$\nabla \cdot E=\frac{\rho}{\varepsilon_{0}}$

 $\nabla \cdot B=0$$\nabla \times E=-\frac{\partial B}{\partial t}$
$\nabla \times B=\mu_{0} \varepsilon \frac{\partial E}{\partial t}+\mu_{0} \mathrm{~J}$

Electricity and Magnetism I: 3811

Professor Jasper Halekas
Van Allen 301
MWF 9:30-10:20 Lecture

Check Your Understanding 1

An insulating solid sphere of radius a has a uniform volume charge density ρ and carries total charge Q.
(A) Find the magnitude of the E-field at a point outside the sphere
(B) Find the magnitude of the E-field at a point inside the sphere

Ql: $\xi \vec{E} \cdot d \vec{a}=Q_{\text {enc }} / \varepsilon_{0}$
A. $E \cdot 4 \pi r^{2}=Q / \varepsilon_{0}$

$$
\Rightarrow E=Q / 4 \pi \varepsilon_{0} r^{2}
$$

B.

$$
\begin{aligned}
E \cdot 4 \pi r^{2} & =Q_{\text {enc }} / \varepsilon_{0} \\
& =\frac{1}{\varepsilon_{0}} \int \rho d \tau \\
= & \frac{1}{\varepsilon_{0}} \int_{0}^{r} \int_{0}^{\pi} \int_{0}^{2 \pi} \rho d \rho \sin \theta d \theta r^{\prime 2} d r \\
= & \rho / \varepsilon_{0} \cdot 4 / 3 \pi r^{3} \\
\Rightarrow E & =\frac{\rho}{3 \varepsilon_{0}} r \\
& =\frac{Q r}{4 \pi \varepsilon_{0} a^{3}}
\end{aligned}
$$

Check Your Understanding 2

For the charged sphere of the previous problem, find the electric potential V(o) at the center of the sphere, with respect to infinity.

$$
\begin{aligned}
& Q 2: V(0)-V(\infty) \\
&=-\int_{\infty}^{0} \vec{E} \cdot d \vec{l} \\
&=-\int_{\infty}^{0} E r d r \\
&=-\int_{\infty}^{R} \frac{Q}{4 \pi \varepsilon_{0} r^{2}} d r-\int_{R}^{0} \frac{Q r d r}{4 \pi \varepsilon_{0} R^{3}} \\
&= Q /\left.4 \pi \varepsilon_{0} r\right|_{\infty} ^{R}-\left.\frac{Q r^{2}}{8 \pi \varepsilon_{0} R^{3}}\right|_{R} ^{0} \\
&= Q / 4 \pi \varepsilon_{0} R+Q / 8 \pi \varepsilon_{0} R \\
&= 3 Q / 8 \pi \varepsilon_{0} R
\end{aligned}
$$

Check Your Understanding 3

- A sphere of radius R has purely radial polarization that increases with distance from the center of the sphere: $P_{r}(r)=A r$
- Find all of the volume and surface bound charge density in and on the sphere.
- Note $\nabla \cdot \vec{A}=\frac{1}{r^{2}} \frac{\partial\left(r^{2} A_{r}\right)}{\partial r}$ for a purely radial field
- Find the electric field $E(r)$ as a function of radius outside the sphere ($r>\mathrm{R}$)

Q 3 :

$$
\begin{aligned}
& \vec{p}=A r \hat{r} \\
& \rho_{r}=-\nabla \cdot \vec{\rho} \\
& =-\frac{1}{r^{2}} 2 / 2 r\left(r^{2} \cdot A r\right) \\
& =-3 A \\
& \sigma_{6}=\bar{P} \cdot \hat{n} /_{R}=\left.A r \hat{r} \cdot \hat{r}\right|_{R} \\
& =A R
\end{aligned}
$$

Total bound charge:

$$
\begin{aligned}
& Q=\int \rho_{6} d r+\int \sigma_{0} d a \\
&=-3 A \cdot 4 / 3 \pi R^{3}+A R \cdot 4 \pi R^{2} \\
&=0 \text { as it must be } \\
& \text { so } E(r)=0 \quad r>R
\end{aligned}
$$

Check Your Understanding \#4

- An infinitely long magnetized cylinder of radius R has purely azimuthal magnetization that increases with radius: $\mathrm{M}_{\phi}(\mathrm{s})=\mathrm{A} s$
- Find all the volume and surface bound current
- Note $\nabla \times \vec{A}=\left(\frac{1}{s} \frac{\partial A_{z}}{\partial \phi}-\frac{\partial A_{\phi}}{\partial z}\right) \hat{s}+\left(\frac{\partial A_{s}}{\partial z}-\frac{\partial A_{z}}{\partial s}\right) \hat{\phi}+\frac{1}{s}\left(\frac{\partial\left(s A_{\phi)}\right)}{\partial s}-\frac{\partial A_{s}}{\partial \phi}\right) \hat{z}$
- Find the magnetic field $B(s)$ as a function of radius within the cylinder $(s<R)$

QU: $\bar{M}=A s \hat{\varphi}$

$$
\begin{aligned}
\vec{J}_{6} & =\nabla \times \vec{M} \\
& =\frac{1}{s} \frac{d}{A s}(s \cdot A s) \hat{z} \\
& =2 A \hat{z} \\
\bar{x}_{1} & =\vec{M} \times \hat{n} \\
& =A s \hat{\phi} \times \hat{s} \mid R \\
& =-A R \hat{z}
\end{aligned}
$$

$$
\begin{aligned}
\oint \vec{B}-d \vec{l} & =\mu_{0} F_{\text {enc }} \\
& =\mu_{0} \int \vec{J} \cdot d_{a} \\
\Rightarrow B \cdot 2 \pi s & =\mu_{0} \cdot 2 A \cdot \pi s^{2} \\
\Rightarrow \vec{B} & =\mu_{0} A s \hat{q_{0}} \quad s<R
\end{aligned}
$$

-Note $\bar{B}=\mu \cdot \vec{M}$ so $\vec{H}=0$

- Must be true since no free current present

