$\nabla \cdot E=\frac{\rho}{\varepsilon_{0}}$

 $\nabla \cdot B=0$$\nabla \times E=-\frac{\partial B}{\partial t}$
$\nabla \times B=\mu_{0} \varepsilon \frac{\partial E}{\partial t}+\mu_{0} \mathrm{~J}$

Electricity and Magnetism II: 3812

Professor Jasper Halekas
Virtual by Zoom!
MWF 9:30-10:20 Lecture

Announcements

- Final Exam
- 3:00-5:00 pm (+1 hr grace) Monday 5/11 as scheduled
- Take-home open-book (same format as Midterm 2)
- Covers Chapters 7-12 in Griffiths
- Final equation sheet posted
- Last year's final \& answers posted
- Problem solving session Wednesday 5/6
- Review Friday 5/8

Announcements II

- Final Exam will cover Ch. 7-12, with the exception of the following sections:
- 7.3.4 Magnetic charge
- 8.2.4 Angular momentum
- 8.3 Magnetic forces do no work
- 9.4.3 Frequency dependence of permittivity
- 9.5 Guided waves
- 10.1.4 Lorentz force law in potential form
- 10.2.2 Jefimenko's equations
- 11.2.2-11.2.3 Radiation reaction
- 12.2.3-12.2.4 Relativistic kinematics and dynamics
- 12.3.3 The field tensor

Final Exam Instructions

- The exam will be posted on the course web page by 3:oopm. You must submit your answers to me by e-mail by 6:oopm. The exam is intended to take roughly two hours the extra hour is grace period to check your work, scan it, and submit it.
- This exam is open book and open notes. However, it is not open internet, open solutions manual, or open classmate. Please do not utilize solutions or consult with anyone to solve the problems. I trust you all not to abuse this unique situation.
- Read all the questions carefully and answer every part of each question. Show your work on all problems. Partial credit may be granted for correct logic or intermediate steps, even if the final answer is incorrect. Make sure to clearly indicate (e.g. circle) your final answers.
- The solution for each of the five problems is $\sim 1 / 2$ page. If it looks like your solution is going to require substantially more work, you may be doing it the hard way!
- Unless otherwise instructed, express your answers in terms of fundamental constants like μ_{o} and $\varepsilon_{o \prime}$ rather than calculating numerical values.
- Please ask if you have any questions, including clarification about the instructions, during the exam. A Zoom meeting (ID 992-770-55648) will be open during the exam.

Homework Scores

Field \& Dual Tensor

$$
\begin{aligned}
& F^{\mu \nu}=\left(\begin{array}{cccc}
0 & E_{x} / c & E_{y} / c & E_{z} / c \\
-E_{x} / c & 0 & B_{z} & -B_{y} \\
-E_{y} / c & -B_{z} & 0 & B_{x} \\
-E_{z} / c & B_{y} & -B_{x} & 0
\end{array}\right) \\
& G^{\mu \nu}=\left(\begin{array}{cccc}
0 & B_{x} & B_{y} & B_{z} \\
-B_{x} & 0 & -E_{z} / c & E_{y} / c \\
-B_{y} & E_{z} / c & 0 & -E_{x} / c \\
-B_{z} & -E_{y} / c & E_{x} / c & 0
\end{array}\right)
\end{aligned}
$$

Field Tensor Transformation

$$
F^{\mu \nu^{\prime}}=
$$

$$
\left[\begin{array}{cccc}
\gamma & -\beta \gamma & 0 & 0 \\
-\beta \gamma & \gamma & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\left(\begin{array}{cccc}
\mathbf{0} & \boldsymbol{E}_{x} / \boldsymbol{c} & \boldsymbol{E}_{y} / \boldsymbol{c} & \boldsymbol{E}_{z} / \boldsymbol{c} \\
-\boldsymbol{E}_{\boldsymbol{x}} / \boldsymbol{c} & \mathbf{0} & \boldsymbol{B}_{z} & -\boldsymbol{B}_{\boldsymbol{y}} \\
-\boldsymbol{E}_{y} / \boldsymbol{c} & -\boldsymbol{B}_{\boldsymbol{z}} & \mathbf{0} & \boldsymbol{B}_{\boldsymbol{x}} \\
-\boldsymbol{E}_{z} / \boldsymbol{c} & \boldsymbol{B}_{\boldsymbol{y}} & -\boldsymbol{B}_{\boldsymbol{x}} & \mathbf{0}
\end{array}\right)\left[\begin{array}{cccc}
\gamma & -\beta \gamma & 0 & 0 \\
-\beta \gamma & \gamma & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

$$
\begin{aligned}
& E_{x}{ }^{\prime}=E_{x}, E_{y}{ }^{\prime}=\gamma\left(E_{y}-u B_{z}\right), \quad E_{z}{ }^{\prime}=\gamma\left(E_{z}+u B_{y}\right) \\
& B_{x}{ }^{\prime}=B_{x}, B_{y}{ }^{\prime}=\gamma\left(B_{y}+\frac{u}{c^{2}} E_{z}\right), B_{z}{ }^{\prime}=\gamma\left(B_{z}-\frac{u}{c^{2}} E_{y}\right)
\end{aligned}
$$

Tensor Electradynamics

$$
\begin{aligned}
& \rho=Q / V \\
& \mathcal{F}=\rho \vec{v} \text { if all charges } \\
& \text { flow toyether }
\end{aligned}
$$

Praper charge densifo

$$
\begin{aligned}
& \rho \cdot=Q / v_{c} \quad w / v_{0}^{\prime}=v_{0} / v_{m e} \\
& \text { in rest frome }
\end{aligned}
$$

T his is a 4-vector

Continuity Equation

$$
\nabla \cdot \vec{\jmath}=-\lambda c / a t
$$

ar $\lambda \sigma_{x} / \partial x+\lambda \sigma_{y} / \partial_{y}+\partial \sigma_{z} / \partial_{z}=-\partial c / \partial t$ write as $2 J / \partial x^{\prime}+\partial J^{2} / \partial x^{2}+\frac{\partial J}{2} / \partial x^{3}=-\lambda 5 / \partial x^{0}$

$$
\Rightarrow \sqrt{\partial J \mu / \partial x^{\mu}}=0
$$

4 -d divergence of j^{μ} is Q

Maxwells Equations

$$
\begin{aligned}
& \partial F^{\mu \nu} / \partial x^{\nu} \\
& =\mu_{0} J^{\mu} \quad \partial \sigma^{\mu \nu} / \partial x^{\nu}=0 \\
& \partial F^{\alpha \nu} / \partial x^{\nu} \\
& =0+\partial / \partial x\left(\frac{E_{x}}{c}\right)+\partial / \partial y\left(\frac{E_{\nu}}{c}\right)+\partial / \partial_{z}\left(\frac{E_{z}}{C}\right) \\
& \\
& =\mu_{0} \sigma^{0}=\mu_{0} c \rho \\
& \Rightarrow \frac{1}{c} \nabla \cdot \vec{E}=\mu_{0} c \rho \\
& \Rightarrow \nabla \cdot \vec{E}=\rho / \varepsilon_{0}
\end{aligned}
$$

$$
\begin{aligned}
& \lambda F^{\prime \nu} / \partial x^{\nu}=2 /(c+1)(-E x / c)+0+20 x / 2 y-20 x / 20 \\
& =-\frac{1}{c^{2}} \lambda d x / y++2 d z / y y-2 d / \partial z \\
& =\mu \cdot \sigma^{\prime} \\
& =\mu \cdot \bar{v}_{x} \\
& \text { similarly }-\frac{1}{c^{2}} 2 \sqrt{2} / \partial t-2 \theta_{z} / \partial x+2 x_{x} / \sqrt{t z}=\mu \cdot J_{\mu} \\
& -\frac{1}{c^{2}} 2 \frac{1}{2} \frac{1}{\partial t}+2 t / \partial x-20 x / \partial y=\mu \cdot \sigma_{z} \\
& \Rightarrow \nabla \times \vec{B}=\mu_{0} \vec{V}+\mu_{\varepsilon_{0}} \cdot \overrightarrow{\varepsilon_{s}}+
\end{aligned}
$$

Similarly:

$$
\begin{gathered}
26^{00} / 2 x^{\nu}=0 \Rightarrow \sqrt{\nabla \cdot \vec{B}}=0 \\
26^{\prime \prime} / 2 x^{\nu}, 26^{2 \nu} / 3 x^{\nu}, 26 / \sqrt{2 x^{\nu}}=0 \\
\Rightarrow 2 \overrightarrow{3} / 2 t=-\nabla \times \vec{E}
\end{gathered}
$$

Force

$$
\begin{aligned}
K^{\mu} & =q \eta_{\nu} F^{\mu \nu}=d \rho \mu / d \tau \\
K^{0} & =q\left[-\gamma C \cdot 0+\gamma v_{x} \cdot E x / c+\gamma v_{y} E / c+\gamma v_{z} E_{x} / /\right] \\
& =q \vec{v} \cdot \vec{E} / \sqrt{1-v^{2} / c^{2}} \\
& =d / d \tau\left(\frac{W}{c}\right) \\
& =\frac{1}{c} \cdot \frac{1}{\sqrt{1-v^{2} / c^{2}}} d W / d t \\
& \Rightarrow \frac{d W / d t=q \vec{v} \cdot \vec{E}=\vec{F} \cdot \vec{v}}{E n e r g y ~ E q u a t i o n}
\end{aligned}
$$

$$
\begin{aligned}
& K^{\prime}=q\left[-\gamma c-E x / c+0+\gamma v_{y} d_{z}-\gamma v_{z} B_{y}\right] \\
& K^{2}=q\left[-\gamma c \cdot-E z / c-\gamma v_{x} b_{z}+0+\gamma v_{z} B_{x}\right] \\
& K^{2}=q\left[-\gamma c-E / c+\gamma v_{x} \theta_{y}-\gamma v_{y} A_{x}+0\right] \\
& \Rightarrow \vec{K}=\gamma q(\vec{E}+\vec{v} \times \vec{B}) \\
&=d \vec{\rho} / d \tau=\gamma d \vec{p} d t \\
& \Rightarrow \vec{F}=d \vec{\rho} d t=q(\vec{E}+\vec{v} \times \vec{B})
\end{aligned}
$$

Lorentz Force

Potentials

$$
\begin{aligned}
& A^{\mu}=\left(\frac{V}{c}, A x, A y, A z\right) \\
& F^{\mu \nu}=\partial A^{\nu} / \partial x_{\mu}-\partial A^{\mu} / \partial x_{\nu} \\
& \partial F^{\mu \nu} / \partial x^{\nu}=\mu_{0} J^{\mu} \\
& \Rightarrow \partial / \partial x^{\nu}\left(\partial A^{\nu} / \partial x_{\mu}\right)-\lambda / \partial x^{\nu}\left(\partial A^{\mu} / \partial x_{\nu}\right) \\
& =\partial / \partial x_{\mu}\left(\partial A^{\nu} \partial x^{\nu}\right)-\partial / \partial x^{\nu}\left(\partial A^{\mu} / \partial x_{\nu}\right)=\mu_{0} J^{\mu}
\end{aligned}
$$

Pick gauge $w / 2 A^{\nu} \delta x^{\nu}=0$ same as $\frac{\partial}{2}(x) \frac{v}{c}+\frac{2}{2 x} A x+\frac{2 y y}{c}$ 少 $+\frac{2}{2} / A_{z} A_{2}=0$

$$
\begin{aligned}
& \Rightarrow \nabla \cdot \vec{A}=-\frac{1}{c^{2}} \lambda / d t \\
& =\text { Lorentz Gauge } \\
& \Rightarrow 2 / \partial x_{\nu}\left(\partial A^{\mu} / x^{\nu}\right)=-\mu_{0} J^{\mu} \\
& \text { or } \square^{2} A^{\mu}=-\mu_{0} v^{\mu} \\
& \square^{2}=2 / 2 \times 2 \lambda / \partial x^{2} \\
& =\nabla^{2}-\frac{1}{t^{2}} \partial^{2} / 3+2
\end{aligned}
$$

the d-Alembertian

