$\nabla \cdot E=\frac{\rho}{\varepsilon_{0}}$

 $\nabla \cdot B=0$$\nabla \times E=-\frac{\partial B}{\partial t}$
$\nabla \times B=\mu_{0} \varepsilon \frac{\partial E}{\partial t}+\mu_{0} \mathrm{~J}$

Electricity and Magnetism I: 3811

Professor Jasper Halekas
Van Allen 301
MWF 9:30-10:20 Lecture

Work to Charge Capacitor $W=Q \Delta V$ for fixed $Q, \Delta V$

$$
\begin{aligned}
d W=\Delta V d q & =a / c d q \quad(\text { since } c=Q / \Delta v) \\
W=\int d W & =\int_{0}^{a} a / c d q \\
& =q^{2} /\left.2 c\right|_{0} ^{Q} \\
& =Q^{2} / 2 c \\
& =1 / 2 c \cdot(a / c)^{2}=1 / 2 c \Delta V^{2}
\end{aligned}
$$

For parallel-plate Capacitor

$$
\begin{aligned}
W=1 / 2 Q^{2} / c & =1 / 2 Q^{2} \cdot \frac{d}{\varepsilon_{0} A} \\
& =1 / \varepsilon_{0} \cdot\left(\frac{Q}{r_{1}, t}\right)^{2} \cdot A \cdot d \\
& =1 / 2 \varepsilon_{0} \cdot E^{2} \cdot \text { Volume } \\
& =\int 1 / r_{0} E^{2} d \tau \\
& \text { as expected }
\end{aligned}
$$

Check Your Understanding \#1

- Consider an arrangement with a point charge Q at the origin, surrounded by a conducting shell with inner and outer radii a and b, that has a net charge of +Q

- What is the electric field $E(r)$ for $r<a, a<r<b$, and $r>b$?

Q1.

Hard way: $\vec{E}=\frac{1}{4 \pi \varepsilon_{0}} \int \frac{\rho\left(r^{\prime}\right)}{\Delta r^{2}} \Delta \hat{r} d \tau^{\prime}$ Easier Way:

$$
\begin{aligned}
& 6 \vec{E} \cdot d \vec{a}=Q \cdot x / a_{0} \\
& \text { } \sqrt{E} \cdot d \vec{a}=E \cdot 4 \pi r^{2} \text { by symmetyo } \\
& \text { Qenc }=\begin{array}{cc}
+Q & r<a \\
0 & a<r<6
\end{array} \\
& +2 Q \quad r>6 \\
& \Rightarrow \vec{E}=\frac{Q \hat{r}}{4 \pi=r^{2}} \quad r<9 . \\
& \frac{2 Q \hat{r}}{4 \pi \varepsilon r^{2}} \quad r>6
\end{aligned}
$$

Check Your Understanding \#2

- Consider an arrangement with a point charge Q at the origin, surrounded by a conducting shell with inner and outer radii a and b, that has a net charge of +O

- What is the electric potential $V(r)$ for $r<a, a<r<b$, and $r>$ b (with respect to infinity)?

Q 2.

$$
\begin{aligned}
& V(r)=-\int_{\infty}^{r} \vec{E} \cdot d \bar{l} \\
&=-\int_{00}^{r} E_{r} d r^{\prime} \\
&=-\int_{00}^{r} \frac{2 a}{4 \pi \varepsilon_{0} r^{2}} d r^{\prime} \quad r>6 \\
&=\left.\frac{2 Q}{4 \pi \varepsilon_{0} r^{\prime}}\right|_{0} ^{r} \quad r>6 \\
&=\frac{2 Q}{4 \pi \varepsilon_{0} r} \\
& \hline \gg 6
\end{aligned}
$$

$$
\begin{array}{r}
=-\int_{\infty}^{b} \frac{2 Q}{4 \pi \varepsilon_{0} r^{\prime}} d r^{\prime}-\int_{6}^{r} Q d r^{\prime} \quad a<r<6 \\
=\frac{2 Q / 4 \pi \varepsilon_{0} 6}{} \quad a<r<6
\end{array}
$$

$$
=-\int_{c}^{6} \frac{2 Q}{4 \pi \xi_{0} r^{2}} d r^{\prime}-\int_{b}^{a} Q d r^{\prime}-\int_{a}^{r} \frac{Q}{4 \pi \varepsilon_{0} r^{\prime 2}} d r^{\prime}
$$

$$
=2 \theta / 4 \pi\left\{06+\left.\frac{Q}{4 \pi \varepsilon . r^{\prime}}\right|_{a} ^{r} \quad r<a\right.
$$

$$
=\sqrt{\frac{2 Q}{4 \pi \varepsilon_{a} b}+\frac{Q}{4 \pi \varepsilon_{0} r}-\frac{Q}{4 \pi \varepsilon_{0} a} \quad r<a}
$$

Check Your Understanding \#3

- What is the electric field inside and outside of an infinitely long charged cylinder of radius R , whose volume charge density varies linearly with radius i.e. $\rho=k s$.

Qu:

$$
\begin{aligned}
& \phi \vec{E} \cdot d \vec{a}=2 \pi S \cdot L \cdot E \\
& Q_{\text {enc }}=\int e d \tau \\
& =\int_{0}^{L} \int_{0}^{2 \pi} \int_{0}^{s} k s^{\prime} \cdot s^{\prime} d s^{\prime} d p d z \quad s<R \\
& =2 \pi L \cdot \int_{0}^{s} k s^{2} d s^{\prime} \quad s<R \\
& =2 \pi L \cdot \frac{k s^{3}}{3} \quad s \angle R \\
& =2 \pi L \cdot \frac{k R^{3}}{3} \quad s>R \\
& \Rightarrow \vec{E}=k s^{2} / s_{0} \hat{s} \quad s<R \\
& =\frac{k R^{3}}{3\{, S} \hat{s} \quad s>R
\end{aligned}
$$

