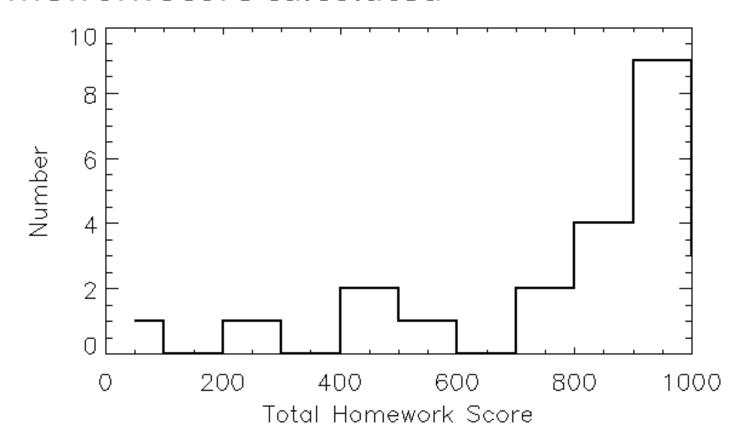


Electricity and Magnetism I: 3811

Professor Jasper Halekas Van Allen 301 MWF 9:30-10:20 Lecture

Announcements

 All homework scores uploaded and total homework score calculated



Announcements

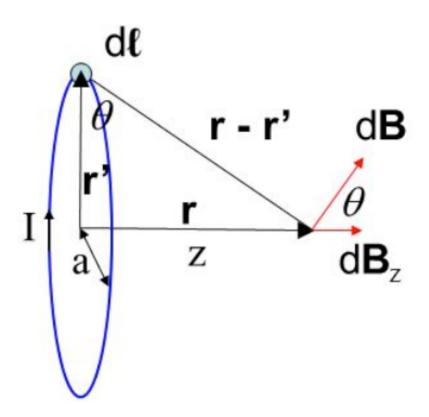
- Final Wednesday 12/18 12:30-2:30 in Van 301
 - The eternal question: Donuts or cookies?
 - Final Equation Sheet posted
 - Annotate as desired and bring to exam
 - Final exam from last year (and solutions) posted
- Please fill out course evaluations
 - Response rate so far: 10/23 not bad but still time for more!
- Extra Office Hours Next Week
 - Monday 9am-12pm, Tuesday 12pm-2pm

Final Exam Details

- Final exam will have 8 questions covering material from Ch. 1-6 of Griffiths
 - No problems specifically on Ch. 1 but most problems require the use of concepts or mathematical techniques from Ch. 1
 - Approximate distribution of points:
 - 62 points electrostatics
 - 38 points magnetostatics

Position and Source Coordinates

Position & Source: Position vector \vec{r} , source vector \vec{r}' , separation vector $\overrightarrow{\Delta r} = \vec{r} - \vec{r}'$



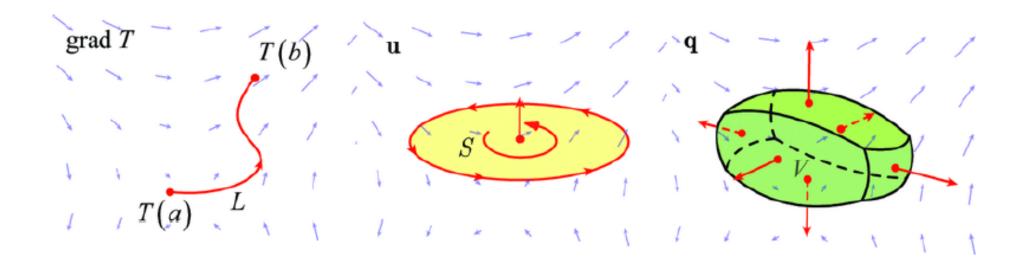
Fundamental Theorems of Vector Calculus

Fundamental Theorems of Vector Calculus:

$$\int_{\vec{a}}^{\vec{b}} \nabla f \cdot \vec{dl} = f(\vec{b}) - f(\vec{a}) \qquad \qquad \int \nabla \cdot \vec{A} \, d\tau = \oint \vec{A} \cdot \vec{da}$$

$$\int \nabla \cdot \vec{A} \, d\tau = \oint \vec{A} \cdot \overrightarrow{da}$$

$$\int (\nabla \times \vec{A}) \cdot \overrightarrow{da} = \oint \vec{A} \cdot \overrightarrow{dl}$$



The Right Coordinates for the Job

Cartesian Coordinates: $\overrightarrow{dl} = dx\hat{x} + dy\hat{y} + dz\hat{z}$ $d\tau = dx dy dz$

$$\nabla f = \frac{\partial f}{\partial x} \hat{x} + \frac{\partial f}{\partial y} \hat{y} + \frac{\partial f}{\partial z} \hat{z} \qquad \nabla \cdot \vec{A} = \frac{\partial A_x}{\partial x} + \frac{\partial A_y}{\partial y} + \frac{\partial A_z}{\partial z}$$

$$\nabla \times \vec{A} = \left(\frac{\partial A_z}{\partial y} - \frac{\partial A_y}{\partial z}\right) \hat{x} + \left(\frac{\partial A_x}{\partial z} - \frac{\partial A_z}{\partial x}\right) \hat{y} + \left(\frac{\partial A_y}{\partial x} - \frac{\partial A_x}{\partial y}\right) \hat{z} \qquad \nabla^2 f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} + \frac{\partial^2 f}{\partial z^2}$$

Spherical Coordinates: $x = r \sin\theta \cos\phi$, $y = r \sin\theta \sin\phi$, $z = r \cos\theta$

$$\overrightarrow{dl} = dr\hat{r} + r d\theta \hat{\theta} + r \sin\theta d\phi \hat{\phi}$$
 $d\tau = r^2 \sin\theta dr d\theta d\phi$

$$\nabla f = \frac{\partial f}{\partial r} \hat{r} + \frac{1}{r} \frac{\partial f}{\partial \theta} \hat{\theta} + \frac{1}{r \sin \theta} \frac{\partial f}{\partial \phi} \hat{\phi} \qquad \nabla \cdot \vec{A} = \frac{1}{r^2} \frac{\partial (r^2 A_r)}{\partial r} + \frac{1}{r \sin \theta} \frac{\partial (\sin \theta A_\theta)}{\partial \theta} + \frac{1}{r \sin \theta} \frac{\partial A_\phi}{\partial \phi}$$

$$\nabla \times \vec{A} = \frac{1}{r \sin \theta} \left(\frac{\partial (\sin \theta A_{\phi})}{\partial \theta} - \frac{\partial A_{\theta}}{\partial \phi} \right) \hat{r} + \frac{1}{r} \left(\frac{1}{\sin \theta} \frac{\partial A_{r}}{\partial \phi} - \frac{\partial (r A_{\phi})}{\partial r} \right) \hat{\theta} + \frac{1}{r} \left(\frac{\partial (r A_{\theta})}{\partial r} - \frac{\partial A_{r}}{\partial \theta} \right) \hat{\phi}$$

$$\nabla^2 f = \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial f}{\partial r} \right) + \frac{1}{r^2 \sin\theta} \frac{\partial}{\partial \theta} \left(\sin\theta \frac{\partial f}{\partial \theta} \right) + \frac{1}{r^2 \sin^2\theta} \frac{\partial^2 f}{\partial \phi^2}$$

Cylindrical Coordinates: $x = s \cos \phi$, $y = s \sin \phi$, z = z

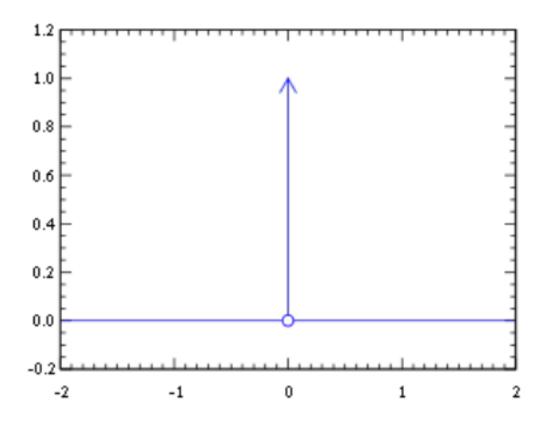
$$\overrightarrow{dl} = ds\hat{s} + s d\phi \hat{\phi} + dz\hat{z}$$
 $d\tau = s ds d\phi dz$

$$\nabla f = \frac{\partial f}{\partial s} \hat{s} + \frac{1}{s} \frac{\partial f}{\partial \phi} \hat{\phi} + \frac{\partial f}{\partial z} \hat{z} \qquad \nabla \cdot \vec{A} = \frac{1}{s} \frac{\partial (s A_s)}{\partial s} + \frac{1}{s} \frac{\partial A_{\phi}}{\partial \phi} + \frac{\partial A_z}{\partial z}$$

$$\nabla \times \vec{A} = \left(\frac{1}{s}\frac{\partial A_z}{\partial \phi} - \frac{\partial A_\phi}{\partial z}\right)\hat{s} + \left(\frac{\partial A_s}{\partial z} - \frac{\partial A_z}{\partial s}\right)\hat{\phi} + \frac{1}{s}\left(\frac{\partial (s\,A_\phi)}{\partial s} - \frac{\partial A_s}{\partial \phi}\right)\hat{z} \qquad \nabla^2 f = \frac{1}{s}\frac{\partial}{\partial s}\left(s\frac{\partial f}{\partial s}\right) + \frac{1}{s^2}\frac{\partial^2 f}{\partial \phi^2} + \frac{\partial^2 f}{\partial z^2}$$

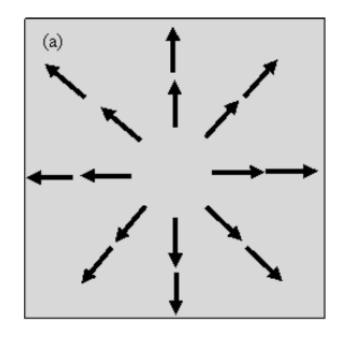
Dirac Delta Function

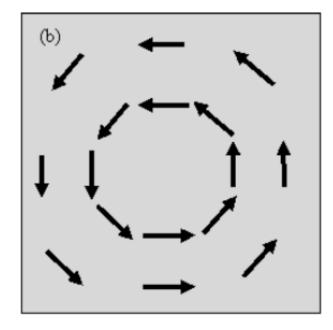
Dirac Delta Function: $\int \delta^3(\vec{r} - \vec{a}) d\tau = 1$ if \vec{a} contained in volume, $\delta^3(\overrightarrow{\Delta r}) = \frac{1}{4\pi} \nabla \cdot \left(\frac{\widehat{\Delta r}}{\Delta r^2}\right)$



Special Functions

Irrotational Function (e.g. Electrostatic Field): $\nabla \times \vec{E} = 0$ $\vec{E} = -\nabla V$ $\oint \vec{E} \cdot \vec{dl} = 0$ Solenoidal Function (e.g. Magnetostatic Field): $\nabla \cdot \vec{B} = 0$ $\vec{B} = \nabla \times \vec{A}$ $\oint \vec{B} \cdot \vec{da} = 0$

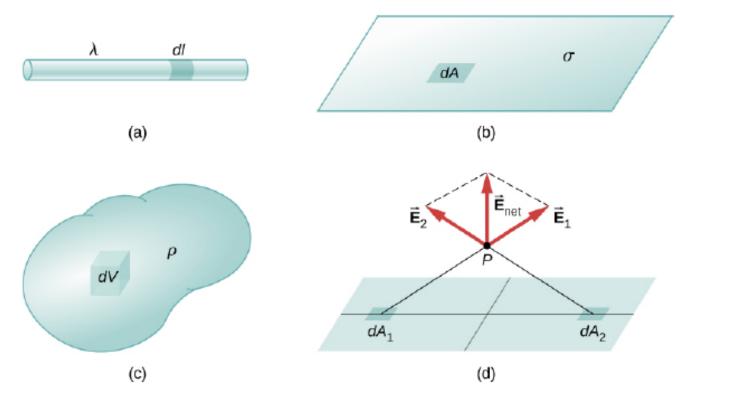




Fields from Direct Integration

Electric Field:
$$\vec{E}(\vec{r}) = \frac{1}{4\pi\varepsilon_0} \int \frac{\rho(\vec{r})}{\Delta r^2} \widehat{\Delta r} \ d\tau'$$
, $\vec{E}(\vec{r}) = \frac{1}{4\pi\varepsilon_0} \int \frac{\sigma(\vec{r})}{\Delta r^2} \widehat{\Delta r} \ da'$, $\vec{E}(\vec{r}) = \frac{1}{4\pi\varepsilon_0} \int \frac{\lambda(\vec{r})}{\Delta r^2} \widehat{\Delta r} \ dl'$

Magnetic Field:
$$\vec{B}(\vec{r}) = \frac{\mu_0}{4\pi} \int \frac{\vec{J}(\vec{r'}) \times \widehat{\Delta r}}{\Delta r^2} d\tau'$$
, $\vec{B}(\vec{r}) = \frac{\mu_0}{4\pi} \int \frac{\vec{K}(\vec{r'}) \times \widehat{\Delta r}}{\Delta r^2} da'$, $\vec{B}(\vec{r}) = \frac{\mu_0}{4\pi} \int \frac{\vec{I}(\vec{r'}) \times \widehat{\Delta r}}{\Delta r^2} dl'$



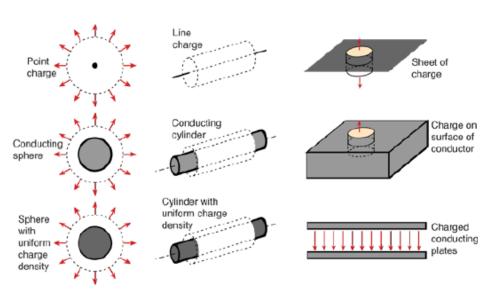
Exploiting Symmetry

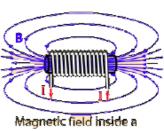
Gauss's Law: $\oint \vec{E} \cdot \vec{da} = Q_{enc}/\varepsilon_0$, $\nabla \cdot \vec{E} = \rho/\varepsilon_0$, $\oint \vec{D} \cdot \vec{da} = Q_{f_enc}$, $\nabla \cdot \vec{D} = \rho_{free}$

Ampere's Law: $\oint \vec{B} \cdot \vec{dl} = \mu_0 I_{enc}, \ \nabla \times \vec{B} = \mu_0 \vec{J}, \qquad \oint \vec{H} \cdot \vec{dl} = I_{free_enc}, \ \nabla \times \vec{H} = \vec{J}_{free}$

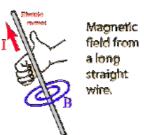
$$\oint \vec{D} \cdot \overrightarrow{da} = Q_{f_enc}, \quad \nabla \cdot \vec{D} = \rho_{free}$$

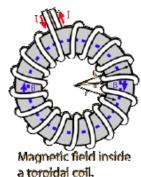
$$\oint \vec{H} \cdot \vec{dl} = I_{free_enc}, \ \nabla \times \vec{H} = \vec{J}_{free}$$





long solenoic.





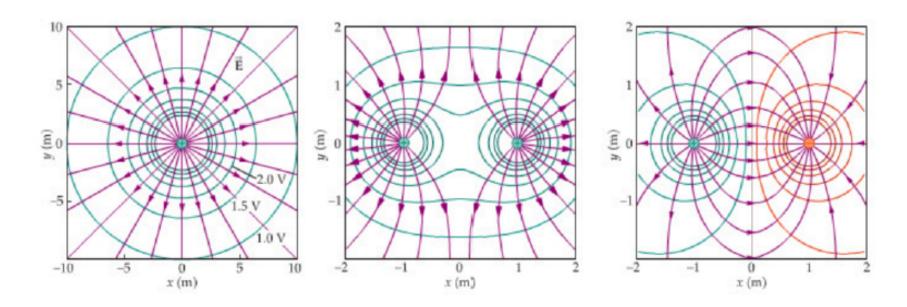
Magnetic field inside a conductor.

Potential Theory

Electric Potential:
$$V(\vec{r}) = \frac{1}{4\pi\varepsilon_0} \int \frac{\rho(\vec{r})}{\Delta r} d\tau', \ V(\vec{r}) = \frac{1}{4\pi\varepsilon_0} \int \frac{\sigma(\vec{r})}{\Delta r} da', \ V(\vec{r}) = \frac{1}{4\pi\varepsilon_0} \int \frac{\lambda(\vec{r})}{\Delta r} dl'$$

$$\vec{E} = -\nabla V, \quad V(\vec{b}) - V(\vec{a}) = -\int_{\vec{d}}^{\vec{b}} \vec{E} \cdot \vec{dl}, \ \nabla^2 V = -\rho/\varepsilon_0$$

Magnetic Vector Potential: $\vec{A}(\vec{r}) = \frac{\mu_0}{4\pi} \int \frac{\vec{f}(\vec{r})}{\Delta r} d\tau'$, $\vec{A}(\vec{r}) = \frac{\mu_0}{4\pi} \int \frac{\vec{K}(\vec{r})}{\Delta r} da'$, $\vec{A}(\vec{r}) = \frac{\mu_0}{4\pi} \int \frac{\vec{I}(\vec{r})}{\Delta r} dl'$ $\vec{B} = \nabla \times \vec{A}$, $\nabla \cdot \vec{A} = 0 \& \nabla^2 \vec{A} = -\mu_0 \vec{J}$ (Coulomb gauge)



Laplace's Equation

Laplace's Equation: $\nabla^2 V = 0$ if $\rho = 0$, $\nabla^2 \vec{A} = 0$ if $\vec{J} = 0$

Separation of Variables: $\frac{d^2X}{dx^2} = C_1X$, $\frac{d^2Y}{dy^2} = C_2Y$, $\frac{d^2Z}{dz^2} = C_3Z$, $C_1 + C_2 + C_3 = 0$, V(x,y,z) = X(x)Y(y)Z(z)

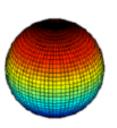
Separation of Variables (Spherical): $V(r,\theta) = \sum_{0}^{\infty} \left(A_l r^l + \frac{B_l}{r^{l+1}} \right) P_l(\cos\theta)$

$$P_0(\cos\theta) = 1$$

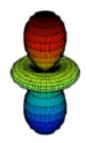
$$P_1(\cos\theta) \approx \cos\theta$$

$$P_2(\cos\theta) = \frac{1}{2}(3\cos^2\theta - 1)$$

$$P_3(\cos\theta) = \frac{1}{2} (5\cos^3\theta - 3\cos\theta)$$



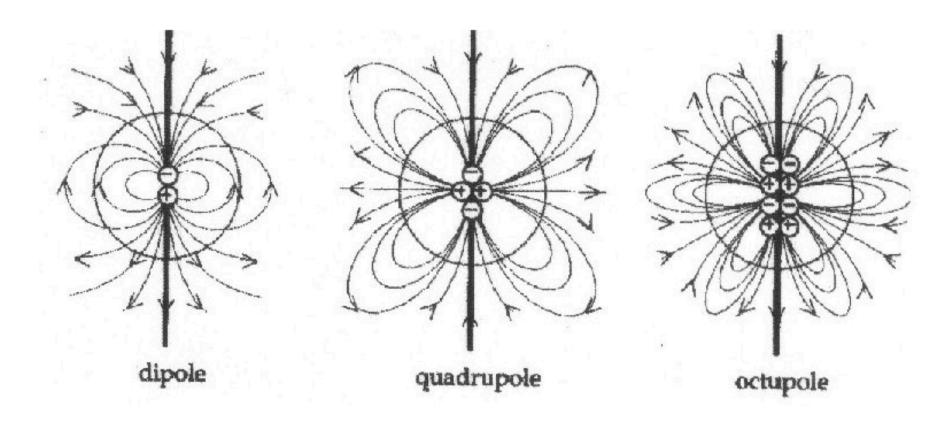






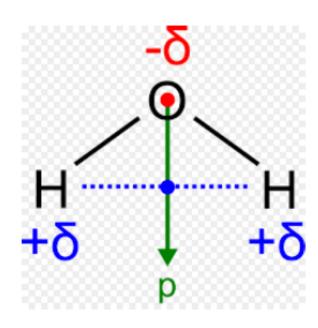
Multipole Expansion

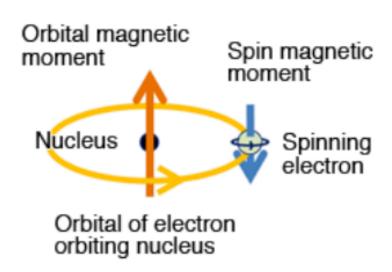
Multipoles:
$$V(\vec{r}) = \frac{1}{4\pi\varepsilon_0} \sum_{0}^{\infty} \frac{1}{r^{n+1}} \int (r')^n P_n(\cos\alpha) \rho(\vec{r}') d\tau', \quad \vec{A}(\vec{r}) = \frac{\mu_0 I}{4\pi} \sum_{0}^{\infty} \frac{1}{r^{n+1}} \int (r')^n P_n(\cos\alpha) \vec{dl}'$$



Dipoles

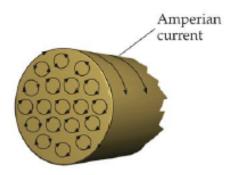
Dipoles:
$$\vec{p} = \int \vec{r}' \rho(\vec{r}') d\tau'$$
, $V_{dip}(\vec{r}) = \frac{1}{4\pi\varepsilon_0} \frac{\vec{p}\cdot\hat{r}}{r^2}$, $\vec{\tau} = \vec{p}\times\vec{E}$, $\vec{F} = (\vec{p}\cdot\nabla)\vec{E}$, $\vec{P} = \vec{p}/volume$ $\vec{m} = I\vec{a}$, $\vec{A}_{dip}(\vec{r}) = \frac{\mu_0}{4\pi} \frac{\vec{m}\times\hat{r}}{r^2}$, $\vec{\tau} = \vec{m}\times\vec{B}$, $\vec{F} = \nabla(\vec{m}\cdot\vec{B})$, $\vec{M} = \vec{m}/volume$

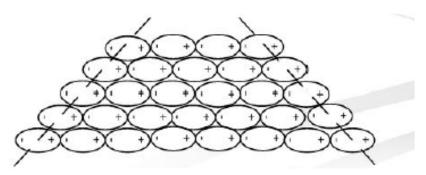


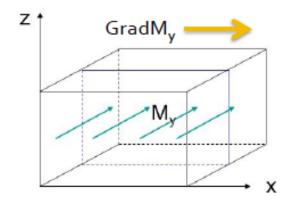


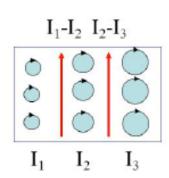
Fields in Matter

Fields in Matter:
$$\vec{D} = \varepsilon_0 \vec{E} + \vec{P}$$
, $\sigma_b = \vec{P} \cdot \hat{n}$, $\rho_b = -\nabla \cdot \vec{P}$ $\vec{H} = \frac{1}{\mu_0} \vec{B} - \vec{M}$, $\vec{K}_b = \vec{M} \times \hat{n}$, $\vec{J}_b = \nabla \times \vec{M}$



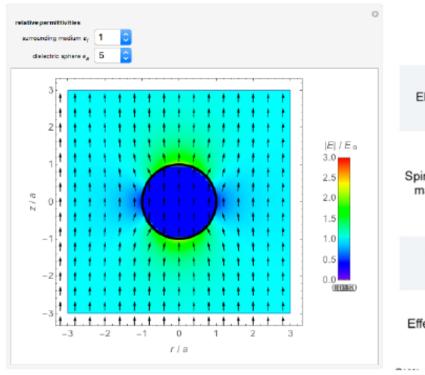






Linear Media

Linear Materials:
$$\vec{P} = \varepsilon_0 \chi_e \vec{E}$$
, $\vec{D} = \varepsilon \vec{E} = (1 + \chi_e) \varepsilon_0 \vec{E} = \varepsilon_r \varepsilon_0 \vec{E}$
 $\vec{M} = \chi_m \vec{H}$, $\vec{B} = \mu \vec{H} = (1 + \chi_m) \mu_0 \vec{H}$



Diamagnetic Paramagnetic $\uparrow\downarrow\uparrow\uparrow\downarrow\uparrow\downarrow$ $\uparrow\downarrow\uparrow\uparrow\downarrow\uparrow$ Electron pairing No unpaired electrons At least one unpaired electron Spin alignment with magnetic field B +---**-**○→ **-**○→ Anti-parallel Parallel Reaction to magnets Very weakly repelled Attracted Effect on magnetic field lines Field bends slightly Field bends toward

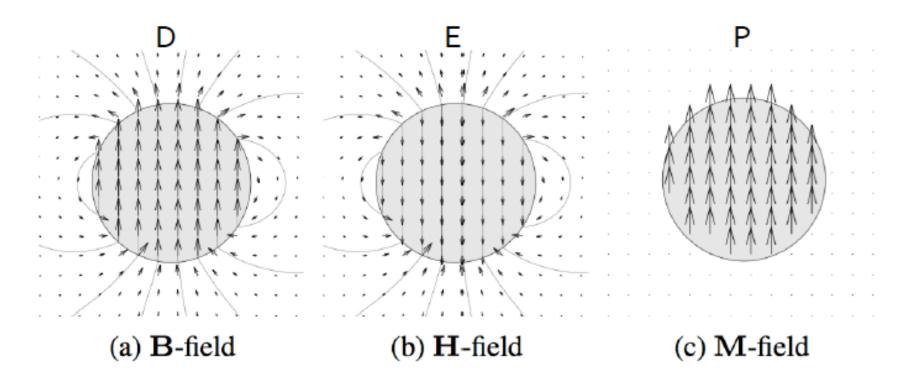
away from the material

the material

Types of magnetism

Boundary Conditions

Boundary Conditions:
$$\Delta V = 0$$
, $\Delta \vec{E} = \frac{\sigma}{\varepsilon_0} \hat{n} = -\Delta \left(\frac{\partial V}{\partial n}\right) \hat{n}$, $\Delta D_{\perp} = \sigma_f$, $\Delta \vec{D}_{||} = \Delta \vec{P}_{||}$
 $\Delta \vec{A} = 0$, $\Delta \vec{B} = \mu_0(\vec{K} \times \hat{n})$, $\Delta \left(\frac{\partial \vec{A}}{\partial n}\right) = -\mu_0 \vec{K}$, $\Delta \vec{H}_{||} = \vec{K}_{free} \times \hat{n}$, $\Delta H_{\perp} = -\Delta M_{\perp}$



Miscellaneous

Continuity: $\nabla \cdot \vec{J} = -\frac{\partial \rho}{\partial t}$ (=0 in electrostatics/magnetostatics)

Lorentz Force: $\vec{F} = Q(\vec{E} + \vec{v} \times \vec{B})$, On Wire: $\vec{F}_{mag} = \int I(\vec{dl} \times \vec{B})$

Work and Energy: $W=Q\Delta V$, $W_{electrostatic}=\frac{\varepsilon_0}{2}\int E^2d\tau$, $W_{elec+polarization}=\frac{1}{2}\int \vec{E}\cdot\vec{D}\;d\tau$