Homework #5 (10 points) - Show all work on the following problems:

Problem 1 (2 points): Find the average potential over a spherical surface of radius \(R \) due to a point charge located inside the sphere (not at the center).

Problem 2 (2 points): In 1-d, the functional form of the general solution to Laplace’s equation is \(V(x) = mx + b \).

2a (1 point): Find the functional form of the general solution to Laplace’s equation in 3-d spherical coordinates for the case where \(V \) only depends on the radial coordinate \(r \).

2b (1 point): Find the functional form of the general solution to Laplace’s equation in 3-d cylindrical coordinates for the case where \(V \) only depends on the radial coordinate \(s \).

Problem 3 (2 points): Consider an infinite grounded conducting plane with two charges above the plane: \(-2q\) at height \(d \), and \(+q\) and height \(3d \). Use image charges to determine the force on the upper charge (+q).

Problem 4 (4 points): Consider a point charge \(q \) at a distance \(a \) from the center of a grounded conducting sphere of radius \(R \) (with \(a > R \)), as in Example 3.2 in Griffiths.

4a (1 point): Use the law of cosines to show that you can write

\[
V(r, \theta) = \frac{1}{4\pi \varepsilon_0} \left[\frac{q}{\sqrt{r^2 + a^2 - 2ar \cos \theta}} - \frac{q}{\sqrt{r^2 + \left(\frac{R}{R}
ight)^2 - 2r \cos \theta}} \right]
\]

4b (1 point): Use the boundary conditions on the electric field (and thus the normal derivative of \(V \)) at the surface of the sphere to find the induced surface charge density \(\sigma \) on the sphere, as a function of \(\theta \).

4c (1 point): Integrate the charge density over the surface of the sphere to find the total induced charge.

4d (1 point): Calculate the energy of this configuration by determining the energy required to bring the charge \(q \) from infinity.