Electricity and Magnetism |: 3811

Professor Jasper Halekas
Van Allen 301
MWF g:30-10:20 Lecture




Fourier Analysis
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Fourier Analysis




Orthogonality

e Orthogonal basis
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Completeness

f(x) defined for a range of values of x of length 27. say —m < x< 7.

we approximate this function as an infinite sum of frigonometric functions, as Fourier series for f(x).

f(x) = S(x) = Lag+ Z a,cosnx-+ 2 b, s nx.

n=1 n=1

e where a,. b, are an infinite series of constants to be determuned called the Fourier coefficients.
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e the 2ap is really a cos Ox = 1 constant term. and the 1 is put in for convenience

Completeness: Any function can be expanded in this way!
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