$\nabla \cdot E=\frac{\rho}{\varepsilon_{0}}$

 $\nabla \cdot B=0$$\nabla \times E=-\frac{\partial B}{\partial t}$
$\nabla \times B=\mu_{0} \varepsilon \frac{\partial E}{\partial t}+\mu_{0} \mathrm{~J}$

Electricity and Magnetism II: 3812

Professor Jasper Halekas
Virtual by Zoom!
MWF 9:30-10:20 Lecture

Exam 2 Scores

Exam 2 vs. Exam 1

X IDLO

Combined Score Distribution

X IDL 0

Problem 1

(1.)

Incident wave

Fresnel amplitude coefficients

Problem 2

Problem 3

$$
008
$$

Einstein's Postulates

The laws of physics are the same in all inertial frames of reference.

The speed of light is the same in all inertial frames of reference.

Does Relativity Apply to E\&M?

(a)

(b)

Ch. 12: Electrodynamics of Relativity

$$
=q v \hat{x} \times(-\beta \hat{z})
$$

$$
=q u B \hat{y}
$$

$$
\begin{aligned}
\mathcal{E} & =\left\{\bar{f} \cdot d \vec{l}=\oint \frac{\bar{F}}{q} \cdot d \bar{l}\right. \\
& =\oint v B \hat{y} \cdot d \bar{l}=-v B h
\end{aligned}
$$

Causes $I=\frac{V R h}{R} C W$

$$
\stackrel{v}{\leftarrow}
$$

EMF from \bar{B} in ane frame, from \vec{E} in the other!!

$$
\begin{aligned}
& \nabla \times \bar{E}=-\lambda \pi / \partial t \\
& \Rightarrow \& \vec{E} \cdot \vec{l}=-d / d t \int \vec{r} \cdot d \vec{a} \\
& \varepsilon=-d / d+(\text { Oho) } \\
& =- \text { Bht } \\
& \Rightarrow I=B \mathrm{KN} / \mathrm{RcW}
\end{aligned}
$$

Does Relativity Apply to E\&M?

In S, the force on q is due to a magnetic field.

The situation in frame S

In S^{\prime}, the force on q is due to an electric field.

$$
\begin{aligned}
& B \xrightarrow{x \xrightarrow{\vec{F} \uparrow x}} \quad \begin{array}{ll}
\stackrel{\rightharpoonup}{\longrightarrow} & \vec{F}=\vec{F}_{B}=q \vec{v} \times \vec{B}
\end{array} \\
& \text { Frame } S \\
& =q v \hat{x} \times(-b \hat{z}) \\
& =q v B \hat{y} \\
& x \quad x \\
& \cdot q \\
& \vec{F}_{B}=q \bar{v} \times \vec{B} \\
& =0
\end{aligned}
$$

$B^{x} \cdot q^{x}$
\times Frame s^{\prime}
-In S', no magnetic Lorentz
force

- The only possibility is an electric Lorentz force
- Must have:

$$
\vec{E}^{-}=V B \hat{y}=\vec{V} \times \vec{B}
$$

so that $\vec{F}^{\prime}=q \vec{E}=\vec{F}$

- Galilean transformation

$$
\vec{E}^{\prime}=q \vec{V} \times \vec{B}, \vec{B}^{\prime}=\bar{B}
$$

Relativity and E\&M

Comparing inertial frames

At time $t=0$, the two frames coincide. A ball is at rest in frame S. Its position is

- $x=2 \mathrm{minS}$
- $x^{\prime}=2 \mathrm{~m}$ in S^{\prime}

Comparing inertial frames

Frame S^{\prime} is moving to the right (relative to S) at $\mathrm{u}=1 \mathrm{~m} / \mathrm{s}$. At time $t=3 \mathrm{sec}$, the position of the ball is

- $x=2 \mathrm{~min} S$
- $x^{\prime}=-1 \mathrm{~m}$ in S^{\prime}

Galilean Transformation

$$
\begin{aligned}
& x^{\prime}=x-u t \\
& y^{\prime}=y \\
& z^{\prime}=z \quad \begin{array}{c}
\text { Note: } \\
\text { Assumes frames } \\
\text { aligned att }=0 \\
t^{\prime}
\end{array} \\
& v_{x}^{\prime}=\frac{d x^{\prime}(t)}{d t}=\frac{d}{d t}(x(t)-u t)=\frac{d x(t)}{d t}-u=v_{x}-u
\end{aligned}
$$

Observer 1 Frame

Observer 2 Frame

Suppose Observer 1's firecracker explodes at the origin of Observer 2's reference frame.

Observer 2 Frame

The light spreads out in Observer 2's frame from the point where they saw it explode. Because the train car is moving, the light in Observer 2's frame arrives at the left end first.

Observer 2 Frame

Sometime later, in Observer 2's frame, the light catches up to the right end of the train.

Simultaneity is Relative

Observer 1: in the train

> Event R: ($\mathrm{x}=+3, \mathrm{t}=3 \mathrm{~s}$)
Event L: ($\mathrm{x}=-3, \mathrm{t}=3 \mathrm{~s}$)

Observer 1 says: 'Simultaneous!'

Observer 2: on the platform

Event L':

$$
\left(x^{\prime}=-2, t^{\prime}=2 s\right)
$$

Event R':
($\mathrm{X}^{\prime}=+5, \mathrm{t}^{\prime}=4 \mathrm{~S}$)

Observer 2 says: 'Not simultaneous!'

Time Dilation

Time Dilation

Note: This experiment requires two observers.

Time Dilation

12.1 Special Relativity

Time $\underbrace{}_{L}$ dilation

Frame s

$$
\begin{aligned}
\Delta t^{\prime} & =2 h / c \\
& =\Delta t \\
& =\Delta \tau \\
=\text { proper } & \text { time interval }
\end{aligned}
$$

Frame S

$$
\begin{aligned}
\left(\frac{c \Delta t}{2}\right)^{2} & =\left(\frac{v \Delta t}{2}\right)^{2}+h^{2} \\
\Rightarrow \Delta f & =\frac{2 h}{c} \cdot \frac{1}{\sqrt{1-v^{2} / c^{2}}} \\
& =\gamma \Delta t^{\prime}
\end{aligned}
$$

Proper Time

- "Proper Time" $=\Delta \tau=\Delta t_{\text {。 }}$
- The time interval measured in a frame where the two events occur at the same spatial coordinate i.e. the frame moving with your clock
- The time interval Δt measured in any other frame moving with respect to this frame will be longer
- $\Delta t=\gamma \Delta t_{0}$

Length Contraction

Length Contraction

Observer 2

> Observers 2 and 3 measure the time interval: $\boldsymbol{\Delta} \boldsymbol{t}=\boldsymbol{\Delta} \boldsymbol{x} /(\boldsymbol{c} \boldsymbol{- v})+\boldsymbol{\Delta} \boldsymbol{x} /(\boldsymbol{c}+\boldsymbol{v})=>\boldsymbol{\Delta} \boldsymbol{x}=\boldsymbol{\Delta} \boldsymbol{x} ’ / \boldsymbol{\gamma}$

Length Contraction

$$
\begin{aligned}
& \frac{L=\Delta x^{\prime}}{c \Delta t^{\prime} / 2} \text { Frame } S^{\prime} \\
& \Delta t^{\prime} / 2 \\
& \Delta t^{\prime}=2 L_{0} / c=2 \Delta x^{\prime} / c \\
& \Rightarrow \Delta x^{\prime}=c \Delta t^{\prime} / 2=L .
\end{aligned}
$$

$$
\begin{aligned}
& \xrightarrow[\mathrm{CD}_{2}]{\stackrel{\mathrm{C} \mathrm{\Delta t}_{1}}{\rightleftarrows}} \\
& \Delta t_{1}=\left(\Delta x+v \Delta t_{1}\right) / c \\
& \Delta t_{2}=\left(\Delta x-v \Delta t_{2}\right) / c \\
& \Rightarrow \Delta t_{1}=\frac{\Delta x}{c}\left(\frac{1}{1-v / c}\right) \\
& \Delta t_{2}=\frac{\Delta x}{c}\left(\frac{1}{1+v / c}\right) \\
& \Delta t=\frac{\Delta x}{c} \frac{2}{1-v^{2} / c^{2}} \\
& \Delta x=\frac{c \Delta t}{2}\left(1-v / c^{2}\right) \\
& =\frac{c}{2} \frac{\Delta t^{\prime}}{\sqrt{1-v^{2} / c^{2}}}\left(1-v^{2} / c^{2}\right) \\
& =\Delta x^{\prime} \sqrt{1-v^{2} / c^{2}}=\frac{\Delta x^{\prime}}{\gamma}=\frac{L / \gamma}{\gamma}
\end{aligned}
$$

Proper Length

- "Proper Length" = L。
- The length of an object measured in a frame where it is at rest
- The length L measured in any other frame moving with a velocity with respect to this frame that has a component along the length will be shorter
- $L=L_{0} / \gamma$

Length Contraction

$\mathrm{V}=0$

