

Electricity and Magnetism I: 3811

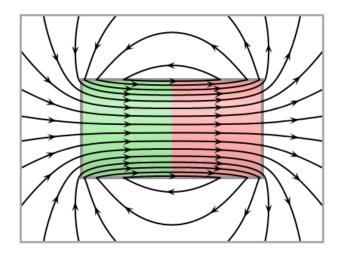
Professor Jasper Halekas Van Allen 301 MWF 9:30-10:20 Lecture

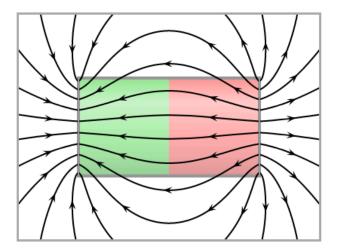
Announcements

Last year's final exam posted on course website

- Solutions will follow next week
- Next Week
 - Monday: Guest lecture w/ Prof. Craig Kletzing
 - Wednesday: Problem session w/ Mr. Gian Andreone
 - Friday: Final Review (w/ me)
- Finals week
 - Additional office hours to be announced

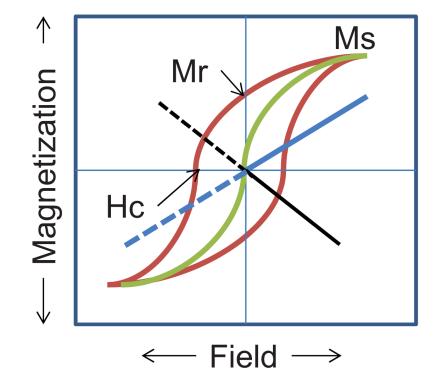
Announcements II


- Course Evaluations are now open
 - Please take a few minutes to fill these out
 - The course evaluations are very valuable for me and potentially for you as well
 - I read all evaluations carefully, and use them to improve my teaching


Boundary Londi fions $\Delta \beta_{\perp} = 0$ $\Delta \overline{\beta_{\parallel}} = p \cdot \overline{K} \times \hat{\eta}$ $\Delta H_{I} = -\Delta M_{I}$ $\Delta H_{I} = K_{f} \times \hat{n}$ - B Continuous - Il can have discontinuities at boundaries of M

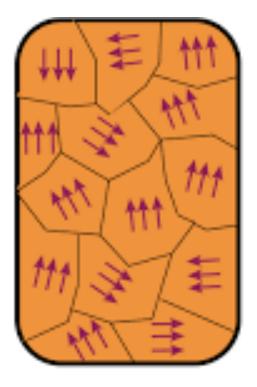
- B can change its fangential component at currents - H can only change its tangential component at free currents

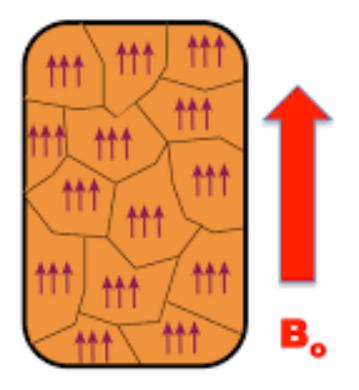
$\vec{\mathsf{B}}$


 $\vec{\mathsf{H}}$

Linear Media $\overline{M} = \Sigma_m \overline{H}$ Zm = "magnetic susceptibility" positive = paramagnetic negative = diamagnetic

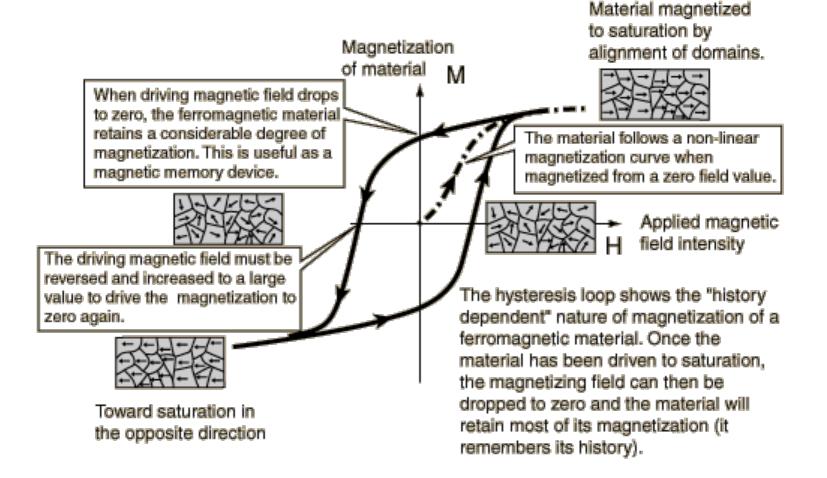
 $D = \mu_0 (H + M)$ $= \mu \cdot (1 + 2m) H$ = MH w/ n=noll +2m) = "permeability"


Example Galenoid of linear Cove H = n I Z From Amperes law $B = \mu H$ = m. (1+2m) n I 2 increases B Xm > O decreases B Xm < Q Ro = Mxa = Xm Hxn = Zmn I qo = Zm NI qo = Zm Kp anti-carallel for Kf for Xm>0 - paramagnetic (or ferromagnetic) core very useful for transformers, inductors, etc.


Magnetic Classification

- Ferromagnetic
 - —— Superparamagnetic
 - Paramagnetic

Ferromagnetism



Domains randomly aligned

Domains aligned with external field

Magnetic Hysteresis

Surface Bound Current →î Q F Roll Maxin = Total current: I = Koh h 5/ Ks]] But I = MA $= \frac{M \cdot V \cdot I}{A} = \frac{M \cdot A \cdot h}{A} = M \cdot h$ =) |M| = |K6| //

olume Bound Current Sun TMX $M_{\star}(x) - M_{\star}(x + bx)$ $= - \lambda M_{\star} \cdot \Delta \chi$ $K_{\gamma 2} = \frac{F_{\gamma 2}}{\Delta X} = M_X (2 + \Delta 2) - M_X (2)$ $= \partial M_2 / \partial 2 \cdot \Delta 2$ $K_{y} = \frac{F_{y'}}{\Delta t} + \frac{F_{y'}}{\Delta X}$ $Jy = \frac{J_{y1} + J_{y2}}{5 \times 52}$ $= \left(\frac{\partial M_X}{\partial t} - \frac{\partial M_Z}{\partial X} \right)$ $= (\nabla \times \Lambda)_{y}$ => J. = V×M //