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Statistical Properties of DM Halos: 
Halo Mass Distributions predicted by  

Press-Schechter 1974 Formalism



Distribution Functions in  
Everyday Life: 

 
Gaussian and Power-law



Gaussian Distribution Example: Height Distribution of Adults



Gaussian Distribution in Linear vs. Logarithmic Scales



Power-law Distribution Example: Household Income Distribution in the US





More Power-law Distribution Examples

 Edits made by users of the English-language Wikipedia. Occurrences of unique words in the novel Moby Dick

Peterson+2013 PNAS



Power-Law Distribution of Stellar Masses in zero-age Clusters

ξL(m) =
dN

d log m
= ln(10) m

dN
dm

= ln(10) m ξ(m)



Examples of Biased Samples

https://www.nas.org/academic-questions/31/2/homogenous_the_political_affiliations_of_elite_liberal_arts_college_faculty

Number of Democratic Faculty Members for 
Every Republican in 25 Academic Fields



How Galaxies Distribute in Luminosity and Mass?
Power-law Decline x Exponential Decline



The Mass Distribution Functions of Disk Galaxies vs. Elliptical Galaxies

Moffett et al. 2015:  stellar mass function at z ~ 0.05 (D ~ 200 Mpc) 



The Evolution of the Mass Distribution Functions of Galaxies



Schechter (1976) Function Fit to the Observed Distributions

ϕ(L) =
dN

dVdL
=

ϕ⋆

L⋆ ( L
L⋆ )

α

exp (−
L
L⋆ )Linear form:

Log form: ϕ(log L) =
dN

dVd log L
= ln(10)ϕ*10(α+1)(log L−log L⋆) exp(−10log L−log L⋆)

	gives	the	number	density	of	galaxies	with	luminosities	between	logL	and	logL+dlogL.ϕ(log L)d log L

log M⋆ = 10.8, α = − 1.27

	gives	the	number	density	of	galaxies	with	luminosities	between	L	and	L+dL.ϕ(L)dL



ϕ(M) =
dN

dVdM
= (0.4 ln 10)ϕ*10−0.4(M−M*)(α+1) exp [−10−0.4(M−M*)]

Magnitude form:

Log form:
ϕ(log L) =

dN
dVd log L

= ln(10)ϕ*10(α+1)(log L−log L⋆) exp (−10log L−log L⋆)

Schechter (1976) Function Fit to the Observed Distributions



Motivation: Could the observed 
distributions of galaxies’ 

luminosities (masses) originate 
from random density fluctuations?



N-body simulation of a comoving 
volume that is 40 Mpc across

Since the gravitational evolution is deterministic, we should be 
able to predict the statistical distributions of DM halos based on the 
initial density fluctuations, instead of running N-body simulations

Initial density fluctuations





Millennium Simulation 



Halo Mass Functions: N-body Simulation vs. Analytical Predictions
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= Millenium sim.

= PS prediction 

The Millenium Simulation 
followed the evolution of 21603 
(~10 billion) particles in a 
periodic box 500 Mpc/h on a 
side in a ΛCDM cosmology.

At the time it was run (2005) it 
was one of the biggest 
simulations to date. Because 
of its superb statistics, it is 
ideally suited to test the PS 
mass functions...

At low redshift, the PS mass function under- (over)-predicts the abundance of massive 
(low mass) haloes. These problems become more pronounced at higher redshifts...

WARNING: this statement is sensitive to how haloes are identified in the simulation box.

                   Here a Friends-Of-Friends (FOF) algorithm has been used (see lecture 11)  

ASTR 610: Theory of  Galaxy Formation ©  Frank van den Bosch, Yale University

Comparison with Numerical Simulations

Springel+2005



Press & Schechter (1974) 
Formalism



The objective is to estimate halo mass distributions

Based on the results from the spherical collapse model:


• Estimate the comoving volume density of collapsed halos 
more massive than M, at any z:  
 
                                      
 
                         cumulative mass function 

• Estimate the comoving volume density of collapsed halos 
within a mass range of [M, M+dM], at any z: 
 

                        

 
                          differential mass function

nhalo( > M, z)

ϕhalo(M, z)dM =
dnhalo( > M, z)

dM
dM



Cosmology: Einstein-de Sitter Universe

• Given	the	dimensionless	Hubble	parameter	from	FE1:	
			 	

• and	the	rearranged	time-scale	factor	relation:	

																					 	

• A	matter-only,	flat	universe	is	known	as	the	Einstein-de	
Sitter	universe.	It	has	the	following	density	parameters:		
																											 	
which	lead	to	the	following	analytical	solution:	
	
																																										 	
	
																								 	
	

																								

E(a) =
H
H0

= (1 − Ω0)/a2 + Ωm,0/a3 + Ωγ,0/a4 + ΩΛ,0

t
tH

= ∫
1/(1+z)

0

da
E(a)a

= ∫
∞

z

dz′ 

(1 + z′ )E(z′ )

Ω0 = Ωm,0 = 1, Ωγ,0 = ΩΛ,0 = 0

⇒ H = H0a−3/2

⇒ t =
2
3

tHa3/2 =
2
3

tH(1 + z)−3/2

⇒ ρc =
3H2

8πG
= ρc,0a−3 =

1
6πGt2



PS74 Part I: Linear Growth & 
Collapse Threshold 



Parameterized Solution of Top-Hat Spherical Collapse Model

• initial scale factor (inside=outside):  
• radius of Top Hat = inside scale factor x comoving radius

 

• time  

 

since  in EdS Universe, , we obtain: 

 

• density contrast: 

 

at turn-around ( ):   
at virialization: 

ai = 1/zrecombination ≈ 10−3

a(θ)
ai

=
1 + δi

δi
(1 + cos θ) = A(1 + cos θ)

t(θ) =
1 + δi

2Hiδ3/2
i

(θ − sin θ) = B(θ − sin θ)

H = H0a−3/2 Hi = H0a−3/2
i

t(θ)
1/H0

=
1 + δi

2a−3/2
i δ3/2

i
(θ − sin θ)

1 + δ(θ) =
ρ
ρc

=
9
2

(θ − sin θ)2

(1 − cos θ)3

θ = π 1 + δta = 9π2/16
av = ata/2, tv = 2tta ⇒ 1 + δv = 25(1 + δta) = 18π2



The Linear Theory: Simplifying Solutions by Taylor Expansion

• starting from the density contrast  = 1 + overdensity: 

 

• when , we can use Taylor expansions to show: 

 

• when , we can also express  as a function of time 

, so where  

• combining the results, we have overdensity as function of time: 

 

which equals 1.062 at turnaround ( ) and 1.686 at virialization ( ) 
• EdS: the outside scale factor is 

, so that  (Linear growth of overdensity) 

1 + δ(θ) =
ρ
ρc

=
9
2

(θ − sin θ)2

(1 − cos θ)3

θ ≪ 1
1 + δ(θ) ≈ 1 +

3
20

θ2

θ ≪ 1 θ

t = B(θ − sin θ) ≈ Bθ3/6 θ = ( 6t
B )

1/3

= ( 6πt
tta )

1/3

tta = πB

δ(t) ≈
3
20 ( 6πt

tta )
2/3

t = tta t = 2tta

a(t) = ( 3t
2tH )

2/3

δ ∝ a = 1/(1 + z)



Density Contrast: Non-Linear vs. Linear Growth
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WARNING  
not to scale

scale factoramax aviraNL

x2.686

background  
density;

x2.062

a�3

shell crossing 
& virialization

�vir � (18�2 + 60 x� 32 x2)/�m(tvir)

�vir � (18�2 + 82 x� 39 x2)/�m(tvir) (�� �= 0)

(�� = 0)

The linearly extrapolated density field collapses when �lin = �c � 1.686

Virialized dark matter haloes have an average overdensity of �vir � 178

Although the SC model 
becomes inaccurate (brakes 
down) shortly after turn-around 
it is still a useful model to 
identify important epochs in the 
linearly evolved density field...

ASTR 610: Theory of  Galaxy Formation ©  Frank van den Bosch, Yale University

The Spherical Collapse (SC) Model
turn-around collapse

SC model 4.55 ∞

linear model 1.062 1.686

� = �/�̄� 1@ van den Bosch



Halo	mass:	non-linear	vs.	linear	growth

• The top-hat spherical collapse model motivated the definition of the 
virial radius and virial mass of a collapsed object:  
 

                  and  where  

                              
 

• For linear growth theory, the mass of the collapsed object is simply 
the cosmic mean density multiplied by the physical scale R within 
which overdensities are expected to collapse to form a single object: 
 

                               

ρ̄(r < rΔ) = Δcρc MΔ =
4π
3

r3
ΔΔcρc

Δc = 200 ≈ 18π2

M(R) =
4
3

πR3ρc(z) ≡ γρc(z)R3



The Linear Theory: Collapse Threshold at Each Redshift

• From linear extrapolation, we have two main results: 
• overdensity multiplied by (1+z) is a constant:

 

• overdensity at virialization is a constant:   
• So, any linearly extrapolated overdensities reaching 1.686 at a given 

z should have collapsed and virialized at z. Mathematically, this is: 

                        

which can be rearranged as: 
                                

• The left side is the initial density perturbation field linearly extrapolated 
to today, since , 

• The right side is a redshift-dependent threshold , above which the 
initial overdensity should have collapsed by redshift z. The higher the 
redshift, the greater the threshold.  
                   

δ ∝ a = 1/(1 + z) ⇒ δ(1 + z) = const.

δv = 1.686

δ(t) = δ(ti)
a(t)
a(ti)

=
δ(ti)(1 + zi)

1 + z
> 1.686

δ(ti)(1 + zi) > 1.686(1 + z)

δ(ti)(1 + zi) = δ(t0)
δc(z)

δ(ti)(1 + zi) = δ(t0) > δc(z) = 1.686(1 + z)



The Criterion of Halo Formation at redshift z:  
the Initial density perturbation field linearly extrapolated to Today 

exceeds the overdensity threshold for redshift z 
δ(x; ti)(1 + zi) = δ(x; t0) > δc(z) = 1.686(1 + z)

z=1

z=0

Note: the spatial axes are comoving distances



Counting the number of collapsed halos at each redshift

Here          is the density field linearly extrapolated to           , and         is the linear

growth rate normalized to unity at   

�0(⇥x) t = t0
t = t0

According to linear theory, the density field evolves as �(⇥x, t) = D(t) �0(⇥x)

D(t)

�lin

�c

0 �x

halo halo halo

According to the spherical collapse model, regions with                                  will have 

collapsed to produce dark matter haloes by time   . In this lecture we examine how to 

assign a halo mass to this structure. But first, we need to introduce some concepts...

�(⇥x, t) > �c ' 1.686
t

The Linear Cosmological Density Field
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Nhalo(z) = NcellP[δ(t0) > δc(z)]; where δc(z) = 1.686 (1 + z)
The total number of halos that have formed by redshift of z is:



Random density fluctuations following a Gaussian distribution

For Gaussian random fields, the integral above a threshold is  
the complementary error function: 

P(δ > δc) = ∫
∞

δc

1

2πσ
exp(−

δ2

2σ2
)dδ =

1
2

−
1
2

erf(
δc

2σ
) =

1
2

erfc(
δc

2σ
)

=

Gaussian function complementary error function



The	erfc	function	gives	the	number	
density	of	all	collapsable	regions,	what	is	
the	minimum	mass	of	these	collapsed?	
• For linear growth theory, the mass of the collapsed object is simply 

the cosmic mean density multiplied by the physical scale R within 
which overdensities are expected to collapse to form a single object: 
 

                                

• The minimum mass is thus determined by the minimum physical scale, 
which is the spatial resolution of the density field. 

• Note that if R is in comoving unit (cMpc), the critical density  
must also be converted to  comoving units (Msun cMpc-3), because 
by default  is in physical units (Msun Mpc-3). As a result: 

                    where 

M(R) =
4
3

πR3ρc(z) ≡ γρc(z)R3

ρc(z)
ρc,0

ρc(z) ∝ a−3

M(R) = γρc,0R3 ρc,0 =
3H2

0

8πG



PS74 Part II: Mass Smoothing



Because the minimum mass is set by the minimum spatial scale of the density field , one 
can increase the minimum mass by smoothing the density field to a physical scale of 

 and counting the peaks above the threshold . 

δ0( ⃗x)

R = [M/(γρc(z))]1/3 > Rcell δc(z) = 1.686(1 + z)

δc(z = 0)



Spatial Smoothing of Density Fluctuation Fields is Convolution

Mathematically: , where  is the window function(δ * wR)( ⃗x) = ∫ δ( ⃗x′ )wR( ⃗x − ⃗x′ )d3 ⃗x′ wR( ⃗x)



Here          is the density field linearly extrapolated to           , and         is the linear

growth rate normalized to unity at   

�0(⇥x) t = t0
t = t0

According to linear theory, the density field evolves as �(⇥x, t) = D(t) �0(⇥x)

D(t)

�lin

�c

0 �x

halo halo halo

According to the spherical collapse model, regions with                                  will have 

collapsed to produce dark matter haloes by time   . In this lecture we examine how to 

assign a halo mass to this structure. But first, we need to introduce some concepts...

�(⇥x, t) > �c ' 1.686
t

The Linear Cosmological Density Field
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F( > M) = P[δM > δc(z)]; where δM(x) = ∫ δ0(x′ )w[x − x′ ; (M/γρc)1/3]d3x′ 

Counting Peaks in the Mass-Smoothed Density Field

linearly extrapolated density field smoothed on a mass-scale M

where w(x; R) is the window function used for smoothing

The physical scale R used to smooth the linearly extrapolated density field  today 
determines the minimum mass of all collapsable regions with , so the fraction of 

mass locked in halos with masses greater than  is

δ0(x)
δM > δc(z)
M ≡ γρcR3



Calculate the probability above the collapse threshold
For Gaussian random fields, the prob. of finding an overdensity greater than a threshold is: 

      

the result only depends on:  
(1) the threshold , and  
(2) the variance of the smoothed field , which decreases as M increases!

F( > M) = P(δM > δc) = ∫
∞

δc

1

2πσM

exp (−
δ2

M

2σ2
M ) dδM =

1
2

erfc ( δc

2σM )
δc(z) = 1.686(1 + z)

σM

δc(z = 0) = 1.686

δM(t0)

pr
ob

. d
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Convolution of the density 
fluctuation field in spatial 
dimension decreases  (the 
width of the Gaussian 
distribution); i.e., higher mass 
halos are less likely to form 
than lower mass halos

σM

M=107

M=106

M=108

M=109



PS74 Part III: Cumulative to 
Differential Distribution



From Cumulative mass-in-halo fraction to Differential Halo Mass Function

The PS postulate: the fraction of mass locked up in halos w/ mass > M is (fudge factor 2 is 
used to account for over-density: ): 

                                  


the fraction of mass locked up in halos in the mass range [M,M+dM] is: 

                                   

multiplying the above differential mass fraction by the cosmic mean density  gives 
the total collapsed mass per unit volume, which is then divided by M to give the volume 
density of halos with masses between [M, M+dM], i.e., : 

                         ;


 

                       ; also 


 
we have the final result: 

                            

ρ/ρ̄ = 1 + δ ≈ 2

F( > M, z) = 2P[δM > δc(z)] = erfc ( δc

2σM )
dF( > M)

dM
dM = 2

dP
dM

dM = 2
dP
dσM

dσM

dM
dM

ρ̄ = ρc

ϕ(M, z)dM

ϕdM =
ρ̄
M

dF( > M, z)
dM

dM = 2
ρ̄
M

dP
dσM

dσM

dM
dM

dP
dσM

=
1

2π

δc

σ2
M

exp(−
δ2

c

2σ2
M

)
dσM

dM
=

σM

M
d ln σM

d ln M

ϕ(M, z) =
2
π

ρ̄
M2

δc

σM
exp(−

δ2
c

2σ2
M

) |
d ln σM

d ln M
|



PS74 Part IV: Comparison with 
Schechter Luminosity Function



PS halo mass function

    —>    ϕ(M, z) =
2
π

ρ̄
M2

δc

σM

d ln σM

d ln M
exp (−

δ2
c

2σ2
M ) ϕ(M ) =

dN
dVdM

=
ϕ⋆

M⋆ ( M
M⋆ )

−1.5

exp (−
M
M⋆ )

If we define a characteristic mass at redshift z, , by requiring  
                                 ,  
we’ll see the behavior of the predicted mass function at the two extremes: 

• When , , the exponential component approaches unity. If 

, then , and 

• When , , the exponential component becomes important. If 

, then , and 

Both behaviors are similar to the Schechter function for the observed distribution 
functions, and a forced match would lead to 

M⋆(z)
2σ2

M[M⋆(z)] = δ2
c (z) = [1.686(1 + z)]2

M ≪ M⋆ σM ≫ δc
σM ∝ M−α σM = δc(M/M⋆)−α / 2 ϕ(M) ∝ (M/M⋆)α−2

M ≫ M⋆ σM ≪ δc
σM ∝ M−β 2σ2

M = δ2
c (M/M⋆)−β ϕ(M) ∝ exp[ − (M/M⋆)β]

α ≈ 0.5, β = 1
galaxy mass function



Recap of previous lecture



Derivation of PS Halo Mass Function
The PS postulate: the fraction of mass locked up in halos w/ mass > M is (fudge factor 2 is 
used to account for over-density: ): 

                                  


the fraction of mass locked up in halos in the mass range [M,M+dM] is: 

                                   

multiplying the above differential mass fraction by the cosmic mean density  gives 
the total collapsed mass per unit volume, which is then divided by M to give the volume 
density of halos with masses between [M, M+dM], i.e., : 

                         ;


 

                       ; also 


 
we have the final result: 

                            

ρ/ρ̄ = 1 + δ ≈ 2

F( > M, z) = 2P[δM > δc(z)] = erfc ( δc

2σM )
dF( > M)

dM
dM = 2

dP
dM

dM = 2
dP
dσM

dσM

dM
dM

ρ̄ = ρc

ϕ(M, z)dM

ϕdM =
ρ̄
M

dF( > M, z)
dM

dM = 2
ρ̄
M

dP
dσM

dσM

dM
dM

dP
dσM

=
1

2π

δc

σ2
M

exp(−
δ2

c

2σ2
M

)
dσM

dM
=

σM

M
d ln σM

d ln M

ϕ(M, z) =
2
π

ρ̄
M2

δc

σM

d ln σM

d ln M
exp (−

δ2
c

2σ2
M )



PS halo mass function

    —>    ϕ(M, z) =
2
π

ρ̄
M2

δc

σM

d ln σM

d ln M
exp (−

δ2
c

2σ2
M ) ϕ(M ) =

dN
dVdM

=
ϕ⋆

M⋆ ( M
M⋆ )

−1.5

exp (−
M
M⋆ )

If we define a characteristic mass at redshift z, , by requiring  
                                 ,  
we’ll see the behavior of the predicted mass function at the two extremes: 

• When , , the exponential component approaches unity. If 

, then , and 

• When , , the exponential component becomes important. If 

, then , and 

Both behaviors are similar to the Schechter function for the observed distribution 
functions, and a forced match would lead to 

M⋆(z)
2σ2

M[M⋆(z)] = δ2
c (z) = [1.686(1 + z)]2

M ≪ M⋆ σM ≫ δc
σM ∝ M−α σM = δc(M/M⋆)−α / 2 ϕ(M) ∝ (M/M⋆)α−2

M ≫ M⋆ σM ≪ δc
σM ∝ M−β 2σ2

M = δ2
c (M/M⋆)−β ϕ(M) ∝ exp[ − (M/M⋆)β]

α ≈ 0.5, β = 1
galaxy mass function



independent/uncorrelated Gaussian fluctuations 
White Noise

Img = randomn(seed, nx=1024, ny=1024, 
/normal, sigma=0.2)

histogram(img, bin=0.2)



Mass variance expected from White Noise

Spatial smoothing will reduce the 
variance of the white noise as: 

 

where NM is the number of pixels 
that went into the smoothing kernel: 

 

as a result, one expects: 

σ2
M ∝ 1/NM

N ∝ R3 ∝ M

σM ∝ M−1/2



Planck CMB  map is not uncorrelated Gaussian noise mapδT

δT = δr /4 = δm /3
2018 Planck Map of Temperature Fluctuations

Gaussian random fields w/ increasing correlation lengths



2dF Galaxy Redshift Survey (1997-2002)

Galaxy distribution also doesn’t look like white noise either



A Gaussian random fluctuation field is determined by: 
1. the amplitude of the fluctuation ( ), and 

2. the spatial correlation between fluctuations
σ



smoothing / convolution in real space

calculation of σM

σ2
M =

1
V ∫

∞

−∞
δ2

M(x)d3x =
1
V ∫

∞

−∞
| (δ * wM)(x) |2 d3x



Moving beyond white noise …

smoothing is a convolution of the density field w/ a window function of width R ( ):M = γρ̄R3

σ2
M = ⟨δ2

M(x)⟩ =
1
V ∫ δ2

M(x)d3x =
1
V ∫ | (δ * wM)(x) |2 d3x

 the variance of the smoothed density field is then:

δM(x) = (δ * wM)(x) = ∫ δ(x′ )wM(x′ − x)d3x′ 



σ2
M =

1
V ∫

∞

−∞
δ2

M(x)d3x =
1
V ∫

∞

−∞
| (δ * wM)(x) |2 d3x

There are some major problems going forward: 

• what would be the appropriate volume and what scale to use to 
sample this random field? 

• numerical convolution is computationally expensive and how to 
deal with artifacts near boundaries? 

• The density field is a random field, so would require many 
realizations,  

• how to realize random fields that match the initial conditions of 
the universe?



Fourier Transform: 
 

1. Convolution Theorem 
2. Parseval’s Identity



Consider transforming to Fourier space

Decomposing a periodic time/space signal into Fourier series

frequencytime/space



The Fourier transform

we’ll be interested in signals defined for all t

the Fourier transform of a signal f is the function

F (ω) =
∫ ∞

−∞
f(t)e−jωtdt

• F is a function of a real variable ω; the function value F (ω) is (in
general) a complex number

F (ω) =
∫ ∞

−∞
f(t) cosωt dt − j

∫ ∞

−∞
f(t) sinωt dt

• |F (ω)| is called the amplitude spectrum of f ; # F (ω) is the phase
spectrum of f

• notation: F = F(f) means F is the Fourier transform of f ; as for
Laplace transforms we usually use uppercase letters for the transforms
(e.g., x(t) and X(ω), h(t) and H(ω), etc.)

The Fourier transform 11–2



We adopt the non-unitary definition w/ angular frequencies



FT and inverse FT in 1D

F(ω) = ∫ f(t) e−iωtdt

f(t) =
1

2π ∫ F(ω)eiωtdω

time domain:

F(k) = ∫ f(x) e−ikxdx

f(x) =
1

2π ∫ F(k)eikxdk

space domain:

ω =
2π
Δt

angular freq.:

k =
2π
Δx

wave number:



F.T. of 3D Density Perturbation Field

3D space domain:

F(k) = ∫ f(x) e−ikxdx

f(x) =
1

2π ∫ F(k)eikxdk1D space domain:

k =
2π
Δx

wave number:

δ( ⃗x) =
1

(2π)3 ∫ Δ( ⃗k) e+i ⃗k⋅ ⃗xd3 ⃗k

Δ( ⃗k) = ∫ δ( ⃗x) e−i ⃗k⋅ ⃗xd3 ⃗x



Convolution Theorem
convolution in real space = multiplication in Fourier space 

ℱ{(δ * wM)(x)} = Δ(k)WM(k)
Application on the mass-filtered density perturbation field:

ℱ{( f * g)(x)} = ℱ{f}(k) ⋅ ℱ{g}(k) = F(k) ⋅ G(k)

⇒ (δ * wM)(x) = ℱ−1{Δ(k)WM(k)}

mass-filtered density perturbation field can be computed as the inverse FFT of 
the product of the FT of density field and the FT of window function



Parseval’s identity (aka Rayleigh’s energy theorem)

Application on the variance of density perturbation field:  

σ2 =
1
V ∫

∞

−∞
δ2(x)d3x =

V
(2π)3 ∫

∞

−∞
Δ2(k)d3k

The identity asserts the equality of the energy of a periodic signal 
(given as the integral of the squared amplitude of the signal) and the 
energy of its frequency domain representation (given as the sum of 
squares of the amplitudes).



Mass variance in Fourier space

σ2
M =

1
V ∫

∞

−∞
δ2

M(x)d3x =
1
V ∫

∞

−∞
| (δ * WM)(x) |2 d3x

Parseval’s identity: 

σ2
M =

1
V ∫

∞

−∞
δ2

M(x)d3x =
V

(2π)3 ∫
∞

−∞
Δ2

M(k)d3k

σ2
M =

V
(2π)3 ∫

∞

0
Δ2(k)W2

M(k)d3k

Combining the two, we have:

The variance of mass-filtered density perturbation field is defined as:

ΔM(k) = ℱ{δM(x)} = ℱ{δ(x) * wM(x)} = Δ(k)WM(k)

Convolution theorem: 



calculation of  in Fourier spaceσM

σ2
M =

V
2π2 ∫

∞

0
Δ2(k)W2

M(k)k2dk



Mass variance in Fourier space

σ2
M =

1
V ∫

∞

−∞
δ2

M(x)d3x =
1
V ∫

∞

−∞
| (δ * WM)(x) |2 d3x

Parseval’s identity: 

σ2
M =

1
V ∫

∞

−∞
δ2

M(x)d3x =
V

(2π)3 ∫
∞

−∞
Δ2

M(k)d3k

σ2
M =

V
(2π)3 ∫

∞

0
Δ2(k)W2

M(k)d3k

Combining the two, we have:

The variance of mass-filtered density perturbation field is defined as:

ΔM(k) = ℱ{δM(x)} = ℱ{δ(x) * wM(x)} = Δ(k)WM(k)

Convolution theorem: 



F.T. of Window Function: 1D top-hat



F.T. of 3D top-hat

For a 3D top hat window function, we have:

wM(r) =
3

4πR3
when r ≤ R ; wM(r) = 0 when r > R

WM(k) =
3

(kR)3
[sin(kR) − (kR)cos(kR)]

where R = ( 3M
4πρ̄ )1/3 and k =

2π
R



Definition of Power Spectrum

σ2
M =

1
2π2 ∫

∞

0
P(k)W2

M(k)k2dk

P(k) = VΔ2(k)
If we define power spectrum:

We obtain:

σ2
M =

V
(2π)3 ∫

∞

0
Δ2(k)W2

M(k)d3k

Given the previous result from convolution theorem and Parseval’s identity: 



Fourier transform of power spectrum

P( ⃗k) = VΔ2( ⃗k)

ξ(r) =
1

(2π)3 ∫ P( ⃗k) e+i ⃗k⋅ ⃗rd3 ⃗k

P( ⃗k) = ∫ ξ(r) e−i ⃗k⋅ ⃗rd3 ⃗r

define its Fourier Transform as ξ(x)

unit: Mpc^3

dimensionless

ξ(r) = ⟨δ( ⃗x)δ( ⃗x + ⃗r)⟩ =
1
V ∫ δ( ⃗x)δ( ⃗x + ⃗r)d3 ⃗x

The F.T. of Power Spectrum is the two-point correlation function



2dF Galaxy Redshift Survey (1997-2002)

Estimate correlation function from galaxy surveys
ξ(x) = ⟨δ(x′ )δ(x′ + x)⟩ =

1
V ∫ δ( ⃗x′ )δ( ⃗x′ + ⃗x)d3 ⃗x′ 



Estimate correlation function from galaxy surveys
 is a measure of the excess probability of finding another 

galaxy at distance r above expectation from an unclustered 
random distribution:

ξ(r)

It can be measured by counting pairs of galaxies as a function 
of separation and divides by expectation from random 
unclustered mock catalogs:

In the above two popular estimators (Davis & Peebles 1983 and  
Landy & Szalay 1993), DD, DR, and RR are counts of galaxy 
pairs within a range of separation in the data catalog and 
between the data and mock catalog, and between two different 
mock catalogs, and nD and nR are the mean number densities 
of galaxies in the data and the mock catalogs.



Springel et al. (2005, 2006)

CorrelaUon FuncUons of Galaxies w/ Different Masses 
“more massive galaxies are more clustered”

Simulated 
Universe 
(DM only)

Observed 
Universe

A B



Evolution of the Power Spectrum

σ2
M =

1
2π2 ∫

∞

0
P(k)W2

M(k)k2dk



its Fourier transform is called the power spectrum:

ξ( ⃗x) = ⟨δ( ⃗x′ )δ( ⃗x′ + ⃗x)⟩ =
1
V ∫ δ( ⃗x′ )δ( ⃗x′ + ⃗x)d3 ⃗x′ 

Define two-point correlation function:

Gaussian random fields w/ ever steeper power spectrum  
(i.e., decreasing small scale correlations at large k’s)

How power spectrum change spatial correlations?

P( ⃗k) = VΔ2( ⃗k)

where Δ( ⃗k) = ∫ δ( ⃗x) e−i ⃗k⋅ ⃗xd3 ⃗x



Evolution of correlation function <-> evolution of power spectrum 
from primordial density perturbations to the epoch of recombination

sound 
horizon (zeq)



Eisenstein+2007 calculated using CMBFAST (predecessor of CAMB) 

Evolution of the radial mass profile (comoving) of an initially pointlike overdensity

Near the initial 
time, the photons 
and baryons travel 
outward as a pulse. 

A wake in the cold dark 
matter is raised by the 
outward-going pulse of 
baryons and relativistic 
species 

Around 
recombination, the 
photons leak away 
from the baryonic 
perturbation 

After recombination, a 
CDM perturbation 
toward the center and a 
baryonic perturbation 
in a shell

Gravitational instability 
now takes over, and new 
baryons and dark matter 
are attracted to the two 
overdensities (center & 
outer shell)

At late times (z<10), 
the baryonic fraction 
of the perturbation is 
near the cosmic value



Eisenstein et al. 2005: detection of the Baryon Acoustic Peak from  
SDSS luminous red galaxies



DESI DR2 Correlation Functions (DESI 2025 March)

Luminous Red Galaxies (z = 0.4-0.6) Quasi Stellar Objects (z = 0.8-2.1)



Evolution of the linear power spectrum and correlation 
function in the LCDM universe

x(z) = c∫
a

0

da
H(a)a2

https://lambda.gsfc.nasa.gov/toolbox/tb_camb_form.cfm

Harr
iso

n-Z
eld

ov
ich

 (1
97

2)

horizon size at zeq 
xeq = 88 h-1 Mpc 

—>  
keq = 0.011 h/Mpc

BAO scale

horizon scale

https://lambda.gsfc.nasa.gov/toolbox/tb_camb_form.cfm


power 
spectrum 

 
measured from 

correlation 
functions of 
galaxies and 

the CMB



Calculation of Halo Mass Function



mass variance from integrating the power spectrum:  
a. power spectra at different redshifts



mass variance from integrating the power spectrum:  
b. mass variance vs. M at z = 0

σ2
M =

1
2π2 ∫

∞

0
P(k)W2

M(k)k2dk



Homework Problem: approximating FT of a top hat with another top hat

σ2
M =

1
2π2 ∫

∞

0
P(k)W2

M(k)k2dk ≈
1

2π2 ∫
2π/R

0
P(k)k2dk

Approximating the window function as a top-hat in frequency:

σ2
M ∝ M−(n+3)/3 when P(k) ∝ kn

σ2
M ≈

1
2π2 ∫

2π/R

0
P(k)k2dk ∝ R−(n+3)

When the power spectrum is a power law: : P(k) ∝ kn

n=1

β = − 4/3

n=-2

α = − 1/3



Resulting PS Halo Mass Function at Various Redshifts

PS halo mass function

ϕ(M, z) =
2
π

ρ̄
M2

δc

σM

d ln σM

d ln M
exp (−

δ2
c

2σ2
M )



Summary: PS Halo Mass Function
The PS differential halo mass function:





The collapse threshold:




The mass variance from power spectrum:





if the power spectrum is a power law: : 





The power spectrum and the two point correlation function:





ϕ(M, z) =
2
π

ρ̄
M2

δc

σM

d ln σM

d ln M
exp (−

δ2
c

2σ2
M )

δc = 1.686(1 + z)

σ2
M =

1
2π2 ∫

∞

0
P(k)W2

M(k)k2dk ≈
1

2π2 ∫
2π/R

0
P(k)k2dk

P(k) ∝ kn

σ2
M ≈

1
2π2 ∫

2π/R

0
P(k)k2dk ∝ R−(n+3) ∝ M−(n+3)/3

P( ⃗k) ≡ VΔ2( ⃗k) = ∫ ξ( ⃗r ) e−i ⃗k⋅ ⃗rd3 ⃗r

ξ( ⃗r ) = ⟨δ( ⃗x)δ( ⃗x + ⃗r )⟩ =
1
V ∫ δ( ⃗x)δ( ⃗x + ⃗r )d3 ⃗x



    —>    ϕ(M, z) =
2
π

ρ̄
M2

δc

σM

d ln σM

d ln M
exp (−

δ2
c

2σ2
M ) ϕ(M ) =

dN
dVdM

=
ϕ⋆

M⋆ ( M
M⋆ )

−1.5

exp (−
M
M⋆ )

If we define a characteristic mass at redshift z, , by requiring  
                                 ,  
 
we’ll see the behavior of the predicted mass function at the two extremes: 

• When , , the exponential component approaches unity. If 

, then , and  

• When , , the exponential component becomes important. If 
, then , and  

• if the power spectrum is a power law, , then  

• When , k is large and  so that , 
 

• When , k is small and , so that , 

M⋆(z)
2σ2

M[M⋆(z)] = δ2
c (z) = [1.686(1 + z)]2

M ≪ M⋆ σM ≫ δc
σM ∝ M−α σM = δc(M/M⋆)−α / 2 ϕ(M) ∝ (M/M⋆)α−2

M ≫ M⋆ σM ≪ δc
σM ∝ M−β 2σ2

M = δ2
c (M/M⋆)−β ϕ(M) ∝ exp[ − (M/M⋆)β]

P(k) ∝ kn σM ∝ M−(n+3)/6

M ≪ M⋆ P(k) ∝ k−2 σM ∝ M−1/6

ϕ(M) ∝ (M/M⋆)−11/6

M ≫ M⋆ P(k) ∝ k σM ∝ M−2/3

ϕ(M) ∝ exp[ − (M/M⋆)2/3]



Halo Mass Functions: N-body Simulation vs. Analytical Predictions
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= Millenium sim.

= PS prediction 

The Millenium Simulation 
followed the evolution of 21603 
(~10 billion) particles in a 
periodic box 500 Mpc/h on a 
side in a ΛCDM cosmology.

At the time it was run (2005) it 
was one of the biggest 
simulations to date. Because 
of its superb statistics, it is 
ideally suited to test the PS 
mass functions...

At low redshift, the PS mass function under- (over)-predicts the abundance of massive 
(low mass) haloes. These problems become more pronounced at higher redshifts...

WARNING: this statement is sensitive to how haloes are identified in the simulation box.

                   Here a Friends-Of-Friends (FOF) algorithm has been used (see lecture 11)  

ASTR 610: Theory of  Galaxy Formation ©  Frank van den Bosch, Yale University

Comparison with Numerical Simulations

Springel+2005



= Simulation 

= EPS (SC) 

= EPS (EC) 
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Clearly, the EPS mass function 
based on ellipsoidal collapse is 
in much better agreement with 
numerical simulations than the 
spherical collapse-based model 
prediction...

WARNING: this statement is sensitive to how haloes are identified in the simulation box.

                    Here a Friends-Of-Friends (FOF) algorithm has been used       (see lecture 11)  

The Millenium Simulation 
followed the evolution of 21603 
(~10 billion) particles in a 
periodic box 500 Mpc/h on a 
side in a ΛCDM cosmology.

ASTR 610: Theory of  Galaxy Formation ©  Frank van den Bosch, Yale University

Spherical vs. Ellipsoidal Collapse
Extended Press-Schechter formalism improves the agreement w/ N-body simulations



How well do PS or N-body  
predicted halo mass functions match 

observed galaxy mass functions?



Problem: both the P-S and N-body halo mass function 
strongly disagrees w/ Observed galaxy mass function


