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Statistical Properties of DM Halos:
Halo Mass Distributions predicted by
Press-Schechter 1974 Formalism



Distribution Functions In
Everyday Life:

(Gaussian and Power-law



Gaussian Distribution Example: Height Distribution of Adults

Height of Adult Women and Men
Within-group variation and between-group overlap are significant

Percentage of
People in 1e1em
Height Range
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3%

2%

cm

140 175 190 195 200
5 ft 5.5 ft 6 ft 6.5ft feet

Data from U.S. CDC, adults ages 18-86 in 2007



p(x)

Gaussian Distribution in Linear vs. Logarithmic Scales
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Power-law Distribution Example: Household Income Distribution in the US

Distribution of annual household income in the United States

2010 estimate
percent of
households
6
Median household income was These two groups include households
" roughly $50,000. reporting income greater than $200,000
5 (approximately 4 percent of households).
4

The top 25 percent reported income

- greater than $85,000.
3
~ The top 10 percent reported income
2 greater than $135,000.
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Source: U.S. Census Bureau, Current Population Survey, 2011 Annual Social and Economic Supplement



Income Distribution (Pre-tax)
How U.S. earners’ shares of the total household income pie have changed

1989 2016

$7.12 trillion total (2016 adj. $) $12.88 trillion total

B Bottom 50% of income earners

| Middle 50%-90% of income earners
M Top 10% of income earners

B FEDERAL RESERVE BANK OF ST. LOUIS



probability

More Power-law Distribution Examples
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Power-Law Distribution of Stellar Masses in zero-age Clusters

dN dN
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Examples of Biased Samples

Engineering _

Chemistry
Economics
Professional
Mathematics

Physics

Computers
Poli Sci
Psychology
History
Philosophy
Biology

Language

Environmental
Geoscience
Classics
Theater

Music

Art

Sociology
English

Religion

Anthropology
Communications

16 Number of Democratic Faculty Members for
5.2 Every Republican in 25 Academic Fields
5.5
5.5
5.6
6.2
6.3

8.2
16.8
17.4
17.5
20.8
21.1
293
7.4 4
27.3
29.5
32.8
40.3
43.8
48.3
70 No registered
S6to0 <mmmmmmmm Republicans
: T ' 108t0 0 1
50 100 150 200 250

Source: Mitchell Langbert, Brooklyn College, 2018
Sample size =5,116 and significance level <.0001 for the chi-square test of association.

https://www.nas.org/academic-questions/31/2/homogenous_the_political_affiliations_of_elite_liberal_arts_college_faculty




How Galaxies Distribute in Luminosity and Mass?

.. Power-law Decline x Exponential Decline.
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The Mass Distribution Functions of Disk Galaxies vs. Elliptical Galaxies

Moffett et al. 2015: stellar mass function at z ~ 0.05 (D ~ 200 Mpc)
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The Evolution of the Mass Distribution Functions of Galaxies
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Schechter (1976) Function Fit to the Observed Distributions

s p H(L) dN o, [ L . L
. = = cX _——
inear rorm dvdL L\ L, P L,

¢(L)dL gives the number density of galaxies with luminosities between L and L+dL.

dN
LOg form: ¢(10g L) — vd logL — ln(10)¢*10(a+1)(10g L—logL,) CXp(— 1010g L—log L*)

¢(log L)d log L gives the number density of galaxies with luminosities between logL. and logL+dlogL.
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Schechter (1976) Function Fit to the Observed Distributions

Magnitude form: AN
PM) = FTVER (0.4 1n 10)gp, 10~04M-Mox D) gy [ ] (=0:4M=.)

Log form: .
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Motivation: Could the observed
distributions of galaxies’
luminosities (masses) originate
from random density fluctuations®



Since the gravitational evolution is deterministic, we should be
able to predict the statistical distributions of DM halos based on the
initial density fluctuations, instead of running N-body simulations

N-body simulation of a comoving

Initial density fluctuations volume that is 40 Mpc across
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FORMATION OF GALAXIES AND CLUSTERS OF GALAXIES BY
SELF-SIMILAR GRAVITATIONAL CONDENSATION*

WiLLiAM H. PRrRESS AND PAUL SCHECHTER

California Institute of Technology
Received 1973 August 1

ABSTRACT

We consider an expanding Friedmann cosmology containing a “‘gas” of self-gravitating masses.
The masses condense into aggregates which (when sufficiently bound) we identify as single particles
of a larger mass. We propose that after this process has proceeded through several scales, the mass
spectrum of condensations becomes ‘“‘self-similar’” and independent of the spectrum initially
assumed. Some details of the self-similar distribution, and its evolution in time, can be calculated
with the linear perturbation theory. Unlike other authors, we make no ad hoc assumptions about
the spectrum of long-wavelength initial perturbations: the nonlinear N-body interactions of the
mass points randomize their positions and generate a perturbation to all larger scales; this should
fix the self-similar distribution almost uniquely. The results of numerical experiments on 1000
bodies are presented; these appear to show new nonlinear effects: condensations can “bootstrap™
their way up in size faster than the linear theory predicts. Our self-similar model predicts relations
between the masses and radii of galaxies and clusters of galaxies, as well as their mass spectra. We
compare the predictions with available data, and find some rather striking agreements. If the
model is to explain galaxies, then isothermal “seed’ masses of ~3 x 107 My must have existed
at recombination. To explain clusters of galaxies, the only necessary seeds are the galaxies them-

selves. The size of clusters determines, in principle, the deceleration parameter g, ; presently available
data give only very broad limits, unfortunately.

Subject headings: cosmology — galaxies — galaxies, clusters of
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Halo Mass Functions: N-body Simulation vs. Analytical Predictions
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Press & Schechter (1974)
Formalism



The objective is to estimate halo mass distributions

Based on the results from the spherical collapse model:

e Estimate the comoving volume density of collapsed halos
more massive than M, at any z:

nhala( > M’ Z)

cumulative mass function

e Estimate the comoving volume density of collapsed halos
within a mass range of [M, M+dM], at any z:

d > M,
nhala( Z) d

M., 72)dM = M
¢hala( Z) AM

differential mass function



Cosmology: Einstein-de Sitter Universe

* Given the dlmensmnless Hubble parameter from FE1:
E(a) = — \/(1 — Q/a> +Q,, la + Q gla* + Q,

* and the rearranged time-scale factor relation:

{ JI/(1+Z) da B "oo dZ
<

o Jo E(a)a (1 +2)E(Z)
* A matter-only, flat universe is known as the Einstein-de
Sitter universe. It has the following density parameters:

$0=90,0=1,£2,g=82,=0

which lead to the following analytical solution:

= H = Hya™"
2 2

=t = —tya”? = —t,(1 + 7)™
3 3 nl +2)
. 3H* P 1
— — a —
Pe 871G Pe. 671Gtz



PS74 Part I: Linear Growth &
Collapse Threshold



Parameterized Solution of Top-Hat Spherical Collapse Model

~ 1073

* radius of Top Hat = inside scale factor x comoving radius

- initial scale factor (inside=outside): @; = 1/Z ..ombination

a@) 149,
= (1 +cosf) =A(1 + cosB)
d; i
* time
L+ |
1) = PH 5 (0 — sin@) = B(O — sin )

since H = Hya™>'* in EAS Universe, H, = Hoal._m, we obtain:
1(0) 1 + 9 O — sin0)
= — S1n
1/Hy 2a73267"
* density contrast:

1+5(9):£: 9 (@ — sin 9)?
p. 2 (1 —=cosB)

at turn-around (0 = 7): 1 + 6, = 97°/16
at virialization: a, = a, /2, t, = 2t,, = 1+ 6, = 2°(1 + 6,,) = 187>




The Linear Theory: Simplifying Solutions by Taylor Expansion

e starting from the density contrast =1 + overdensity:
p 9 (6—sin0)?
1 4+06(0)=— =
p. 2 (1 —=cosB)’
- when 6 << 1, we can use Taylor expansions to show:

3
1+60)~1+—6
20

- when 6@ < 1, we can also express @ as a function of time

6t\'"” [ 6xt
t = B(0 —sin0) ~ BO’/6,s0 0 = <E> =\ where t,, = 7B

la

1/3

e combining the results, we have overdensity as function of time:

23
501 3 o6t
T 20\ ¢

fa

which equals 1.062 at turnaround (f = 7, ) and 1.686 at virialization (r = 21, )
 EdS: the outside scale factor is

2/3
3t
a(t) = <—> ,sothat 0 «x a = 1/(1 + 7) (Linear growth of overdensity)



Density Contrast: Non-Linear vs. Linear Growth
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LA

SC model

physical density

|
|
|
|
|
|
|
|
|
[
[ |

WARNING
not to scale

@ van den Bosch

shell crossing
& virialization

bound halo

linear theory

background
density; a_3

scale factor




Halo mass: non-linear vs. linear growth

* The top-hat spherical collapse model motivated the definition of the
virial radius and virial mass of a collapsed object:

4
p(r<ry) =A_p.and M, = ?ﬂrzAcpc where
A, =200 ~ 18x°

* For linear growth theory, the mass of the collapsed object is simply
the cosmic mean density multiplied by the physical scale R within
which overdensities are expected to collapse to form a single object:

4
M(R) = gﬂR%(z) = yp (2R’



The Linear Theory: Collapse Threshold at Each Redshift

* From linear extrapolation, we have two main results:

* overdensity multiplied by (7+z) is a constant:
oxa=1/(14+2z) = o(l +z) = const.

- overdensity at virialization is a constant: 6, = 1.686

* S0, any linearly extrapolated overdensities reaching 1.686 at a given
z should have collapsed and virialized at z. Mathematically, this is:

50 = o). AU L) e
a(t;) 1 +z

which can be rearranged as:
5(t)(1 + z,) > 1.686(1 + 2)

* The left side is the initial density perturbation field linearly extrapolated
to today, since o(#,)(1 + z;) = o(1),

- The right side is a redshift-dependent threshold &.(z), above which the

initial overdensity should have collapsed by redshift z. The higher the
redshift, the greater the threshold.

5t)(1 + z)) =8(1y) > 5.(2)|= 1.686(1 + z)
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0.002

= 0.0007

—-0.Q02 T

-0.004

The Criterion of Halo Formation at redshift z:
the Initial density perturbation field linearly extrapolated to Today

exceeds the overdensity threshold for redshift z

o(x; t)(1 + z;) = o(x; ty) > 6,.(z) = 1.686(1 + 2)

epach of recembination

linearly extrapolated to present day

uﬁ

0 100

200

300

Note: the spatial axes are comoving distances



Counting the number of collapsed halos at each redshift

The total number of halos that have formed by redshift of z is:

MNya10(2) = N /PLo(8y) > 6.(2)]; where 6.(z) = 1.686 (1 + z)

halo halo

Vo




Random density fluctuations following a Gaussian distribution

For Gaussian random fields, the integral above a threshold is
the complementary error function:

52 1 1 5. 1 5.
P >4, = J exp(———=)do = — — —erf( ) = —erfc( )

5, \/ 270 262 2 2 V2 2 W2

Gaussian function complementary error function

erfc (z) = 2 f e dt.
/’\ _ _\l% .

08k
// i \

(&)

06




The erfc function gives the number
density of all collapsable regions, what is
the of these collapsed?

* For linear growth theory, the mass of the collapsed object is simply
the cosmic mean density multiplied by the physical scale R within
which overdensities are expected to collapse to form a single object:

4 R) R)
M(R) = gﬂR p(2) = rp (DR

* The Is thus determined by the minimum physical scale,
which is the spatial resolution of the density field.

e Note that if R is in comoving unit (cMpc), the critical density pc(z)

must also be converted to p ., comoving units (Msun cMpc-3), because

3

by default p.(z) o a™" is in physical units (Msun Mpc-3). As a result:

M(R) = ypc,OR3 where



PS74 Part lI: Mass Smoothing



Because the minimum mass is set by the minimum spatial scale of the density field J,(X), one
can increase the minimum mass by smoothing the density field to a physical scale of

R =[M/ (ypc(z))]l/ 3> R..;; and counting the peaks above the threshold 6.(z) = 1.686(1 + 7).

1 1 1 1 1 1 1

smaocothed 8,(%x) by a boxcar window of 7

1 1 l 1 1 1 1 1 1 1 1 1 l 1 1

1 1 1 1 |

100 200

X

oz =10)



Spatial Smoothing of Density Fluctuation Fields is Convolution

Mathematically: (6 * wg)(X) = "5()_5')WR()_C) — X)d>¥', where wy(¥) is the window function

Correlation th=10mm ., gth=25mm .,

3

Y (mm)
o
3

2 3

:

200 400 600 BOO 1000

Correlation

Y (mm)
= 8 &§ 8

'

3

200 400 600 80O 1000
X {(mm)




Counting Peaks in the Mass-Smoothed Density Field

The physical scale R used to smooth the linearly extrapolated density field o,(x) today
determines the minimum mass of all collapsable regions with 0,, > 6.(z), so the fraction of
mass locked in halos with masses greater than M = ;/pCR3 IS

F( > M) = P[5, > 6.(2)]; where 6,,(x) = | 5,(xwlx — x's (M/yp)'°1d>x’

(7

where w(x; R) is the window function used for smoothing
halo halo

Vo

linearly extrapolated density field smoothed on a mass-scale M




Calculate the probability above the collapse threshold

For Gaussian random fields, the prob. of finding an overdensity greater than a threshold is:

F(> M) =P, > 9,.) ro : il do : f °
= P(0y; > 0,) = exp| —— = —erfc
5. \/ 270y, 20 2 \/EO'M

the result only depends on:
(1) the threshold 6.(z) = 1.686(1 + z), and

(2) the variance of the smoothed field o,,, which decreases as M increases!

| ] |

1.6 I '

—

1.4
.2k M=109 =

—

0.(z=0)=1.686

C

-

P

Convolution of the density
1 fluctuation field in spatial

prob. density
-
=

0.6k !M=%68‘ [ | 4 dimension decreases o), (the
—NJ | [v=107 width of the Gaussian
0.4 T 1 :’ 1 distribution); i.e., higher mass
0.2 | /1L -f'(,‘ {M=106' halos are less likely to form
] \ o ‘ than lower mass halos
O 1 —- | _—y — - — 1
-~ -4 -2 0 2 4 b

O (1p)



PS74 Part lll: Cumulative to
Differential Distribution



From Cumulative mass-in-halo fraction to Differential Halo Mass Function

The PS postulate: the fraction of mass locked up in halos w/ mass > M is (fudge factor 2 is
used to account for over-density: p/p =1+ 0 = 2):

F(> M,z) =2P[6,, > 6.(z)] = erfc ( O )
ZGM

the fraction of mass locked up in halos in the mass range [M,M+dM] is:

dF (> M dP dP d
(M) =2 = oM aMm
M M do,, dM

multiplying the above differential mass fraction by the cosmic mean density p = p._. gives
the total collapsed mass per unit volume, which is then divided by M to give the volume
density of halos with masses between [M, M+dM)], i.e., (M, z)d M.

o dF( > M, » dP d
pap = LMD 5P oM 1
M dM M do,, dM
dP 1 o, 52 doy, o0y dInoy,
= exp(———); also — =
doy /21 o% 207, dM M dInM

we have the final result:

2 p 6, 57  dlnoy,
¢(Ma Z) — eXp(_ ) | |
n M? oy, 203, dInM




PS74 Part IV: Comparison with
Schechter Luminosity Function



M2 6y | dinM dvdM M, \ M,

15
2 p o. |dl ) dN M M

p(M,7) = | = 2o | ex - > i (_> i <_M_>
*

If we define a characteristic mass at redshift z, M, (z), by requiring
204 [M, (2)] = 62(z) = [1.686(1 + 7)1,
we’ll see the behavior of the predicted mass function at the two extremes:
e When M < M, 6,, > 0., the exponential component approaches unity. If

oy < M™% then oy, = 5, (M/M, ) %/\/2, and p(M) o< (M/M)*
e When M > M, 6,, < 9., the exponential component becomes important. If
Oy X M~ then 20]\24 = 5§(M/M*)_ﬂ, and ¢(M) o< exp| — (M/M*)ﬁ]
Both behaviors are similar to the Schechter function for the observed distribution
functions, and a forced match would leadtoa =~ 0.5,/ =1
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Recap of previous lecture



Derivation of PS Halo Mass Function

The PS postulate: the fraction of mass locked up in halos w/ mass > M is (fudge factor 2 is
used to account for over-density: p/p =1+ 0 = 2):

F(> M,z) =2P[5,, > 6.(z)] = erfc ( O )
2UM

the fraction of mass locked up in halos in the mass range [M,M+dM] is:

dF( > M) dpP dP do,,
dM = 2—dM =2 dM
dM dM doy, dM

multiplying the above differential mass fraction by the cosmic mean density p = p.. gives
the total collapsed mass per unit volume, which is then divided by M to give the volume
density of halos with masses between [M, M+dM)], i.e., ¢p(M, z)dM:

0 dF( > M, » dP d
pam = LMD o7 oM 1

M dM M doy, dM
dap 1 o XD 52 ;2 dGM oy d In oy,
doy 1 O'M 203, AM T M dinM

we have the final result:

2 p 6. |dlnoy, 52
PM, z) = exp | —
nM?oy | dinM 203,




M2 6y | dinM dvdM M, \ M,

15
2 p o. |dl ) dN M M

p(M,7) = | = 2o | ex - > i (_> i <_M_>
*

If we define a characteristic mass at redshift z, M, (z), by requiring
204 [M, (2)] = 62(z) = [1.686(1 + 7)1,
we’ll see the behavior of the predicted mass function at the two extremes:
e When M < M, 6,, > 0., the exponential component approaches unity. If

oy < M™% then oy, = 5, (M/M, ) %/\/2, and p(M) o< (M/M)*
e When M > M, 6,, < 9., the exponential component becomes important. If
Oy X M~ then 20]\24 = 5§(M/M*)_ﬂ, and ¢(M) o< exp| — (M/M*)ﬁ]
Both behaviors are similar to the Schechter function for the observed distribution
functions, and a forced match would leadtoa =~ 0.5,/ =1
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iIndependent/uncorrelated Gaussian fluctuations
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Mass variance expected from White Noise

500

1024

Spatial smoothing will reduce the
variance of the white noise as:

o, o 1/Ny,

where Nwm is the number of pixels
that went into the smoothing kernel:

NxR xM

as a result, one expects:
oy x M —172



Planck CMB 0, map is not uncorrelated Gaussian noise map

2018 Planck Map of Temperature Fluctuations

Correlation ths 5 mm _,,

10

Y (mm)

.




Galaxy distribution also doesn’t look like white noise either

2dF Galaxy Redshift Survey (1997-2002) vy



A Gaussian random fluctuation field is determined by:

1. the amplitude of the fluctuation (o), and
2. the spatial correlation between fluctuations

@InertialObservr



calculation of oy,

smoothing / convolution in real space

52 (xX)d>x = —
(X >

U_m U_m

2
Or =

| (5% wy)(x) |*d>x

|
v



Moving beyond white noise ...

smoothing is a convolution of the density field w/ a window function of width R (M = ypR”):
— — / / 3.7
Oy (X) = (0 * wy(x) = J5(X Wy (x"— x)d x

Correlation length = 10 mm ., Correlation length =25 mm ., Correlation length = 50 mm

LS} .- > =9

LS . (e 3 =y

L 3 .
200 400 &S00 B0 1000
X (mm)

the variance of the smoothed density field is then:

N

1 | 1
o = (6(0) = — | S d*x = — | | *wy)0) | dx




1r'OO 1"00

ou=7| == 10*w0] dx

There are some major problems going forward:

— OO0

® what would be the appropriate volume and what scale to use to

sample this random field?
® numerical convolution is computationally expensive and how to

deal with artifacts near boundaries?

® [he density field is a random field, so would require many

realizations,
® how to realize random fields that match the initial conditions of

the universe?

Correlation length =10 mm .,

Y (mm)
Y (mm)

X % 9% : 1 \ >
200 400 600 BOO 1000 . 200 400 &S00 800 1000 200 400 600 BOO 1000
X (mm) X (mm) X (mm) X (mm)



Fourier Transform:

1. Convolution Theorem
2. Parseval's ldentity



Consider transforming to Fourier space

time/space
frequency

Decomposing a periodic time/space signal into Fourier series



The Fourier transform

we'll be interested in signals defined for all ¢

the Fourier transform of a signal f is the function
Fw) = / F(t)e—i“tds

e F'is a function of a real variable w; the function value F'(w) is (in
general) a complex number

F(u}):/C>O f(t)coswtdt—j/oo f(t)sinwt dt

e |F(w)| is called the amplitude spectrum of f; /F(w) is the phase
spectrum of f

e notation: ' = F(f) means F is the Fourier transform of f; as for



We adopt the non-unitary definition w/ angular frequencies

Summary of popular forms of the Fourier transform, one-dimensional

/ f(z) e 2 dp — /21 fo(21€) = f (2€)

ordinary "

frequency ¢ (Hz) sy / fl z27r33§ d£
l —~/ w 1 —
Hw) 2 / f)e de = —— Fi(2) = —= Filw)
2
unitary \/_ \/ﬁ " \/ﬁ
f(il? — / f2 TWT dw

angular frequency V2

w (rad/s) .

/ fa)e ™ dz =T, () = Va7 (W
no 27

unltary / f3 T g,



FT and inverse FT In 1D

Flw) = [f(r) ity o

At

time domain: o

f(t) = L JF (w)e' dw
2T

F(k) = Jf () e7dX  ave number
B 2T
T Ax

space domain:

k

1 |
flx) = — JF(k)elkxdk
2



F.T. of 3D Density Perturbation Field

1
1D space domain: f (X) — JF (k) elkXdk wave number:

71'
27T
k = —
Ax

F(k) = J f(x) e **dx

3D space domain:

1 —_ RGN —_
5(X) = A(k) e dk
(%) (2@3J (k)

A(k) = [5(55) e~k 3%



Convolution Theorem

convolution in real space = multiplication in Fourier space

FAS*9WX) ) = F 1K) - F{g}(k) = F(k) - G(k)

Application on the mass-filtered density perturbation field:

FLOFwy) ()} = Ak) Wy (k)

mass-filtered density perturbation field can be computed as the inverse FFT of
the product of the FT of density field and the FT of window function

= (6 *wyp(x) = FHAMK) W, (k)



Parseval’s identity (aka Rayleigh’s energy theorem)

The identity asserts the equality of the energy of a periodic signal
(given as the integral of the squared amplitude of the signal) and the
energy of its frequency domain representation (given as the sum of
squares of the amplitudes).

[ ii@ra= [ 1s@r .

Application on the variance of density perturbation field:

1 (™

— OO0

5°(x)d>x =

r OO

A*(k)d’k

(2m)° .

— OO0



Mass variance In Fourier space

The variance of mass-filtered density perturbation field is defined as:

1 r OO0 r OO

u=7 | SuWdx=7|  1E*F W) [P

U_w U_m

Parseval’s identity:

r OO0 S.9)

5]\24(x)d3x =

A2 (k)dk

(2m)’ .

J —o0 — 00

Convolution theorem:

Ay(k) = F{0y(x)} = F10(x) *wy(x)} = A(k)Wy,(k)

Combining the two, we have:
V (%
2

— 2 2 3
%= e ). A2k W2 (k)d>k




calculation of oy, In Fourier space

V r OO
L=——| AWi(kk*dk

J0




Mass variance In Fourier space

The variance of mass-filtered density perturbation field is defined as:

1 r OO0 r OO

u=7 | SuWdx=7|  1E*F W) [P

U_w U_m

Parseval’s identity:

r OO0 r OO

5]\24(x)d3x =

A2 (k)dk

(2m)’ .

J —o0 — 00

Convolution theorem:

Ay(k) = F{0y(x)} = F10(x) *wy(x)} = A(k)Wy,(k)

Combining the two, we have:
V r OO
2

— 2 2 3
%= e ). A2k W2 (k)dk




F.1. of Window Function: 1D top-hat

f(t)

rectangular pulse: f(t) = {

T .
F(w) = /Te_J“’t dt = —

1 -T'<

t<7T

0 |t|>T

—1
Jw

27T

F(w)

(e_jWT B eij) ~ 2sinwT

W

______________________________________




or IS
A
F.T. of 3D top-hat
3 |
: -
. _J 1 I=st<T | = AN R AN
rectangular pulse: f(t) = { 0 [t|>T 0\ \/ x\\/ s
—7n/T ©)T
T .
. —1 . . 2 T
F(w) _ / 6—ywt dt — - (e—ij . 6]wT) _ S11N W
_T JW w
For a 3D top hat window function, we have:
wy(r) = when r < R ; wy(r) =0 when r > R
47R3
3
W, (k) = [sin(kR) — (kR)cos(kR)]
1K) = s sin(kR) = (kR)cos(kR)

where R = (3—M)1/3 and k = ﬁ

drp R



Definition of Power Spectrum

Given the previous result from convolution theorem and Parseval’s identity:
vV (%
02 _
=
2n)° ),

A* (k)W (k)d k

If we define power spectrum:
P(k) = VA*(k)

We obtain:

62, = LJ P(k)WZ (k)k*dk



Fourier transform of power spectrum

P(k) = VA2(k)

define its Fourier Transform as &(x)

P(I_C)) — Jé(r) e—i/_c)-7d3]—; unit: Mpc”/3

1 —_— RN — . .
) — P k e+lk-l’d3k dimensionless
() = = | P

The E.T. of Power Spectrum is the two-point correlation function

E(r) = (5X)6GF + 7)) = %Ja(z)a(z + P)d3%
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§(x) = (6(xN6(x" + x))

Estimate correlation function from galaxy surveys
Sy




Estimate correlation function from galaxy surveys

E(r) is a measure of the excess probability of finding another
galaxy at distance r above expectation from an unclustered

random distribution:
dP = n[l + &(r)]dV,

It can be measured by counting pairs of galaxies as a function
of separation and divides by expectation from random
unclustered mock catalogs:

o ner DD 1
é— np DR |
1 ng\’ R
= — |DD|— | —2DR | — RR
§ RR (nD> (TLD> "

In the above two popular estimators (Davis & Peebles 1983 and
Landy & Szalay 1993), DD, DR, and RR are counts of galaxy
pairs within a range of separation in the data catalog and
between the data and mock catalog, and between two different
mock catalogs, and np and ng are the mean number densities
of galaxies in the data and the mock catalogs.



Correlation Functions of Galaxies w/ Different Masses

“more massive galaxies are more clustered”
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Evolution of the Power Spectrum

2 L ro P(k) W@(k)kzdk
0

G I
M
22



How power spectrum change spatial correlations?

Define two-point correlation function:

EX) = (6N + X)) = % SCNS(X + X)d> X’

its Fourier transform is called the power spectrum:
P(k) = VA*(k)
where A(k) = | 8(%) e **d>%

Gaussian random fields w/ ever steeper power spectrum

(i.e., decreasing small scale correlations at large k’s)
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Evolution of correlation function <-> evolution of power spectrum
from primordial density perturbations to the epoch of recombination

I Galaxy clustels —
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Evolution of the radial mass proflle (comovmg) of an |n|t|aIIy pointlike overdensity

Near the initial
time, the photons
and baryons travel
outward as a pulse.

Around
recombination, the
photons leak away
from the baryonic
perturbation

Gravitational instability
now takes over, and new
baryons and dark matter
are attracted to the two
overdensities (center &
outer shell)
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Eisenstein+2007 calculated using CMBFAST (predecessor of CAMB)



Eisenstein et al. 2005: detection of the Baryon Acoustic Peak from
SDSS luminous red galaxies
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Comoving Separation (h~! Mpc)

Fic. 3.— As Figure 2, but plotting the correlation function times
s2. This shows the variation of the peak at 20h~! Mpc scales that is
controlled by the redshift of equality (and hence by Q.,,h?). Vary-
ing Q.. h? alters the amount of large-to-small scale correlation, but
boosting the large-scale correlations too much causes an inconsis-
tency at 30h~! Mpc. The pure CDM model (magenta) is actually
close to the best-fit due to the data points on intermediate scales.



DESI DR2 Correlation Functions (DESI 2025 March)

Luminous Red Galaxies (z = 0.4-0.6)
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P(k)[Mpc/h)’

Evolution of the linear power spectrum and correlation

function in the LCDM universe
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https://lambda.gsfc.nasa.gov/toolbox/tb_camb_form.cfm

Current power spectrum P(k) [(h-! Mpc)3]
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Calculation of Halo Mass Function



mass variance from integrating the power spectrum:
a. power spectra at different redshifts
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Mass Variance oy,

mass variance from integrating the power spectrum:
b. mass variancevs. Matz=0

02, = LJ P(k)WZ,(k)k*dk
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Power Spectrum P(k) (Mpc/h)3

Homework Problem: approximating FT of a top hat with another top hat

Approximating the window function as a top-hat in frequency:
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Resulting PS Halo Mass Function at Various Redshifts

— 2
p 0. |dlnoy, O;
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Summary: PS Halo Mass Function

The PS differential halo mass function:

2 p 6. |dlnoy, 52
¢M, z) = exp| ==
nM?o0y | dinM 203,

The collapse threshold:

5. = 1.686(1 + 2)

The mass variance from power spectrum:

) 1 oo ) ) 1 27/R )
o= | POWKdk~—— | Plokdk
0 0

if the power spectrum is a power law: P(k) « k'

27/R
62~ LJ P(OK2dk o« R o M=(+3)73
27% J,

The power spectrum and the two point correlation function:

P(k) = VAX(k) = Jg(?) e~ k7 37

§(r) = (8(xX)8(x + 1)) = %ja@)&@ +F)d%



-1.5
2 5 6. |dn 5 dN M M
gt o= [22 0 || (RN v e (N
xM2oy | dinM avdmM M, \ M, M,

If we define a characteristic mass at redshift z, M, (z), by requiring
20 [M,(2)] = 6;(z) = [1.686(1 + 2)]*,

we’ll see the behavior of the predicted mass function at the two extremes:
e When M < M, 6,, > 0,, the exponential component approaches unity. If

oy x M™% then oy, = 6, (M/IM,)~"/4/2, and p(M) (M/M*)O‘_2

e When M > M _, 0,, < 0., the exponential component becomes important. If
6y x M~ then 267, = 52(M/M,)™", and (M) o exp[ — (M/M, )]

e if the power spectrum is a power law, P(k) « k", then o,, oc M~ (1+3)/6

e When M < M, kis large and P(k) k=2 so that Oy X Yl
(M) (M/M*)_11/6

e When M > M, kis small and P(k) « k, so that 6,, M=,
H(M) o expl — (M/M,)*?]



Halo Mass Functions: N-body Simulation vs. Analytical Predictions
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Extended Press-Schechter formalism improves the agreement w/ N-body simulations
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Source: Millenium Simulation; Springel V., 2004 (MPA research highlight)
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: both the P-S and N-body halo mass function
strongly disagrees w/ Observed galaxy mass function
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