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Observational Evidence of
Dark Matter Halos



Method 1: Rotation Curves of Disk Galaxies
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Method 2: Orbit Superposition of Elliptical Galaxies
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Method 3: Virial Theorem & Hydrostatic Equilibrium

Zwicky 1933: velocity dispersion of galaxies in the Coma Cluster
Virial Theorem: 2K + U = 0 — 6> = GM/R - M = ¢°R/G

The virial mass is 400x greater than visible stellar mass
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where o is the standard deviation and y the mean



Method 4: Strong Gravitational Lensing

Lensing allows us to measure the total mass in the foreground lens galaxy




Method 5: Weak Gravitational Lensing

Lensing allows us to measure the total mass in the foreground lens galaxy or cluster
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From the SC Model to N-
body Simulations



Top-Hat Model: Density Evolution
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From Top-Hat model to more realistic halos

e At the time of collapse, the entire structure maintains a constant density that is 1877
times the critical density p. = 3H*/87G
e The radius of the top-hat is well-defined by the density discontinuity at r, = a r,, while in

reality,

should be smoothly declining until it reaches p...

e Although unrealistic, the top-hat model motivated the definition of the virial radius and
virial mass of the collapsed object:

4
p(r <rp)=A_p.,and, M, = ?ﬂrzAcpc where A = 200 ~ 187>
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Artificial Evolution:
Because p,. continues to
decline as the universe
expands, the fixed A,

results in a non-evolving
halo to increase In virial
mass (due to definition).



dark matter simulation of a comoving volume that is 40 Mpc across
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Merging/Grovvth History of DM Halos
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Finding Dark Matter Halos in Simulated Data
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Virialization of a DM Halo from an N-body Simulation

BT Figs 4.28-30
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Navarro-Frenk-White (1996) Profile
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F1G. 4—Scaled density profiles of the most and least massive halos
shown in Fig. 3. The large halo is less centrally concentrated than the less
massive system.

Spherical Symmetry is assumed

OcPc
(r/ry)(1 + r/r)?

p(r) =

pn _ 8,
Perit - ("/";)(1 + r/rs)z ’

where r, = r,00/c 1s a characteristic radius and p_; =
3H?/8nG is the critical density (H is the current value of
Hubble’s constant); 4. and ¢ are two dimensionless param-
eters. Note that r,,, determines the mass of the halo,
M 00 = 200p,;(47/3)r300, and that 8, and c are linked by
the requirement that the mean density within r,,, should be
200 x p.,;.- That is,
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The Rapid Development of
N-body Simulations




Simulation of a Cube 30 Million Light Year Across

Dark Matter Gas Temperature

redshift : 1.54 stellar mass . 27.7 billion solar masses

Time since the Big Bang: 4.3 billion years ILLUSTRIS



Evolution of N in N-body Simulations
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The main lllustris simulation was run on the Curie supercomputer at CEA (France) and
the SuperMUC supercomputer at the Leibniz Computing Centre (Germany)."i1 A total
of 19 million CPU hours was required, using 8,192 CPU cores.!'l The peak memory
usage was approximately 25 TB of RAM.!'] A total of 136 snapshots were saved over
the course of the simulation, totaling over 230 TB cumulative data volume.

a Milky-Way-like spiral galaxy at z = 2 from TNG50


https://en.wikipedia.org/wiki/TGCC
https://en.wikipedia.org/wiki/Commissariat_%C3%A0_l%27%C3%A9nergie_atomique_et_aux_%C3%A9nergies_alternatives
https://en.wikipedia.org/wiki/SuperMUC
https://en.wikipedia.org/wiki/Leibniz_Supercomputing_Centre
https://en.wikipedia.org/wiki/Central_processing_unit

Carbon Footprint Estimate (DeepSeek)

Rough Estimate:

» Assumptions:
o The simulation used 10,000 CPU cores for 1 year (8,760 hours).
o Each CPU core consumes ~100 watts (0.1 kW) on average.

o The data center uses a mix of energy sources with an average carbon intensity of 0.5 kg CO, per

kKWh (this varies widely by location).
» Calculation:
o Total energy consumption = 10,000 cores x 0.1 kW/core x 8,760 hours = 8,760,000 kWh.

o Carbon footprint = 8,760,000 kWh x 0.5 kg CO,/kWh = 4,380,000 kg CO, (4,380 metric tons of
CO,).

Context:

» 4,380 metric tons of CO, is roughly equivalent to the annual emissions of about 950 average

passenger vehicles or the energy use of about 500 homes for a year.



Dark Matter Particles:
Cold vs. Hot
MACRO vs. WIMP




Cold Dark Matter (>MeV, moving slowly) vs.
Hot/Warm Dark Matter (10s eV, moving relativistically)

e- mass: 0.511 MeV, p+ mass: 938 MeV




Hot, warm, cold DM simulations




Cold Dark Matter (>MeV) vs. Hot Dark Matter (10s €V, relativistic)
HDM erase density fluctuations on small scales
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Distribution of Galaxies from

Cold DM Simulations

Simulated
Universe

Observed
Universe

Springel, Frenk, & White (2006)




Cold Dark Matter: Particles or Compact Objects?

* No direct detection of dark matter has been made, but there
are two broad categories of candidates:

* MACHOs — massive compact halo objects with masses
larger than 10-8 Mgy, such as planets, stars, white dwarfs,
neutron stars, or stellar-mass black holes

* WIMPs — weakly interacting massive particles; some
fundamental particles like neutrinos but much more
massive. Details of WIMP particles are unknown.
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Detecting MACHOs with gravitational micro-lensing

=

(a)

A telescope looks .
at a distant star. ® Massive compact— Red light
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Microlensing surveys place strict upper limits on the MACHO fraction

* Two years of data on 9 million stars in LMC found 0 microlensing event.
* Even planet-mass MACHOs contribute less than 10% of halo mass
* These results make WIMPs the currently favored DM candidate.

EROS AND MACHO COMBINED LIMITS ON PLANETARY-MASS DARK MATTER IN THE GALACTIC HALO
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ABSTRACT

The EROS and MACHO collaborations have each published upper limits on the amount of planetary-mass
dark matter in the Galactic halo obtained from gravitational microlensing searches. In this Letter, the two limits
are combined to give a much stronger constraint on the abundance of low-mass MACHOs. Specifically, objects
with masses 107" My < m < 10° M make up less than 25% of the halo dark matter for most models considered,
and less than 10% of a standard spherical halo is made of MACHOs in the 3.5 x 107" M <m<4.5 %
10~ M, mass range.

Subject headings: dark matter — gravitational lensing — stars: low-mass, brown dwarfs




Potential Theory
Potential-Density Pairs



Keplerian Orbits in the Solar System

Circular velocity: v(r) = \/GM(r)/r = v(r) & 117/
because the Sun contains 99.9% of the mass!
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Chaotic Orbits of Galaxies in Clusters

Zwicky 1933: velocity dispersion of galaxies in the Coma Cluster
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Virial Theorem: 2K + U = 0 — 6> = GM/R - M = 6°R/G
The virial mass is 400x greater than visible stellar mass
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where o is the standard deviation and y the mean




But the Virial Theorem is Not Enough ...

All self-gravitating systems in equilibrium must obey the
Virial theorem, but they display very different morphologies

=)

larger bulge, less dusty gas, tighter spiral arms

-

rounder appearance

.




Self-gravitating systems in dynamical equilibrium (general case)

* The mass distribution p(7, 8, ¢) determines gravitational potential ¢ (7, 8, ¢)

* The gravitational potential determines the orbits because g = — V¢

* The orbits determine how much time objects spend at each location z(7, 6, @), thus
determines the mass distribution p(r, 8, ¢»). We now have a closed loop.

* A special type of orbits are circular orbits, and observers can approximate mean

rotation velocity as circular velocities: v.(r) = \/ GM(r)/r




Key Equations Controlling Self-Gravitating Systems

Virial Theorem:
6> =GM/r, 2K+ U =0
Equation of motion:
g=-V¢

Gauss’ Law:

O g-dA = —4aGM
Js

Poisson Equation:

V2 = 47Gp



Derivation of Gauss’ Law

Flux Due to a Point Mass

Consider a point mass M located at the center of a spherical surface of radius . The gravitational field g at
any point on the surface is:

M

fg-dA
S

Since g is radial and constant in magnitude over the sphere, and d A is also radial, we have:

The flux through the spherical surface is:

g-dA =gdA

Thus:



Derivation of Gauss’ Law

Multiple Masses and Mass Density

For a system of multiple masses, the total flux through a closed surface is the sum of the fluxes due to each

mass enclosed by the surface:
?{g +dA = —47G Y Moy
S

If the mass distribution is continuous, the total enclosed mass M., can be expressed as an integral over the

mass density p(r):
Meype = / PdV
V

where V is the volume enclosed by the surface S.

Thus, Gauss's law for gravity in integral form is:

]{g-dA:—47rG’/pdV
S vV



Derivation of Poisson Equation

Using the divergence theorem:

fgg-dA:/V(V-g)dV

Substituting into Gauss's law:
/(V-g)dV: —47rG/pdV
vV vV

Since this holds for any volume V/, the integrands must be equal:
V.g=—-4nGp
V. (-V¢) =—-4nGp



Gradient & Divergence in Spherical Coordinates

Gradient

The gradient of a scalar function f(r, 8, @) is:

~of. 18f; 1 8f,
VIi= 55t 1 86% T rsingas?

Here:

e T, 6, and ¢ are the unit vectors in the , 8, and ¢ directions, respectively.

Divergence

The divergence of a vector field F = F,.T + Fgé + F¢$ is:

1 8(7'2F7.) n 1 8(sin9F9) i 1 6F¢

voE= r2  Or rsin 0 00 rsinf O¢

Here:

o F,, Fy, and F are the components of F in the 7, 6, and ¢ directions, respectively.



Laplacian: The Divergence of the Gradient of a Scaler Field

Laplacian

The Laplacian of a scalar function f(r, 8, @) is:

19 (,0f 1 of 1 O%*f
2 —_— -
v f_rz or ( 8r)+r2sin960 (Sln909)+r2sin298¢2

The gradient of a scalar function f(r, 8, ¢) is:

of , 1075 1 0f;

VI= ot 1 00? T rsin0 667

The divergence of a vector field F = F,t + Fgé + F¢g$ is:

1 O(r?F. 1 O(sinf Fy 1 OF
n ¢

VoE= r2  Or r sin 6 00 i rsinf 0¢
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General Equations for Spherical Symmetric Systems

Enclosed Mass within r:
PV

M) = | p(raaridr
Jo

Potential at radius r:
A

d(r) = — E dM(r') — G - aM(r)

/
rJo J. r

rJo

— _ 4nG ll j p(rdr + ro p(r)rdr]

Circular Velocity at radius r:

dg \/GM(r)
v.(r) =4/ r— =
dr r




Singular Isothermal Sphere (SIS)

Density distribution:

2
() = — o 12
« 27Gr?
Enclosed Mass:
"’ , 262
M(r) = p(r)arr-dr = X 7
Jo G

Potential:

d(r) = 26° In(r)

Circular Velocity:

Vc(r) — \/GM(F) \/_6




NFW Profile

Density distribution:
4p

(r/ry)(1 + rir)?

p(r) =

Enclosed Mass:

N r rlr,
M(r) = | p(anridr = 16zp s> | In(1 +—)
Jo ro 1L+ r/r

Potential:

) = — 162G r? In(1 + r/r,)

rlr

Circular Velocity:

v (r) = \/ GM(7)

r




NFW Profile vs. SIS Profile, using consistent definitions

Density distribution: Density distribution:

4p ;
p(r) = r) = >
(r/r )1+ 77, PO = Gy
Enclosed Mass: Enclosed Mass:
M(r) = 16mpr? (ln(l + ri) ~ :/;S/r ) M(l’) — 47T,0SI"S27'

Potential - const.:
2ln(l + r/r,)
$(r) = — 162Gp,r;

rlr

Potential - const.:

O(r) = 4nGp > In(r/r,)




Spherical Symmetry Systems

Name p(r) ®(r)
M (. 2\ M
Plummer 1+ —
4.7l'a3 a2 r2 +a2
, M a —-GM
Hernquist
27 r(r+a)? r+a
M M
Jaffe ¢ oM In{ -2
4 r’(r+a)? a r+a
_
G B-rM___& oM [ 4 [1-()"| v#2
amma 4ma3 r'(r+a)*" a r
e In(72) y=2

J. Barnes & BT




Circular Velocity Profiles of Different
double-power-law density models
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What about non-circular orbits in a logarithmic potential field?

General form: ¢p(x,y,z) = 0.5 ln(Rg + x% + (y/ b)? + (z/¢)?)
When b=c=1: P(r) = 0.5 ln(RC2 + 1)
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Galaxy-Scale (E/S0):

Koopmans+2009

Density Profile ~ SIS ——
” i B=+0.50 4+ B=-0.25 | "
20 I o - 10
>~ i A' <
N 8
s g
- e
10 5
0 — 0

1.5 > 2.5

y'=—dlog(p)/dlog(r)

Figure 1. Logarithmic density slopes of 58 SLACS ETGs (thin solid curves).
i The filled red curve is the joint likelihood of the ensemble-average density
7 LI | slope. The histogram indicates the distribution of median values and the dotted
'he Sloan Lens ACS Survey Gaussian curve indicates the intrinsic scatter in y, |, (see text for details). We

i IfA), L. Koopmans (Kopteyn), T. Treu (UCSB), Sel assume a Hernquist luminosity-density profile. The small dashes indicate the
shift in the ensemble-average density slope for 8, = +0.50, +0.25, —0.50,
—0.25 (left to right), respectively. Note the reversal of the 8, = —0.50 and
—0.25 dashes. The vertical solid line and gray region indicate the best-fit value
and 68% CL interval, respectively, of the average density derived from scaling
relations.
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Cluster-Scale Strong Lensing:
Density Profile ~ NFW Profile
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Figure 18. Left: total scaled density profiles for the full sample (colored lines) are compared to simulated clusters—containing only DM—from the Phoenix project
(Gao et al. 2012). The dashed line shows the mean of the seven simulated Phoenix clusters, while the gray band outlines the envelope they define. Observed profiles
are plotted down to 3 kpc. The radial range spanned by each data set is indicated at the bottom, and the interval over which yy, is defined is shown at the top of the
panel. Note that the density has been multiplied by * to reduce the dynamic range; thus, an isothermal slope p o r~? is horizontal. Right: the observed total density
profiles (thin lines, as in left panel) are compared to several hydrodynamical simulations that include baryons, cooling, and feedback. The Gnedin et al. (2004) results
are taken from their Figure 2, the Sommer-Larsen & Limousin (2010) curves refer to their Coma “Rz2" simulation, and the Mead et al. (2010) results are for their C4
simulation with cooling, star formation, and AGN feedback.



Axial Symmetry Systems (thin disks)




General Axial Symmetry Systems
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Only for spherical symmetry systems v(r) = \/GM(r)/r

Because the rotation
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Circular Velocity Profiles: Axial Symmetry vs. Spherical Symmetry

The spherical system has the same enclosed mass profile as the disk
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Potential of a Kuzmin Disk

Name 3(R) ®(R,z)
aM —GM

27 (R? 4 a?)3/2 VR?+(a+z])?
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Figure 7.1: Surgery on the potential of a point mass produces the potential of a Kuzmin disk. Left:
potential of a point mass. Contours show equal steps of @ « 1/r, while the arrows in the upper left
quadrant show the radial force field. Dotted lines show z = +a. Right: potential of a Kuzmin disk,
produced by excising the region |z| < a from the field shown on the left. Arrows again indicate the
force field; note that these no longer converge on the origin.



|so-density Contours of Axisymmetric Systems

Generalized Kuzmin Disks
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Rotation Curve Modeling of Disk
Galaxies with Potential-Density
Pairs



A LONGSLIT PLACED ALONG A GALAXY’'S MAJOR AXIS
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Observed Rotation Velocities Need to be Corrected for Inclination Angle

Vv

obs




Estimate inclination angle from b/a ratio
Oblate Ellipsoid Model of Disk Galaxies (Hubble 1926)

« where b and a are the semi-minor and semi-major axis of the ellipse, and i is the
Inclination angle and q is the edge-on thickness
RA 186.4932 Dec 3.4301 Y




Model Mass Components of a Disk Galaxy
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Fig 1.8 'Galaxies in the Universe' Sparke/Gallagher CUP 2007



Equipotential Contours of the Mass Components
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Circular velocity can be calculated with g = — V¢ = V2 Iy



Fitting the Observed Rotation Curve of

NGC 3198 w/ an NFW halo
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Usually, multiple models can fit the rotation curve equally well
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Detailed Modeling of Stellar
Kinematics in
"7



Galaxies are self-gravitating systems in dynamical equilibrium

* The mass distribution p(r, 8, ¢) determines gravitational potential:
V2 = 47Gp
* The gravitational potential determines the orbits: g = — V¢

* The orbits determine how much time objects spend at each location
7(r, 8, @), thus determines the mass distribution. The loop is closed.




Imaging and spectroscopy provide useful 2D measurement, but to infer
the full 3D information requires dynamical modeling

* Imaging observations provide maps of the light distribution of stars and gas in
the galaxy, which can be used to infer the 2D projected mass distribution

* Integral-field spectroscopic observations provide a map of Doppler shift,
which then gives us the line-of-sight velocities.

* But even perfect observations provide incomplete information of the galaxy:
* only the surface density projected along the line-of-sight is measured

* only the velocity component along the line-of-sight is measured
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Data from SDSS IV/MaNGA Survey, Figure made by Hai Fu



Elliptical Galaxies: Irregular Orbits of Stars

In ellipticals and in bulges of spiral galaxies, stars orbit in many different
directions and move on irregular orbits. The velocity dispersion (random
motion) dominates over the rotation velocity (ordered motion)

Stars in elliptical ...on complex,
galaxies move irregular orbits.
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How to find a dynamical model that is consistent with observations?

* The orbit-superposition approach by Martin Schwarzschild (1979).

» Specify a M/L and a geometric model to deproject the observed surface
light distribution X(¢, &) to obtain the 3D density distribution p(X)

* Find the corresponding gravitational potential by solving the Poisson
Equation: V2®(X) = 47Gp(X)
 Construct a grid of K cells in position space
» Choose initial positions and velocities for a set of N orbits, for each one
* integrate the equation of motion for many orbital periods
g(x) = — Vo)
 keep track of the time the orbit spends in each of the K cells; this is
proportional to how much mass the orbit contributes to each cell.

* Determine non-negative weights for each orbit such that the summed
mass in each cell is equal to the mass implied by the original p(X).

» Use the model to predict the line-of-sight velocity distribution and

compare it with the observed stellar kinematics, modify p(X) if
necessary and repeat until the process converges.



Elliptical Galaxies and Bulges: Irregular Orbit Families

* In elliptical galaxies and bulges of spiral galaxies, stars orbit in
many different directions and move on irregular orbits.

* There are four main orbit families in the triaxial gravitational
potential of elliptical galaxies.

Box Inner long- Outer long- Short-axis
axis tube axis tube tube



Projected Views of a Box and a Minor-Axis Tube Orbit

I I I I 1 1 1 T I I I I I I 1 S|
1k B 1 F : 1 F B 1 F
0.5 {1 o05F . 0.5 F {1 osF
=~ 0 F 1 >0 - >~ 0 F 4 =0 F
-0.5 { -05F ] -0.5 | {1 -05 F
-1 F 4 -1 F . -1 F 4 -=1F
R b b oo b o a s L s G b Lo o o Lo o oo Lo oo o | s o oo b oo b a oo b o o ool s W PR | PPN BRI ST
-1 -05 0 05 1 -1 -05 0 05 1 -1 -05 0 05 1 -1 -05 0 05 f
X Z X Z
I I I I I -0 I I J 1
1 F . 1 F .
0.5 > 0.5 F >
N 0 '-— — N O .-_ _-.
-0.5 | - -0.5 | -
-1 F _ -1 F .
T ST SR ST ST U ST U SN SR S PRRTIN SNTURT ST SIS ST ST S AT SN SN R N
-1 =05 0 05 1 -1 -05 0 05 1
X X

Figure 10.1: Time-averaged orbits in a triaxial logarithmic potential (7.20) with » = 0.9, ¢ = 0.8,
and R, = 0.2. Left: a box orbit generated by starting at position (x,y,z) = (1,0,0) with velocity
(Vx,vy,v,) = (0,0.3,0,4). Right: a minor-axis tube orbit generated by starting at position (x,y,z) =
(1,0,0) with velocity (vx,vy,v;) = (0,0.6,0.4).
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Separating the contribution from stars in the four orbit families
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