$\nabla \cdot E=\frac{\rho}{\varepsilon_{0}}$

 $\nabla \cdot B=0$$\nabla \times E=-\frac{\partial B}{\partial t}$
$\nabla \times B=\mu_{0} \varepsilon \frac{\partial E}{\partial t}+\mu_{0} \mathrm{~J}$

Electricity and Magnetism II: 3812

Professor Jasper Halekas
Virtual by Zoom!
MWF 9:30-10:20 Lecture
-Now start w/ both $\vec{E} \mathbb{B}$ (start in 5^{\prime})

$$
\begin{aligned}
& \vec{E}^{\prime}=-\frac{Q}{\varepsilon_{0} A_{0}} \cdot \frac{1}{\sqrt{1-v^{2} c^{2}}} \hat{y} \\
& \vec{B}^{\prime}=\frac{\mu_{0} Q}{A_{0}} \cdot \frac{v}{\sqrt{1-v^{2} / c^{2}}} \hat{z}
\end{aligned}
$$

Transform again!

$v^{\prime}=\frac{u+u^{\prime}}{1+\frac{u u^{\prime}}{c^{2}}}$ to left in $S^{\prime \prime}$

$$
\begin{aligned}
\vec{E}^{\prime \prime} & =\frac{-Q}{\varepsilon_{0} A_{0}} \cdot \frac{1}{\sqrt{1-v^{\prime 2} / c^{2}}} \hat{y} \\
& =\vec{E}^{\prime} \cdot \frac{\sqrt{1-v^{2} / c^{2}}}{\sqrt{1-v^{\prime 2} / c^{2}}}
\end{aligned} \hat{y}
$$

$$
\begin{aligned}
& \sqrt{\frac{1-v^{2} / c^{2}}{1-v^{\prime 2} / c^{2}}}=\sqrt{\frac{1-u^{2} / c^{2}}{1-\frac{\left(u+u^{\prime}\right)^{2}}{c^{2}\left(1+u u^{\prime} / c^{2}\right)^{2}}}} \\
& =\sqrt{\frac{\left(1-u^{2} / c^{2}\right)\left(1+\frac{\left.u u^{\prime}\right)^{2}}{c^{2}}\right)^{2}}{\left(1+\frac{u u u^{\prime}}{c^{2}}\right)^{2}-\left(u+u^{2} / c^{2}\right.}} \\
& =\left(1+\frac{u u^{\prime}}{c^{2}}\right) \sqrt{\frac{1-u^{2} / c^{2}}{1+\frac{2 u u^{\prime}}{c^{2}}+\frac{u^{\prime} u^{2}}{c^{4}}-\frac{u^{2}}{c^{2}}-\frac{u^{\prime 2}}{c^{2}}-\frac{2 u u^{\prime}}{c^{2}}}} \\
& =\left(1+\frac{u u^{\prime}}{c^{2}}\right) \sqrt{\frac{1-u^{2} / c^{2}}{\left(1-u^{2} / c^{2}\right)\left(1-u^{\prime 2} / c^{2}\right)}} \\
& =\left(1+\frac{u u /}{c^{2}}\right) \cdot \frac{1}{\sqrt{1-u^{\prime 2} / c^{2}}} \\
& =\left(1+\frac{u u^{-}}{c^{2}}\right) \gamma^{\prime} \\
& \Rightarrow E^{\prime \prime}=\gamma^{\prime}\left(1+\frac{u u^{2}}{c^{2}}\right) \overrightarrow{E^{\prime}} \\
& \Rightarrow E_{y}^{\prime \prime}=\gamma^{\prime}\left(1+\frac{u u^{\prime}}{c^{2}}\right) E_{y}^{\prime} \\
& \Rightarrow E_{y}^{\prime \prime}=\gamma^{\prime}\left(E_{y}^{\prime}-u^{\prime} B_{z}^{\prime}\right) \\
&
\end{aligned}
$$

Simibarly $E_{z}^{\prime \prime}=\gamma^{\prime}\left(E z^{\prime}+v^{\prime}\right.$ by')

Next:

$$
\begin{aligned}
\overrightarrow{B^{\prime}} / & =\frac{1}{c^{2}} \overrightarrow{v^{\prime}} \times \overrightarrow{E^{\prime}} \\
B_{t^{\prime}}^{\prime \prime} & =-\frac{v^{\prime}}{c^{2}} E_{y}^{\prime \prime} \\
& =-\frac{u+u}{1+u u^{\prime} / c^{2}} \cdot \gamma^{\prime} \cdot\left(1+\frac{u u^{\prime}}{c^{2}}\right) E_{y}^{\prime} / c^{2} \\
& =-\gamma^{\prime}\left(u E_{y}^{\prime}+u^{\prime} E_{y}^{\prime}\right) / c^{2} \\
& =-\gamma^{\prime}\left(-c^{2} B_{t^{\prime}}^{\prime}+u^{\prime} E_{y}^{\prime}\right) / c^{2} \\
& =\gamma\left(B_{z}^{\prime}-\frac{c^{\prime}}{c^{2}} E_{y}^{\prime}\right)
\end{aligned}
$$

Similarly $B y^{\prime \prime}=\gamma\left(B y^{\prime}+\frac{u^{\prime}}{c^{2}} E_{z}^{\prime}\right)$
Finally (dropping all extra primes)

$$
\begin{aligned}
& E_{x}^{\prime}=E_{x}, E_{y}^{\prime}=\gamma\left(E_{y}-u B_{z}\right) \\
& E_{z}^{\prime}=\gamma\left(E_{z}+u B_{y}\right) \\
& B_{x}^{\prime}=B_{x} \quad B_{y}^{\prime}=\gamma\left(B_{y}+\frac{u}{c^{2}} E_{z}\right) \\
& B_{z}^{\prime}=\gamma\left(B_{z}-\frac{u}{c^{2}} E_{y}\right)
\end{aligned}
$$

Special Cases

$$
\vec{B}=0
$$

$$
\begin{aligned}
\vec{B}^{\prime} & =\left[0, \frac{r u}{c^{2}} E_{z},-\frac{r u}{c^{2}} E_{y}\right] \\
& =\left[0, \frac{u}{c^{2}} E_{z}^{\prime},-\frac{u}{c^{2}} E_{y}^{\prime}\right. \\
& =-\frac{1}{c^{2}} \vec{u} \times \vec{E}^{\prime} \\
& =\frac{1}{c^{2}} \vec{v} \times \vec{E}^{\prime} \text { if } \vec{v}=-\vec{u}
\end{aligned}
$$

so $\vec{B}=\frac{\bar{v} \times \vec{E}}{c^{2}}$ for moving

$$
\begin{aligned}
& E=0 \\
& E^{\prime}=\left[0,-\gamma u B_{z}, \gamma u B_{y}\right] \\
&=\left[0,-u B_{z}^{\prime}, u B^{\prime}\right] \\
&=\vec{u} \times \overrightarrow{0}^{\prime} \\
&=-\vec{v} \times \vec{B}^{-} \begin{array}{l}
\text { for moving } \\
\text { object }
\end{array}
\end{aligned}
$$

This is of fen called the motional electric field and is very important in space physics

Transformations

If S^{\prime} is moving with speed v in the positive x direction relative to S, then the coordinates of the same event in the two frames are related by:

Galilean transformation (classical)

$$
\begin{aligned}
& x^{\prime}=x-u t \\
& y^{\prime}=y \\
& z^{\prime}=z \\
& t^{\prime}=t
\end{aligned}
$$

Lorentz transformation (relativistic)

$$
\begin{aligned}
x^{\prime} & =\gamma(x-u t) \\
y^{\prime} & =y \\
z^{\prime} & =z \\
t^{\prime} & =\gamma\left(t-\frac{u}{c^{2}} x\right)
\end{aligned}
$$

Note: This assumes ($0,0,0,0$) is the same event in both frames.

Lorentz Transformation of 4 -Vectors

$$
\left[\begin{array}{c}
c t^{\prime} \\
x^{\prime} \\
y^{\prime} \\
z^{\prime}
\end{array}\right]=\left[\begin{array}{c}
\gamma c t-\beta \gamma x \\
-\beta \gamma c t+\gamma x \\
y \\
z
\end{array}\right] \quad \begin{aligned}
& \beta=\frac{\mathrm{v}}{\mathrm{c}} \\
& \gamma=\frac{1}{\sqrt{1-\frac{\mathrm{v}^{2}}{\mathrm{c}^{2}}}}
\end{aligned}
$$

Quick Intro to Four -Vectors
Lorentz Transformation

$$
\begin{aligned}
& x^{\prime}=r(x-u t) \\
& y^{\prime}=y \\
& z^{\prime}=z \\
& t^{\prime}=r\left(t-u / c^{2} x\right)
\end{aligned}
$$

Rewrite:

$$
\begin{aligned}
c t^{\prime} & =\gamma(c t-\beta x) \\
x^{\prime} & =\gamma(x-\beta c t) \\
y^{\prime} & =y \\
z^{\prime} & =z
\end{aligned}
$$

Can represent as:

$$
\begin{gathered}
x^{\mu}=\left(\begin{array}{l}
c f^{\prime} \\
x^{\prime} \\
y^{\prime} \\
z^{\prime}
\end{array}\right)=\left(\begin{array}{cccc}
\gamma & -\gamma \beta & 0 & 0 \\
-\gamma \beta & \gamma & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
c+ \\
x \\
y \\
z
\end{array}\right) \\
=\overbrace{\nu}^{\mu} x^{\nu}
\end{gathered}
$$

w/ repeated summation convention that:

$$
\Lambda_{\nu}^{\mu} x^{\nu}=\sum_{\nu=0}^{3} \Lambda_{\nu}^{\mu} x^{\nu}
$$

Repeated Summation Convention

Einstein Summation

Convention:

The convention that repeated indices are implicitly summed over. This can greatly simplify and shorten equations involving tensors. For example, using Einstein summation,

And

$$
a_{i} a_{i} \equiv \sum_{i} a_{i} a_{i}
$$

$$
a_{i k} a_{i j}=\sum_{i} a_{i k} a_{i j} .
$$

The convention was introduced by Einstein (1916, sec. 5), who later jested to a friend, "I have made a great discovery in mathematics; I have suppressed the summation sign every time that the summation must be made over an index which occurs twice..." (Kollros 1956; Pais 1982, p. 216).

- Any set of four quantities that trans forms wt this same matrix is a four -vector

$$
\begin{aligned}
& x^{\mu}=(c t, x, y, z) \\
& x_{\mu}=\left(-c t, x^{\prime}, y, z\right)
\end{aligned}
$$

- The quantity $x^{\mu} x_{\mu}$

$$
=-(c t)^{2}+x^{2}+y^{2}+z^{2}
$$

is invariant
Pratt: $x^{\mu} x_{\mu}^{\prime}=-\left(c t^{\prime}\right)^{2}+x^{\prime 2}+y^{-2}+z^{\prime 2}$

$$
\begin{aligned}
= & -(\gamma(c t-\beta x))^{2}+(\gamma(x-\beta c t))^{2}+y^{2}+z^{2} \\
= & -\gamma^{2}\left((c t)^{2}+(\beta x)^{2}-2 \beta x(t)\right. \\
& +\gamma^{2}\left(x^{2}+\left(\beta(t)^{2}-2 \beta x c t\right)+y^{2}+z^{2}\right. \\
= & \gamma^{2}\left(1-\beta^{2}\right)\left(x^{2}-(c t)^{2}\right)+y^{2}+z^{2} \\
= & -(c t)^{2}+x^{2}+y^{2}+z^{2}
\end{aligned}
$$

since $\gamma^{2}\left(1-\beta^{2}\right)=1$
The same is true for any 4-vector

Interval

$$
\begin{aligned}
\Delta x^{\mu} & =x_{A}^{\mu}-x_{B}^{\mu} \\
I & =\Delta x^{\mu} \Delta x_{\mu} \\
& =-c^{2} \Delta t^{2}+\Delta r^{2} \\
& =\text { const. } \\
& =\text { Invariant Interval }
\end{aligned}
$$

Δt \& Δr depend on reference frame, but not I

