
Professor	Jasper	Halekas	
Virtual	by	Zoom!	
MWF	9:30-10:20	Lecture	
	



¡  Final	Exam		
§  3:00-5:00	pm	(+1	hr	grace)	Monday	5/11	as	scheduled	
▪  Take-home	open-book	(same	format	as	Midterm	2)	

§  Covers	Chapters	7-12	in	Griffiths	(w/	exceptions	noted)	
▪  Final	equation	sheet	posted	
▪  Last	year’s	final	&	answers	posted	

§  Problem	solving	session	today	

§  Review	Friday	5/8	

¡  Course	evaluations	are	open	through	Sunday	night	
§  As	always,	feedback	is	much	appreciated!	
▪  I	have	also	added	an	extra	question	about	how	virtual	instruction	could	be	

improved	if	it	turns	out	to	be	necessary	again	in	the	future	
§  Thanks	very	much	to	the	6	students	who	have	responded	so	far	





¡  Consider	an	electromagnetic	plane	wave	
propagating	in	the	x	direction,	polarized	in	
the	y	direction,	in	frame	S.		

¡  Transform	the	fields	to	a	reference	frame	S’	
moving	at	speed	u	in	the	x	direction	with	
respect	to	S.		
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(b) Ē2 � c2B̄2 =
⇥
E2

x

+ �2(E
y

� vB
z

)2 + �2(E
z

+ vB
y

)2
⇤
� c2

⇥
B2

x

+ �2

�
B

y

+
v

c2

E
z

�
2 + �2

�
B

z

� v

c2

E
y

�⇤
= E2

x

+ �2

�
E2

y

� 2E
y

vB
z� + v2B2

z

+ E2

z

+ 2E
z

vB
y� + v2B2

y

� c2B2

y

� c22
v

c2

B
y

E
z�

� c2

v2

c4

E2

z

� c2B2

z

+ c22
v

c2

B
z

E
y� � c2

v2

c4

E2

y

�
� c2B2

x

= E2

x

� c2B2

x

+ �2

✓
E2

y

⇣
1� v2

c2

⌘
+ E2

z

⇣
1� v2

c2

⌘
� c2(B2

y

)
⇣
1� v2

c2

⌘
� c2B2

z

⇣
1� v2

c2

⌘◆

= (E2

x

+ E2

y

+ E2

z

)� c2(B2

x

+ B2

y

+ B2

z

) = E2 �B2c2. qed

(c) No. For if B = 0 in one system, then (E2 � c2B2) is positive. Since it is invariant, it must be positive in
any system. ) E 6= 0 in all systems.
Problem 12.48
(a) Making the appropriate modifications in Eq. 9.48 (and picking � = 0 for convenience),
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(b) Using Eq. 12.109 to transform the fields:
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Now the inverse Lorentz transformations (Eq. 12.19) ) x = �(x̄ + vt̄) and t = �
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Conclusion:
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. This is the Doppler shift for light. �̄ =
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� = c. Yup, this is exactly what I expected (the velocity of a light wave is the same

in any inertial system).
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¡  Starting	with	the	plane	
wave	from	the	previous	
problem,	rewrite	the	
fields	so	they	depend	on	
the	coordinates	x’	and	t’	
rather	than	x	and	t,	
using	the	inverse	
Lorentz	transformation	

¡  Use	ω/k	=	c	to	simplify		

ʹx = γ (x −ut)
ʹy = y
ʹz = z

ʹt = γ (t − u
c2
x)

Lorentz	transformation	





¡  Consider	an	infinitely	extended	neutral	wire	
carrying	a	current	I	along	the	x-axis	in	frame	S	

¡  Transforming	to	a	frame	S’	moving	at	velocity	
u	in	the	x	direction	with	respect	to	S,	find	the	
resulting	line	charge	density	λ	in	S’	




