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Observational Evidence of  
Dark Matter Halos



Method 1: Rotation Curves of Disk Galaxies

Long Slit



Method 2: Orbit Superposition of Elliptical Galaxies

NGC4365 

van den Bosch+ 
2008



Method 3: Virial Theorem & Hydrostatic Equilibrium

Zwicky 1933: velocity dispersion of galaxies in the Coma Cluster	
Virial Theorem: 	
The virial mass is 400x greater than visible stellar mass

2K̄ + Ū = 0 → σ2 = GM/R → M = σ2R/G

Gaussian Probability Density Function



Lensing allows us to measure the total mass in the foreground lens galaxy

Method 4: Strong Gravitational Lensing



Lensing allows us to measure the total mass in the foreground lens galaxy or cluster

Method 5: Weak Gravitational Lensing



From the SC Model to N-
body Simulations
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Top-Hat Model: Density Evolution
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From Top-Hat model to more realistic halos
• At the time of collapse, the entire structure maintains a constant density that is  

times the critical density 

• The radius of the top-hat is well-defined by the density discontinuity at , while in 

reality, the density profile  should be smoothly declining until it reaches . 

• Although unrealistic, the top-hat model motivated the definition of the virial radius and 

virial mass of the collapsed object:  

                 , and,  where 

18π2

ρc = 3H2/8πG
rv = avr0

ρ(r) ρc

ρ̄(r < rΔ) = Δcρc MΔ =
4π
3

r3
ΔΔcρc Δc = 200 ≈ 18π2

Artificial Evolution: 
Because  continues to 
decline as the universe 
expands, the fixed  
results in a non-evolving 
halo to increase in virial 
mass (due to definition). 

ρc

Δc



dark matter simulation of a comoving volume that is 40 Mpc across



Merging/Growth History of DM Halos



Finding Dark Matter Halos in Simulated Data
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Density Energy

Virialization of a DM Halo from an N-body Simulation

t=1.45
t=18

t=0

t=0

t~100

BT Figs 4.28-30



Navarro-Frenk-White (1996) Profile
Spherical Symmetry is assumed

ρ(r) =
δcρc

(r/rs)(1 + r/rs)2



The Rapid Development of 
N-body Simulations



Simulation of a Cube 30 Million Light Year Across



Evolution of N in N-body Simulations







The main Illustris simulation was run on the Curie supercomputer at CEA (France) and 
the SuperMUC supercomputer at the Leibniz Computing Centre (Germany).[1][11] A total 
of 19 million CPU hours was required, using 8,192 CPU cores.[1] The peak memory 
usage was approximately 25 TB of RAM.[1] A total of 136 snapshots were saved over 
the course of the simulation, totaling over 230 TB cumulative data volume.

a Milky-Way-like spiral galaxy at z = 2 from TNG50

https://en.wikipedia.org/wiki/TGCC
https://en.wikipedia.org/wiki/Commissariat_%C3%A0_l%27%C3%A9nergie_atomique_et_aux_%C3%A9nergies_alternatives
https://en.wikipedia.org/wiki/SuperMUC
https://en.wikipedia.org/wiki/Leibniz_Supercomputing_Centre
https://en.wikipedia.org/wiki/Central_processing_unit


Carbon Footprint Estimate (DeepSeek)



Dark Matter Particles: 
Cold vs. Hot 

MACRO vs. WIMP



Cold Dark Matter (>MeV, moving slowly) vs.  
Hot/Warm Dark Matter (10s eV, moving relativistically) 

e- mass: 0.511 MeV, p+ mass: 938 MeV



Hot, warm, cold DM simulations



Cold Dark Matter (>MeV) vs. Hot Dark Matter (10s eV, relativistic) 
HDM erase density fluctuations on small scales
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Simulated 
Universe

Observed 
Universe

Springel, Frenk, & White (2006)

Distribution of Galaxies from  
Cold DM Simulations



Cold Dark Matter: Particles or Compact Objects?

• No direct detection of dark matter has been made, but there 
are two broad categories of candidates: 	
•MACHOs — massive compact halo objects with masses 
larger than 10-8 Msun, such as planets, stars, white dwarfs, 
neutron stars, or stellar-mass black holes	

•WIMPs — weakly interacting massive particles; some 
fundamental particles like neutrinos but much more 
massive. Details of WIMP particles are unknown.



Detecting MACHOs with gravitational micro-lensing

Timescale of a microlensing 
event increases w/ the mass 

of the MACHO



Microlensing surveys place strict upper limits on the MACHO fraction

• Two years of data on 9 million stars in LMC found 0 microlensing event.	
• Even planet-mass MACHOs contribute less than 10% of halo mass	
• These results make WIMPs the currently favored DM candidate.



Potential Theory  
Potential-Density Pairs



Circular velocity:  	
because the Sun contains 99.9% of the mass!

v(r) = GM(r)/r ⇒ v(r) ∝ 1/ r
Keplerian Orbits in the Solar System



Chaotic Orbits of Galaxies in Clusters
Zwicky 1933: velocity dispersion of galaxies in the Coma Cluster	
Virial Theorem: 	
The virial mass is 400x greater than visible stellar mass

2K̄ + Ū = 0 → σ2 = GM/R → M = σ2R/G

Gaussian Probability Density Function



But the Virial Theorem is Not Enough …

All self-gravitating systems in equilibrium must obey the 	
Virial theorem, but they display very different morphologies

E7



Self-gravitating systems in dynamical equilibrium (general case)

• The mass distribution  determines gravitational potential 	
• The gravitational potential determines the orbits because 	
• The orbits determine how much time objects spend at each location , thus 
determines the mass distribution . We now have a closed loop.	

• A special type of orbits are circular orbits, and observers can approximate mean 
rotation velocity as circular velocities: 

ρ(r, θ, ϕ) ϕ(r, θ, ϕ)
g = − ∇ϕ

τ(r, θ, ϕ)
ρ(r, θ, ϕ)

vc(r) = GM(r)/r



Key Equations Controlling Self-Gravitating Systems

Virial Theorem:  
 

 

Equation of motion:  
 

 

Gauss’ Law: 
 

 

Poisson Equation:  
 

σ2 = GM/r, 2K̄ + Ū = 0

⃗g = − ∇ϕ

∮S
g ⋅ dA = − 4πGM

∇2ϕ = 4πGρ



Derivation of Gauss’ Law



Derivation of Gauss’ Law



Derivation of Poisson Equation



Gradient & Divergence in Spherical Coordinates



Laplacian: The Divergence of the Gradient of a Scaler Field



Spherical Symmetry Systems



General Equations for Spherical Symmetric Systems

Enclosed Mass within r: 

 

Potential at radius r:  

  

Circular Velocity at radius r:  

M(r) = ∫
r

0
ρ(r′￼)4πr′￼2dr′￼

ϕ(r) = −
G
r ∫

r

0
dM(r′￼) − G∫

∞

r

dM(r′￼)
r′￼

= − 4πG [ 1
r ∫

r

0
ρ(r)r2dr + ∫

∞

r
ρ(r)rdr]

vc(r) = r
dϕ
dr

=
GM(r)

r



Singular Isothermal Sphere (SIS)

Density distribution:  

 

Enclosed Mass: 

 

Potential:  
  

Circular Velocity:  

ρ(r) =
σ2

2πGr2
∝ r−2

M(r) = ∫
r

0
ρ(r)4πr2dr =

2σ2r
G

∝ r

ϕ(r) = 2σ2 ln(r)

vc(r) =
GM(r)

r
= 2σ



NFW Profile

Density distribution:  

 

Enclosed Mass: 

 

Potential:  

  

Circular Velocity:  

ρ(r) =
4ρs

(r/rs)(1 + r/rs)2

M(r) = ∫
r

0
ρ(r)4πr2dr = 16πρsr3

s (ln(1 +
r
rs

) −
r/rs

1 + r/rs )

ϕ(r) = − 16πGρsr2
s

ln(1 + r/rs)
r/rs

vc(r) =
GM(r)

r



NFW Profile vs. SIS Profile, using consistent definitions

Density distribution:  

 

Enclosed Mass: 
 

Potential - const.:  

 

ρ(r) =
4ρs

(r/rs)(1 + r/rs)2

M(r) = 16πρsr3
s (ln(1 +

r
rs

) −
r/rs

1 + r/rs )

ϕ(r) = − 16πGρsr2
s

ln(1 + r/rs)
r/rs

Density distribution:  
 

Enclosed Mass: 
 

 

Potential - const.:  
 

ρ(r) =
ρs

(r/rs)2

M(r) = 4πρsr2
s r

ϕ(r) = 4πGρsr2
s ln(r/rs)



Spherical Symmetry Systems

J. Barnes & BT
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Circular Velocity Profiles of Different  
double-power-law density models

(2,4)

(1,4)

(1,3)

Isothermal (2,2)

ρ(r) =
ρ0

(r/a)α(1 + r/a)β−α vc(r) =
GM(r)

r



What about non-circular orbits in a logarithmic potential field?

General form: ϕ(x, y, z) = 0.5 ln(R2
c + x2 + (y/b)2 + (z /c)2)

ϕ(r) = 0.5 ln(R2
c + r2)When b=c=1: 



Galaxy-Scale (E/S0): 
Density Profile ~ SIS Koopmans+2009



Modeling Strong Gravitational Lensing

Lens Galaxy - Deflector

Lensed Galaxy - Source

Model of the Lensed Image



Cluster-Scale Strong Lensing: 
Density Profile ~ NFW Profile

Newman+13



Axial Symmetry Systems (thin disks)



General Axial Symmetry Systems

clay  
sculpture  
turntable



Only for spherical symmetry systems v(r) = GM(r)/r

So this illustration 
widely used in 
textbooks is 

over-simplified 
because the normal 
luminous matter is 

mostly distributed on 
a disk instead of a 

sphere



Circular Velocity Profiles: Axial Symmetry vs. Spherical Symmetry

The spherical system has the same enclosed mass profile as the disk
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Point Mass w/ same total mass

Exponential Disk: 
Σ(R) = Σ0 exp(−R/Rd)

Spherical system 
w/ the same M(R)



Potential of a Kuzmin Disk
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Generalized Kuzmin Disks
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Logarithmic Potential Disks



Rotation Curve Modeling of Disk 
Galaxies with Potential-Density 

Pairs



A LONGSLIT PLACED ALONG A GALAXY’S MAJOR AXIS

Long Slit



Observed Rotation Velocities Need to be Corrected for Inclination Angle

vobs = vint sin i



Estimate inclination angle from b/a ratio
Oblate Ellipsoid Model of Disk Galaxies (Hubble 1926)

• where b and a are the semi-minor and semi-major axis of the ellipse, and i is the 
inclination angle and q is the edge-on thickness



Model Mass Components of a Disk Galaxy
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Equipotential Contours of the Mass Components

Stellar Bulge DM Halo

Stellar + Gas Disk Total

Circular velocity can be calculated with ⃗g = − ∇ϕ = v2/r



Fitting the Observed Rotation Curve of  
NGC 3198 w/ an NFW halo

Navarro 1998



Usually, multiple models can fit the rotation curve equally well

De Blok+2008



Detailed Modeling of Stellar 
Kinematics in Elliptical Galaxies 

w/ Orbit Superposition



Galaxies are self-gravitating systems in dynamical equilibrium 

• The mass distribution  determines gravitational potential: 
	

• The gravitational potential determines the orbits: 	
• The orbits determine how much time objects spend at each location 

, thus determines the mass distribution. The loop is closed.

ρ(r, θ, ϕ)
∇2ϕ = 4πGρ

g = − ∇ϕ

τ(r, θ, ϕ)
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Imaging and spectroscopy provide useful 2D measurement, but to infer 
the full 3D information requires dynamical modeling 
• Imaging observations provide maps of the light distribution of stars and gas in 
the galaxy, which can be used to infer the 2D projected mass distribution	

• Integral-field spectroscopic observations provide a map of Doppler shift, 
which then gives us the line-of-sight velocities.	

• But even perfect observations provide incomplete information of the galaxy:	
• only the surface density projected along the line-of-sight is measured	
• only the velocity component along the line-of-sight is measured

Data from SDSS IV/MaNGA Survey, Figure made by Hai Fu



Elliptical Galaxies: Irregular Orbits of Stars

In ellipticals and in bulges of spiral galaxies, stars orbit in many different 
directions and move on irregular orbits. The velocity dispersion (random 
motion) dominates over the rotation velocity (ordered motion)

NGC4365 

van den 
Bosch+ 

2008



How to find a dynamical model that is consistent with observations?

• The orbit-superposition approach by Martin Schwarzschild (1979).  
• Specify a M/L and a geometric model to deproject the observed surface 

light distribution  to obtain the 3D density distribution  
• Find the corresponding gravitational potential by solving the Poisson 

Equation:  
• Construct a grid of K cells in position space 
• Choose initial positions and velocities for a set of N orbits, for each one 

• integrate the equation of motion for many orbital periods 
 

• keep track of the time the orbit spends in each of the K cells; this is 
proportional to how much mass the orbit contributes to each cell. 

• Determine non-negative weights for each orbit such that the summed 
mass in each cell is equal to the mass implied by the original . 

• Use the model to predict the line-of-sight velocity distribution and 
compare it with the observed stellar kinematics, modify  if 
necessary and repeat until the process converges.

Σ(α, δ) ρ( ⃗x)

∇2Φ( ⃗x) = 4πGρ( ⃗x)

⃗g( ⃗x) = − ∇Φ( ⃗x)

ρ( ⃗x)

ρ( ⃗x)



Elliptical Galaxies and Bulges: Irregular Orbit Families

• In elliptical galaxies and bulges of spiral galaxies, stars orbit in 
many different directions and move on irregular orbits. 

• There are four main orbit families in the triaxial gravitational 
potential of elliptical galaxies.



Projected Views of a Box and a Minor-Axis Tube Orbit



Separating the contribution from stars in the four orbit families

NGC4365 

van den Bosch+ 
2008


