A Brief Review of the Course

Dark Matter

Gas Temperature

: 27.7

redshift : 1.54 Time since the Big Bang: 4.3 billion years stellar mass

billion solar masses

Robertson-Walker Metric: Differential Space-Time Distance

• In **General Relativity**, a **metric** is a function which measures *differential space-time distance* between two events:

$$(ds)^2 = (c \cdot dt)^2 - (dl)^2$$

 The Robertson-Walker metric is the metric that describes the geometry of a homogeneous, isotropic, expanding universe. The metric in *spherical coordinate system* is:

$$(ds)^{2} = (c \cdot dt)^{2} - R_{U}^{2}(t) \left[\left(\frac{dx}{\sqrt{1 - kx^{2}}} \right)^{2} + (xd\theta)^{2} + (x\sin\theta d\phi)^{2} \right]$$

where

R_U is the scale factor, defined to be 1 at present day, and <1 in the past **x** is the comoving radial distance, $x \equiv r(t)/R_U(t)$,

k is the **comoving** curvature, $k \equiv \frac{1}{R^2} = \frac{R_U^2}{R^2 R_U^2} = K(t)R_U^2(t)$, **R** is the **comoving** radius of the curvature.

The same terms are in **Friedmann Equation**.

Solution of FE1: Hubble Parameter vs. redshift - E(z)

- The **FE1 in density parameters and Hubble parameter**: $R_U^2 H^2 [1 - (\Omega_m + \Omega_\gamma + \Omega_\Lambda)] = -kc^2$
- Boundary condition at t = t₀ gives the value of the curvature: $H_0^2(1 \Omega_0) = -kc^2$
- Equations of state gives density-scale-factor relations:

$$\frac{\Omega_m}{\Omega_{m,0}} = \frac{\rho_m \rho_{c,0}}{\rho_{m,0} \rho_c} = \frac{\rho_m}{\rho_{m,0}} \frac{H_0^2}{H^2} = \frac{1}{R_U^3} \frac{H_0^2}{H^2}$$
$$\frac{\Omega_{\gamma}}{\Omega_{\gamma,0}} = \frac{1}{R_U^4} \frac{H_0^2}{H^2} \text{ and } \frac{\Omega_{\Lambda}}{\Omega_{\Lambda,0}} = \frac{H_0^2}{H^2}$$

• Plug in and rearrange:

$$H^{2} = H_{0}^{2}[(1 - \Omega_{0})/R_{U}^{2} + \Omega_{m,0}/R_{U}^{3} + \Omega_{\gamma,0}/R_{U}^{4} + \Omega_{\Lambda,0}]$$

• Expressed scale factor as redshift and define the **dimensionless Hubble parameter** E(z):

$$E(z) = \frac{H(z)}{H_0} = \sqrt{(1 - \Omega_0)(1 + z)^2 + \Omega_{m,0}(1 + z)^3 + \Omega_{\gamma,0}(1 + z)^4 + \Omega_{\Lambda,0}}$$

When we have distance measurement from galaxies at **z > 0.1**, **cosmological density parameters** can be constrained by **the same Hubble diagram**

Top-Hat Spherical Collapse Model: First expands then collapses: $18\pi^2$

van den Bosch

The linearly artranalated density field collanges u

Density distribution:

$$\rho(r) = \frac{4\rho_s}{(r/r_s)(1 + r/r_s)^2}$$

Enclosed Mass: $M(r) = 16\pi\rho_s r_s^3 \left(\ln(1 + \frac{r}{r_s}) - \frac{r/r_s}{1 + r/r_s} \right)$ Density distribution: $\rho(r) = \frac{\rho_s}{(r/r_s)^2}$

> Enclosed Mass: $M(r) = 4\pi \rho_s r_s^2 r$

Potential - const.: $\phi(r) = -16\pi G \rho_s r_s^2 \frac{\ln(1 + r/r_s)}{r/r_s}$

Potential - const.: $\phi(r) = 4\pi G \rho_s r_s^2 \ln(r/r_s)$

What about non-circular orbits in a logarithmic potential field?

Circular Velocity Profiles: Axial Symmetry vs. Spherical Symmetry

The spherical system has the same enclosed mass profile as the disk

Counting Peaks in the Mass-Smoothed Density Field

The physical scale *R* used to smooth the linearly extrapolated density field $\delta_0(x)$ today determines the minimum mass of all collapsable regions with $\delta_M > \delta_c(z)$, so the fraction of mass locked in halos with masses greater than $M \equiv \gamma \rho_c R^3$ is

$$\delta_{0}(x) = P[\delta_{M} > \delta_{c}(z)]; \text{ where } \delta_{M}(x) = \int_{0}^{0} \delta_{0}(x') w[x - x'; (M/\gamma \rho_{c})^{1/3}] d^{3}x'$$

where w(x; R) is the window function used for smoothing

mass variance from integrating the power spectrum: a. power spectra at different redshifts

Resulting PS Halo Mass Function at Various Redshifts

Halo Mass Functions: N-body Simulation vs. Analytical Predictions

Problem: both the P-S and N-body halo mass function strongly disagrees w/ Observed galaxy mass function

CMB Photons travel straight to us from the last scattering surface

• Analogous to the *last scattering surface* that marks the surface of the Solar photosphere

Ionization Fraction of Hydrogen vs. redshift in the Early Universe

The CMB emerges when the mean free path of photons reaches the size of the cosmic horizon (~*ct*)

Jeans Length vs. Time

Chronology of the Universe Diagram

Virial Velocity & Virial Temperature Expressed Directly with Virial Mass

• Virial radius:

$$r_{\Delta} = \left(\frac{2GM_{\Delta}}{\Delta_c \Omega_{m,0} H_0^2}\right)^{1/3} (1+z)^{-1} \propto M_{\Delta}^{1/3} (1+z)^{-1}$$

• Virial (circular) velocity:

$$V_{\Delta} = \sqrt{\frac{GM_{\Delta}}{r_{\Delta}}} = (\Delta_c \Omega_{m,0} H_0^2 / 2)^{1/6} (GM_{\Delta})^{1/3} (1+z)^{1/2}$$

• Virial Temperature:

$$T_{\Delta} = \frac{\mu m_p}{2k} V_{\Delta}^2 \propto M_{\Delta}^{2/3} (1+z)$$

note: $\frac{1}{2} \mu m_p V_{\Delta}^2 = k T_{\Delta} \neq \frac{3}{2} k T_{\Delta}$ because it's **circular** not **rms** vel.

• Virial temperature is defined as the temperature of self-gravitating isothermal gas in hydrostatic equilibrium. It is preserved for a non-evolving halo because $M_\Delta \propto r_\Delta \propto (1+z)^{-3/2}$. It is also the expected temperature of baryons in the halo once shock-heated.

Cooling Function = Cooling Rate / Hydrogen Density Squared

- Cooling Rate Λ unit: erg/s/cm^3
- Hydrogen Density *n_H* unit cm⁻³
- Cooling Function: $\Lambda_N \equiv \Lambda/n_H^2$ unit: erg/s cm³
- Normalization makes cooling function depend only on T and Z

CC Density Threshold vs. Halo Gas Density and Temperature

• Catastrophic cooling occurs when $t_{cool} < t_{ff}$, which leads to a hydrogen density threshold above which baryons cool rapidly in a halo:

$$n_{H}^{cc} = \frac{2^{9}Gm_{p}}{9\pi f_{gas}} \left(\frac{kT_{\Delta}}{\mu\Lambda(T_{\Delta},Z)}\right)^{2}$$

• This threshold is then compared to the mean hydrogen density of the halo to decide the mass range of the halos over which galaxies form: $\frac{4}{3}n_{H}^{\Delta}m_{p} = \rho_{b}^{\Delta} = \Delta_{c}f_{gas}\rho_{c,0}\Omega_{m,0}(1+z)^{3}$

given the definition of virial radius, halos of all masses at a given redshift should have the same mean density!

• The mean density can be expressed with virial mass and virial temperature given that $T_{\Delta} \propto M_{\Delta}^{2/3}(1+z)$ and $n_{H}^{\Delta} \propto (1+z)^{3}$:

$$\left(\frac{n_H^{\Delta}}{0.04cm^{-3}}\right) = \left(\frac{M_{\Delta}}{10^8 M_{\odot}}\right)^{-2} \left(\frac{T_{\Delta}}{10^4 K}\right)^3$$

CC Density Threshold vs. Halo Gas Density and Temperature

For solar-metallicty gas, efficient cooling at 0 < z < 5 occurs in halos between $10^9 M_{\odot} < M_{gas} < 10^{12} M_{\odot}$

Mo, van den Bosch, White (2010), Cambridge Press

Baryonic Processes in Galaxy Evolution

Feedback: Ejecting gas

> Star Formation: Converting gas into stars

Gas accretion via cosmic web

The "Bathtub" Model: Accretion-Driven Star Formation

a continuity equation coupled with a halo growth history and a star formation law

Accretion-Driven Star Formation History

 Grey region: efficient cold gas accretion 10¹¹ < M_{Halo} < 1.5x10¹² M_☉
 Gas accretion history of a 10^{12.6} M_☉ halo (mass at z = 0)

Star formation history from the continuity equation:

Once the halo crosses the minimum mass (10¹¹ M_☉), the SFR rapidly rises to reach a steady state;

2. As the halo mass reaches $10^{12.3}$ M_{\odot}, cold gas accretion is choked and the SFR starts to decline with an *e*-folding time of 2-3 Gyr (=2 T_{dyn}/€sF).

Stellar mass fraction

Stellar mass fraction

Textbook Recommendations for Continued Learning

Galaxy Formation and Evolution

Houjun Mo, Frank van den Bosch and Simon White

AMBRIDGE

Introduction to GALAXY FORMATION AND EVOLUTION

From Primordial Gas to Present-Day Galaxies

