

Electricity and Magnetism I: 3811

Professor Jasper Halekas Van Allen 301 MWF 9:30-10:20 Lecture

- Suppose the general solutions of Laplace's equation for a particular problem in Cartesian coordinates are:
 - $V_n(x,y) = [A_n e^{kx} + B_n e^{-kx}] * [C_n \cos(n\pi y/a) + D_n \sin(n\pi y/a)]$
- What are the values of k for each n?

 $X_n(x) = A_n e^{kx} + B_n e^{-kx}$ $Y_n(y) = C_n \cos\left(\frac{ntry}{n}\right) + D_n \sin\left(\frac{ntry}{n}\right)$ Q1. d'Xndxi = Ki (Anekx + Bne-KX) $\frac{d^{2}Y_{n}}{dy^{2}} = -\frac{nLTT}{a^{2}}\left(C_{n}\cos\left(\frac{nTy}{a}\right) + Onsin\left(\frac{nTy}{a}\right)\right)$

 $\frac{1}{X} \int_{X^2} + \frac{1}{Y} \int_{Y^2} = 0$ $\rightarrow k^2 - \frac{n^2 \pi^2}{2}$ = 0

- Suppose the general solutions of Laplace's equation for a particular problem in Cartesian coordinates are:
 - $V_n(x,y) = [A_n e^{kx} + B_n e^{-kx}] * [C_n \cos(n\pi y/a) + D_n \sin(n\pi y/a)]$
- If the boundary conditions are such that V= o at y = ±a/2, V = cos(πy/a) at x = o, and V -> o as x -> ∞ and, what are A_n, B_n, C_n, D_n for all n?

Q2: $V(x,y) = \xi V_n(x,y)$ $if V(0, y) = \cos\left(\frac{\pi y}{a}\right)$ => only n=1 contributes And only (1 = 0 $e^{KX} \rightarrow 00 \quad (G) \quad X = 00$

The general solutions of Laplace's equation in spherical coordinates are:

•
$$V_{|}(r,\theta) = (A_{|}r^{|} + B_{|}/r^{|+1})P_{|}(\cos\theta)$$

If you want to find a solution valid from r = Rto r = ∞, and you know V(R,θ) = P₃(cosθ), what is the full solution V(r,θ)?

Q3: V(r, θ) = $\sum_{i} (Aer^2 + 0) r (r) P_i(cos\theta)$ for r > R $A_R = 0$ $V_>(r, \theta) = \sum_{r \neq H} \frac{\partial_R}{\rho_R(cos\theta)}$ but $V(R \cap A) = P_3(\cos A)$ $= \rangle \quad \alpha n / \gamma \quad \beta_3 \neq 0$ $V_3(R, \Phi) = \frac{\sigma_3}{R^4} P_3(\cos \theta)$ = P, (cose) $\Rightarrow B_3 = R^4$ Ry P, (coso)

- Consider a dielectric shell surrounding a conductor with charge +Q on its surface.
- Draw three diagrams, showing the lines of polarization, electric field, and electric displacement. Be qualitatively accurate, with more lines for stronger fields.

 Consider a dielectric sphere embedded in an initially uniform external field. Sketch the resulting lines of polarization, electric field, and electric displacement.

Dielectric Sphere Electric Field

In the problem with the dielectric sphere, there is no free charge anywhere

$$\oint \mathbf{D} \cdot d\mathbf{a} = Q_{f enc}$$

But D ≠ o

Why not?

06. = afenc 6 D · da = 0But DZO D. h > 0 over half aver half $D \cdot \hat{n} < 0$ Cancels out in \$ D-Ja