top-Hat Model: Density Evolution
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From	Top-Hat	model	to	more	realistic	halos
• At the time of collapse, the entire structure maintains a constant density that is  

times the critical density 

• The radius of the top-hat is well-defined by the density discontinuity at , while in 

reality, the density profile  should be smoothly declining until it reaches . 

• Although unrealistic, the top-hat model motivated the definition of the virial radius and 

virial mass of the collapsed object:  

                 , and,  where 

18π2

ρc = 3H2/8πG
rv = avr0

ρ(r) ρc

ρ̄(r < rΔ) = Δcρc MΔ =
4π
3

r3
ΔΔcρc Δc = 200 ≈ 18π2

Artificial Evolution: 
Because  continues to 
decline as the universe 
expands, the fixed  
results in a non-evolving 
halo to increase in virial 
mass (due to definition). 

ρc

Δc



dark matter simulation of a comoving volume that is 40 Mpc across



Merging/Growth History of DM Halos



Finding Dark Matter Halos in Simulated Data
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Density Energy

Virialization of a DM Halo from an N-body Simulation

t=1.45
t=18

t=0

t=0

t~100

BT Figs 4.28-30



Navarro-Frenk-White (1996) Profile
Spherical Symmetry is assumed

ρ(r) =
δcρc

(r/rs)(1 + r/rs)2



The Rapid Development of 
N-body Simulations



Simulation of a Cube 30 Million Light Year Across



Evolution of N in N-body Simulations







The main Illustris simulation was run on the Curie supercomputer at CEA (France) and 
the SuperMUC supercomputer at the Leibniz Computing Centre (Germany).[1][11] A total 
of 19 million CPU hours was required, using 8,192 CPU cores.[1] The peak memory 
usage was approximately 25 TB of RAM.[1] A total of 136 snapshots were saved over 
the course of the simulation, totaling over 230 TB cumulative data volume.

a Milky-Way-like spiral galaxy at z = 2 from TNG50

https://en.wikipedia.org/wiki/TGCC
https://en.wikipedia.org/wiki/Commissariat_%C3%A0_l%27%C3%A9nergie_atomique_et_aux_%C3%A9nergies_alternatives
https://en.wikipedia.org/wiki/SuperMUC
https://en.wikipedia.org/wiki/Leibniz_Supercomputing_Centre
https://en.wikipedia.org/wiki/Central_processing_unit


Carbon Footprint Estimate (DeepSeek)



Dark Matter Particles: 
Cold vs. Hot 

MACRO vs. WIMP



Cold Dark Matter (>MeV, moving slowly) vs.  
Hot/Warm Dark Matter (10s eV, moving relativistically) 

e- mass: 0.511 MeV, p+ mass: 938 MeV



Hot, warm, cold DM simulations



Cold Dark Matter (>MeV) vs. Hot Dark Matter (10s eV, relativistic) 
HDM erase density fluctuations on small scales
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Simulated 
Universe

Observed 
Universe

Springel, Frenk, & White (2006)

Distribution of Galaxies from  
Cold DM Simulations



Cold Dark Matter: Particles or Compact Objects?

• No	direct	detection	of	dark	matter	has	been	made,	but	there	
are	two	broad	categories	of	candidates:		
•MACHOs	—	massive	compact	halo	objects	with	masses	
larger	than	10-8	Msun,	such	as	planets,	stars,	white	dwarfs,	
neutron	stars,	or	stellar-mass	black	holes	

•WIMPs	—	weakly	interacting	massive	particles;	some	
fundamental	particles	like	neutrinos	but	much	more	
massive.	Details	of	WIMP	particles	are	unknown.



Detecting MACHOs with gravitational micro-lensing

Timescale of a microlensing 
event increases w/ the mass 

of the MACHO



Microlensing surveys place strict upper limits on the MACHO fraction

• Two	years	of	data	on	9	million	stars	in	LMC	found	0	microlensing	event.	
• Even	planet-mass	MACHOs	contribute	less	than	10%	of	halo	mass	
• These	results	make	WIMPs	the	currently	favored	DM	candidate.



Potential Theory  
Potential-Density Pairs



Circular	velocity:	 		
because	the	Sun	contains	99.9%	of	the	mass!

v(r) = GM(r)/r ⇒ v(r) ∝ 1/ r
Keplerian Orbits in the Solar System



ChaoGc Orbits of Galaxies in Clusters
Zwicky	1933:	velocity	dispersion	of	galaxies	in	the	Coma	Cluster	
Virial	Theorem:	 	
The	virial	mass	is	400x	greater	than	visible	stellar	mass

2K̄ + Ū = 0 → σ2 = GM/R → M = σ2R/G

Gaussian Probability Density Function



But the Virial Theorem is Not Enough …

All	self-gravitating	systems	in	equilibrium	must	obey	the		
Virial	theorem,	but	they	display	very	different	morphologies

E7



Self-gravitating systems in dynamical equilibrium (general case)

• The	mass	distribution	 	determines	gravitational	potential	 	
• The	gravitational	potential	determines	the	orbits	because	 	
• The	orbits	determine	how	much	time	objects	spend	at	each	location	 ,	thus	
determines	the	mass	distribution	 .	We	now	have	a	closed	loop.	

• A	special	type	of	orbits	are	circular	orbits,	and	observers	can	approximate	mean	
rotation	velocity	as	circular	velocities:	

ρ(r, θ, ϕ) ϕ(r, θ, ϕ)
g = − ∇ϕ

τ(r, θ, ϕ)
ρ(r, θ, ϕ)

vc(r) = GM(r)/r



Key Equations Controlling Self-Gravitating Systems

Virial Theorem:  
 

 

Equation of motion:  
 

 

Gauss’ Law: 
 

 

Poisson Equation:  
 

σ2 = GM/r, 2K̄ + Ū = 0

⃗g = − ∇ϕ

∮S
g ⋅ dA = − 4πGM

∇2ϕ = 4πGρ



Derivation of Gauss’ Law



Derivation of Gauss’ Law



Derivation of Poisson Equation



Gradient & Divergence in Spherical Coordinates



Laplacian: The Divergence of the Gradient of a Scaler Field



Spherical Symmetry Systems



General Equations for Spherical Symmetric Systems

Enclosed Mass within r: 

 

Potential at radius r:  

  

Circular Velocity at radius r:  

M(r) = ∫
r

0
ρ(r′ )4πr′ 2dr′ 

ϕ(r) = −
G
r ∫

r

0
dM(r′ ) − G∫

∞

r

dM(r′ )
r′ 

= − 4πG [ 1
r ∫

r

0
ρ(r)r2dr + ∫

∞

r
ρ(r)rdr]

vc(r) = r
dϕ
dr

=
GM(r)

r



Singular Isothermal Sphere (SIS)

Density distribution:  

 

Enclosed Mass: 

 

Potential:  
  

Circular Velocity:  

ρ(r) =
σ2

2πGr2
∝ r−2

M(r) = ∫
r

0
ρ(r)4πr2dr =

2σ2r
G

∝ r

ϕ(r) = 2σ2 ln(r)

vc(r) =
GM(r)

r
= 2σ



NFW Profile

Density distribution:  

 

Enclosed Mass: 

 

Potential:  

  

Circular Velocity:  

ρ(r) =
4ρs

(r/rs)(1 + r/rs)2

M(r) = ∫
r

0
ρ(r)4πr2dr = 16πρsr3

s (ln(1 +
r
rs

) −
r/rs

1 + r/rs )

ϕ(r) = − 16πGρsr2
s

ln(1 + r/rs)
r/rs

vc(r) =
GM(r)

r



NFW Profile vs. SIS Profile, using consistent definitions

Density distribution:  

 

Enclosed Mass: 
 

Potential - const.:  

 

ρ(r) =
4ρs

(r/rs)(1 + r/rs)2

M(r) = 16πρsr3
s (ln(1 +

r
rs

) −
r/rs

1 + r/rs )

ϕ(r) = − 16πGρsr2
s

ln(1 + r/rs)
r/rs

Density distribution:  
 

Enclosed Mass: 
 

 

Potential - const.:  
 

ρ(r) =
ρs

(r/rs)2

M(r) = 4πρsr2
s r

ϕ(r) = 4πGρsr2
s ln(r/rs)



Spherical Symmetry Systems

J. Barnes & BT
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Circular Velocity Profiles of Different  
double-power-law density models

(2,4)

(1,4)

(1,3)

Isothermal	(2,2)

ρ(r) =
ρ0

(r/a)α(1 + r/a)β−α vc(r) =
GM(r)

r



What about non-circular orbits in a logarithmic potential field?

General form: ϕ(x, y, z) = 0.5 ln(R2
c + x2 + (y/b)2 + (z /c)2)

ϕ(r) = 0.5 ln(R2
c + r2)When b=c=1: 



Galaxy-Scale (E/S0): 
Density Profile ~ SIS Koopmans+2009



Modeling Strong Gravitational Lensing

Lens Galaxy - Deflector

Lensed Galaxy - Source

Model of the Lensed Image



Cluster-Scale Strong Lensing: 
Density Profile ~ NFW Profile

Newman+13



Axial Symmetry Systems (thin disks)



General Axial Symmetry Systems

clay  
sculpture  
turntable



Only for spherical symmetry systems v(r) = GM(r)/r

So this illustration 
widely used in 
textbooks is 

over-simplified 
because the normal 
luminous matter is 

mostly distributed on 
a disk instead of a 

sphere



Circular Velocity Profiles: Axial Symmetry vs. Spherical Symmetry

The spherical system has the same enclosed mass profile as the disk
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Point Mass w/ same total mass

Exponential Disk: 
Σ(R) = Σ0 exp(−R/Rd)

Spherical system 
w/ the same M(R)



Potential of a Kuzmin Disk
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Logarithmic Potential Disks



Rotation Curve Modeling of Disk 
Galaxies with Potential-Density 

Pairs



A LONGSLIT PLACED ALONG A GALAXY’S MAJOR AXIS

Long Slit



Observed Rotation Velocities Need to be Corrected for Inclination Angle

vobs = vint sin i



Estimate inclination angle from b/a ratio
Oblate Ellipsoid Model of Disk Galaxies (Hubble 1926)

• where b and a are the semi-minor and semi-major axis of the ellipse, and i is the 
inclination angle and q is the edge-on thickness



Model Mass Components of a Disk Galaxy
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Equipotential Contours of the Mass Components

Stellar Bulge DM Halo

Stellar + Gas Disk Total

Circular velocity can be calculated with ⃗g = − ∇ϕ = v2/r



Fitting the Observed Rotation Curve of  
NGC 3198 w/ an NFW halo

Navarro 1998



Usually, multiple models can fit the rotation curve equally well

De Blok+2008



Detailed Modeling of Stellar 
Kinematics in Elliptical Galaxies 

w/ Orbit Superposition



Galaxies are self-gravitating systems in dynamical equilibrium 

• The	mass	distribution	 	determines	gravitational	potential:	
	

• The	gravitational	potential	determines	the	orbits:	 	
• The	orbits	determine	how	much	time	objects	spend	at	each	location	

,	thus	determines	the	mass	distribution.	The	loop	is	closed.

ρ(r, θ, ϕ)
∇2ϕ = 4πGρ

g = − ∇ϕ

τ(r, θ, ϕ)
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Imaging and spectroscopy provide useful 2D measurement, but to infer 
the full 3D information requires dynamical modeling 
• Imaging	observations	provide	maps	of	the	light	distribution	of	stars	and	gas	in	
the	galaxy,	which	can	be	used	to	infer	the	2D	projected	mass	distribution	

• Integral-field	spectroscopic	observations	provide	a	map	of	Doppler	shift,	
which	then	gives	us	the	line-of-sight	velocities.	

• But	even	perfect	observations	provide	incomplete	information	of	the	galaxy:	
• only	the	surface	density	projected	along	the	line-of-sight	is	measured	
• only	the	velocity	component	along	the	line-of-sight	is	measured

Data from SDSS IV/MaNGA Survey, Figure made by Hai Fu



Elliptical Galaxies: Irregular Orbits of Stars

In	ellipticals	and	in	bulges	of	spiral	galaxies,	stars	orbit	in	many	different	
directions	and	move	on	irregular	orbits.	The	velocity	dispersion	(random	
motion)	dominates	over	the	rotation	velocity	(ordered	motion)

NGC4365 

van den 
Bosch+ 

2008



How to find a dynamical model that is consistent with observations?

• The orbit-superposition approach by Martin Schwarzschild (1979).  
• Specify a M/L and a geometric model to deproject the observed surface 

light distribution  to obtain the 3D density distribution  
• Find the corresponding gravitational potential by solving the Poisson 

Equation:  
• Construct a grid of K cells in position space 
• Choose initial positions and velocities for a set of N orbits, for each one 

• integrate the equation of motion for many orbital periods 
 

• keep track of the time the orbit spends in each of the K cells; this is 
proportional to how much mass the orbit contributes to each cell. 

• Determine non-negative weights for each orbit such that the summed 
mass in each cell is equal to the mass implied by the original . 

• Use the model to predict the line-of-sight velocity distribution and 
compare it with the observed stellar kinematics, modify  if 
necessary and repeat until the process converges.

Σ(α, δ) ρ( ⃗x)

∇2Φ( ⃗x) = 4πGρ( ⃗x)

⃗g( ⃗x) = − ∇Φ( ⃗x)

ρ( ⃗x)

ρ( ⃗x)



Elliptical Galaxies and Bulges: Irregular Orbit Families

• In elliptical galaxies and bulges of spiral galaxies, stars orbit in 
many different directions and move on irregular orbits. 

• There are four main orbit families in the triaxial gravitational 
potential of elliptical galaxies.



Projected Views of a Box and a Minor-Axis Tube Orbit



Separating the contribution from stars in the four orbit families

NGC4365 

van den Bosch+ 
2008


