

Electricity and Magnetism I: 3811

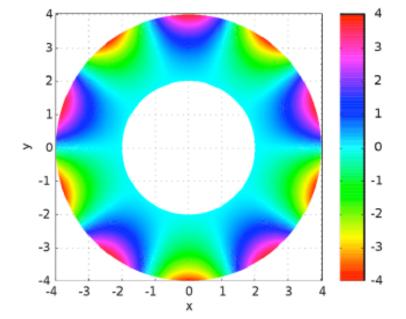
Professor Jasper Halekas Van Allen 301 MWF 9:30-10:20 Lecture

Midterm II

- Exam 2 on Wednesday 11/6
 - In class, same rules as Exam 1
 - Covers Ch. 3-4 in Griffiths = lecture material since last exam
 - Exam 2 Equation sheet posted
 - Bring yours to the exam, annotated as desired
 - Practice midterms and solutions posted

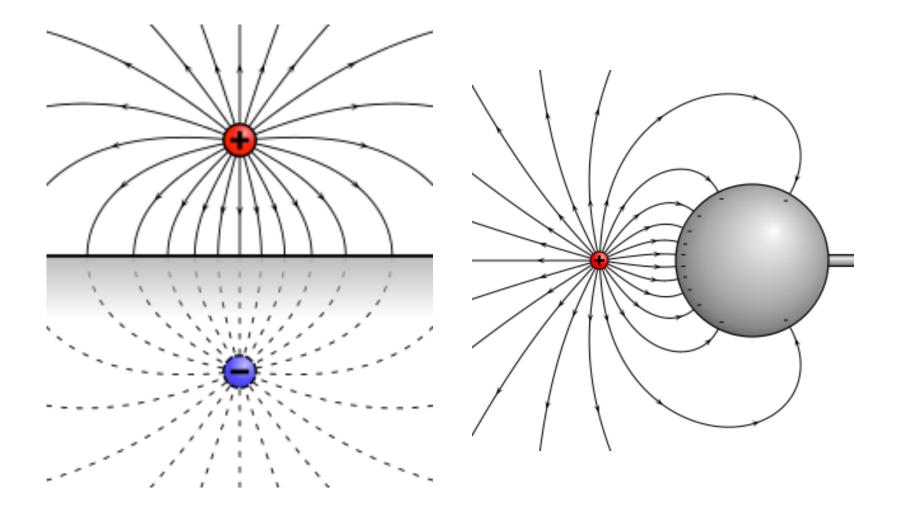
Laplace's Equation

- Solutions have zero curvature
- Value at any point is average of "local neighborhood"
- Local extrema only on boundaries
- If you know V on the boundary, you can find a unique solution



Laplace's Equation: $\nabla^2 V = 0$ *if* $\rho = 0$

Image Charges A rarely useful trick



The Laplacian Operator

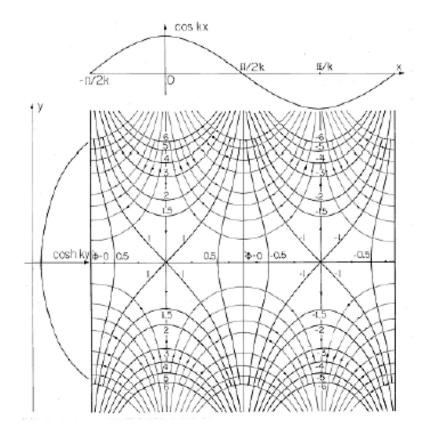
Cartesian $\nabla^2 f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} + \frac{\partial^2 f}{\partial z^2}$

Spherical

$$\nabla^2 f = \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial f}{\partial r} \right) + \frac{1}{r^2 \sin\theta} \frac{\partial}{\partial \theta} \left(\sin\theta \frac{\partial f}{\partial \theta} \right) + \frac{1}{r^2 \sin^2\theta} \frac{\partial^2 f}{\partial \phi^2}$$

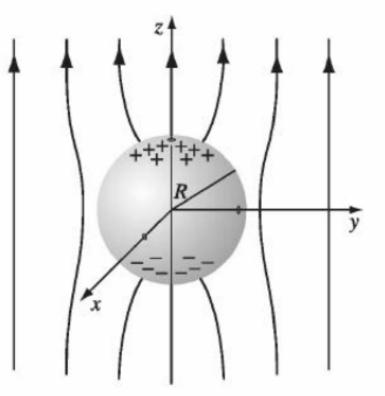
Cylindrical $\nabla^2 f = \frac{1}{s} \frac{\partial}{\partial s} \left(s \frac{\partial f}{\partial s} \right) + \frac{1}{s^2} \frac{\partial^2 f}{\partial \phi^2} + \frac{\partial^2 f}{\partial z^2}$

Separation of Variables: Cartesian



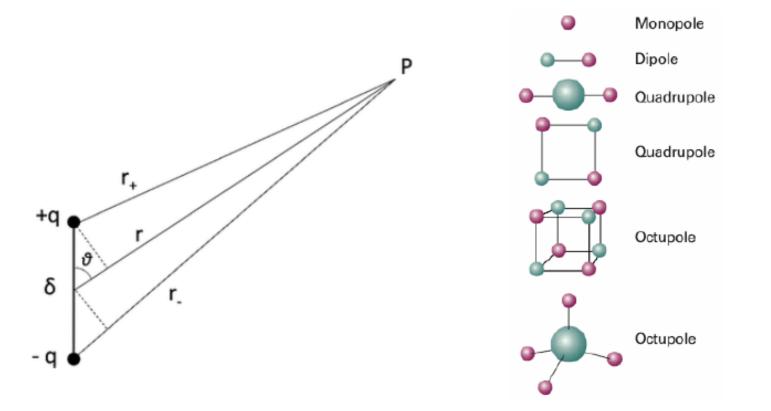
Separation of Variables: $\frac{d^2 X}{dx^2} = C_1 X, \frac{d^2 Y}{dy^2} = C_2 Y, \frac{d^2 Z}{dz^2} = C_3 Z, C_1 + C_2 + C_3 = 0, V = X(x) Y(y) Z(z)$

Separation of Variables: Spherical



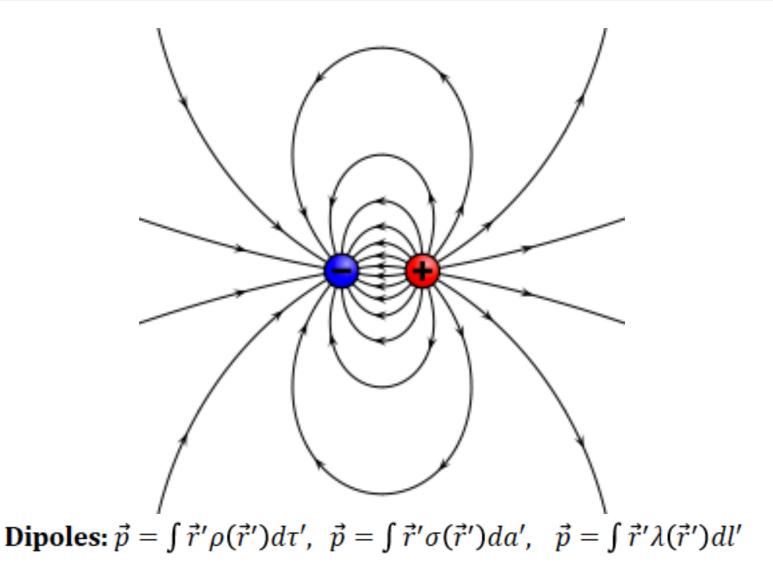
Separation of Variables (Spherical): $V(r,\theta) = \sum_{0}^{\infty} \left(A_{l}r^{l} + \frac{B_{l}}{r^{l+1}}\right) P_{l}(\cos\theta)$ $P_{0}(\cos\theta) = 1, P_{1}(\cos\theta) = \cos\theta, P_{2}(\cos\theta) = \frac{3\cos^{2}\theta - 1}{2}$

Multipole Expansion

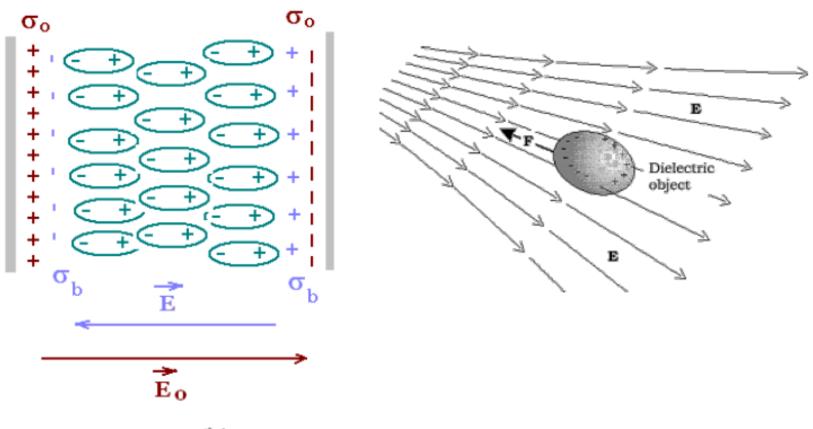


Multipole Expansion: $V(\vec{r}) = \frac{1}{4\pi\varepsilon_0} \sum_{0}^{\infty} \frac{1}{r^{n+1}} \int (r')^n P_n(\cos\alpha) \rho(\vec{r}') d\tau'$

Dipole Moment

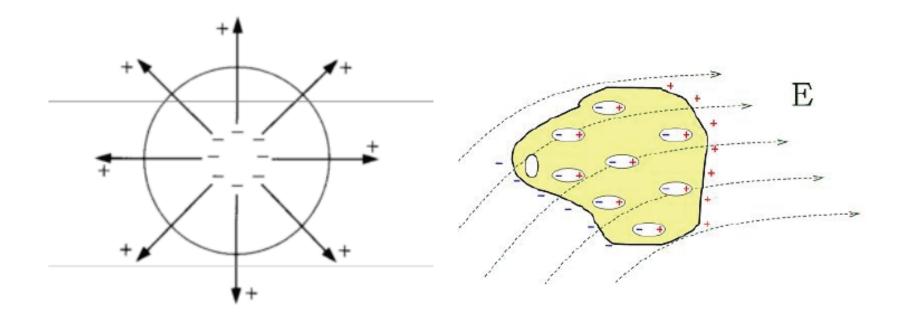


Dipoles and Polarization



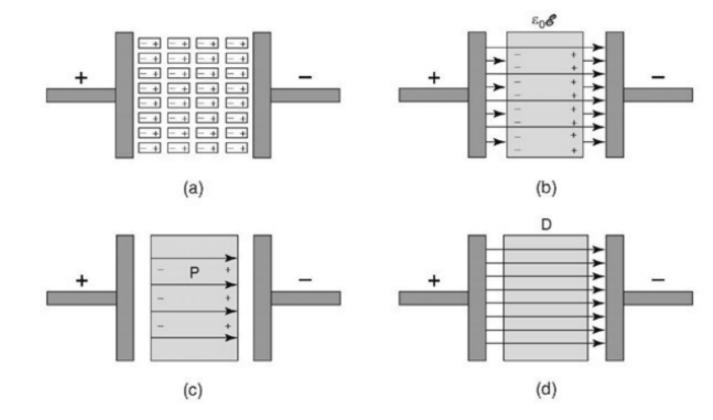
 $V_{dip}(\vec{r}) = \frac{1}{4\pi\varepsilon_0} \frac{\vec{p}\cdot\hat{r}}{r^2}, \quad \vec{\tau} = \vec{p} \times \vec{E}, \quad \vec{F} = (\vec{p}\cdot\nabla)\vec{E}, \quad \vec{P} = \vec{p}/volume$

Bound Charge

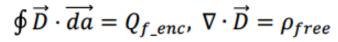


$$\sigma_b = \vec{P} \cdot \hat{n}, \ \rho_b = -\nabla \cdot \vec{P}$$

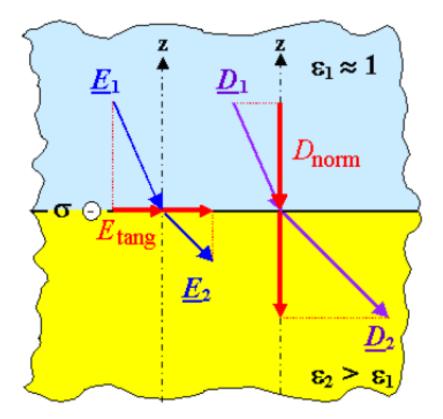
Electric Displacement



Dielectrics: $\vec{D} = \varepsilon_0 \vec{E} + \vec{P}$ $\oint \vec{D} \cdot \vec{da} = Q_{f_enc}, \nabla \cdot \vec{D} = \rho_{free}$

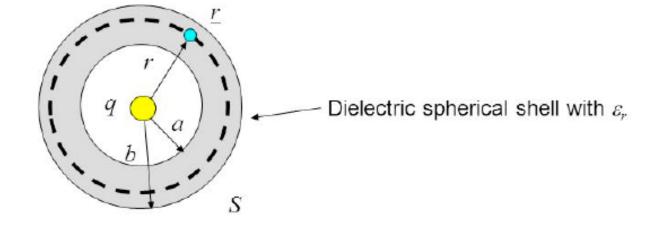


Boundary Conditions



Boundary Conditions: $\Delta V = 0$, $\Delta \vec{E} = \frac{\sigma}{\varepsilon_0} \hat{n}$, $\Delta D_{\perp} = \sigma_f$, $\Delta \vec{D}_{||} = \Delta \vec{P}_{||}$

Linear Dielectrics



Linear Dielectrics: $\vec{P} = \varepsilon_0 \chi_e \vec{E}$, $\vec{D} = \varepsilon \vec{E} = \varepsilon_r \varepsilon_0 \vec{E} = (1 + \chi_e) \varepsilon_0 \vec{E}$ $W_{elec+polarization} = \frac{1}{2} \int \vec{E} \cdot \vec{D} d\tau$