$\nabla \cdot E=\frac{\rho}{\varepsilon_{0}}$

 $\nabla \cdot B=0$$\nabla \times E=-\frac{\partial B}{\partial t}$
$\nabla \times B=\mu_{0} \varepsilon \frac{\partial E}{\partial t}+\mu_{0} \mathrm{~J}$

Electricity and Magnetism II: 3812

Professor Jasper Halekas
Virtual by Zoom!
MWF 9:30-10:20 Lecture

Announcements

- Final Exam
- 3:00-5:00 pm (+1 hr grace) Monday 5/11 as scheduled
- Take-home open-book (same format as Midterm 2)
- Covers Chapters 7-12 in Griffiths (w/ exceptions noted)
" Final equation sheet posted
- Last year's final \& answers posted
- Problem solving session today
- Review Friday 5/8
- Course evaluations are open through Sunday night
- As always, feedback is much appreciated!
- I have also added an extra question about how virtual instruction could be improved if it turns out to be necessary again in the future
- Thanks very much to the 6 students who have responded so far

HW 10. 3

$$
\begin{aligned}
& \vec{E}=\frac{\lambda \hat{s}}{2 \pi \varepsilon_{0} s}=\frac{\lambda \vec{s}}{2 \pi \varepsilon_{0} s^{2}}=\frac{\lambda}{2 \pi \varepsilon_{0}} \frac{x \hat{x}+y \hat{y}}{x^{2}+y^{2}} \text { ins } \\
& E_{x}^{\prime}=E_{x}-E_{y}^{\prime}=\gamma E_{y} \\
& \Rightarrow \vec{E}^{\prime}=\frac{\lambda}{2 \pi \varepsilon_{0}} \frac{x \hat{x}+r y \hat{y}}{x^{2}+y^{2}} \\
& \quad x \& \& \text { do not yo to }!! \\
& \\
& x^{\prime} \& y^{\prime} \text { in this step!! }
\end{aligned}
$$

$$
\begin{aligned}
x & =\gamma\left(x^{\prime}+u f^{\prime}\right)=\gamma\left(x^{\prime}-v t^{\prime}\right) \\
\Rightarrow \vec{E}^{\prime} & =\frac{\lambda}{2 \pi \varepsilon} \frac{\gamma\left(x^{\prime}-v+\prime\right) \hat{x}+\gamma y^{\prime} \hat{y}}{r^{2}\left(x^{\prime}-v+^{\prime}\right)^{2}+y^{\prime 2}} \\
& =\frac{\lambda}{2 \pi \varepsilon_{0}} \frac{1}{\gamma} \frac{\left(x^{\prime}-v+\prime \hat{x}+y^{\prime} \hat{y}\right.}{\left.\left(x^{\prime}-v+\right)^{\prime}\right)^{2}+\left(1-v^{2} / c^{2}\right) y^{\prime 2}}
\end{aligned}
$$

Write in terms of

$$
\vec{E}^{\prime}=\frac{\lambda}{2 \pi \varepsilon_{0}} \frac{\sqrt{1-v^{2} c^{2}} \vec{R}}{R^{2}\left(1-v^{2} / c^{2} \sin ^{2} \theta\right)}
$$

Sample Problem I

- Consider an electromagnetic plane wave propagating in the x direction, polarized in the y direction, in frame S.

$$
\mathbf{E}(x, y, z, t)=E_{0} \cos (k x-\omega t) \hat{\mathbf{y}}, \quad \mathbf{B}(x, y, z, t)=\frac{E_{0}}{c} \cos (k x-\omega t) \hat{\mathbf{z}}
$$

- Transform the fields to a reference frame S' moving at speed u in the x direction with respect to S.

$$
\begin{aligned}
& E_{x}^{\prime}=E_{x}, E_{y}{ }^{\prime}=\gamma\left(E_{y}-u B_{z}\right), E_{z}^{\prime}=\gamma\left(E_{z}+u B_{y}\right) \\
& B_{x}^{\prime}=B_{x}, B_{y}{ }^{\prime}=\gamma\left(B_{y}+\frac{u}{c^{2}} E_{z}\right), B_{z}^{\prime}=\gamma\left(B_{z}-\frac{u}{c^{2}} E_{y}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \text { aPI } \\
& E y^{\prime}=\gamma(E y-u B z) \\
& =\gamma\left(E_{0} \cos (k x-\omega t)-u \frac{E_{0}}{c} \cos (k x-\omega t)\right. \\
& =\gamma\left(1-\frac{u}{c}\right) E_{0} \cos (k x-\omega t) \\
& =\gamma\left(1-\frac{u}{c}\right) E y \\
& E_{x}^{\prime}=E_{z}^{\prime}=0 \\
& B_{z}^{\prime}=\gamma\left(B_{z}-\frac{u}{c^{2}} E_{y}\right) \\
& =\gamma\left(\frac{E_{0}}{c} \cos (\omega x-\omega t)-\frac{u}{c^{2}} E_{0} \cos (k x-\omega t)\right) \\
& =\gamma\left(1-\frac{u}{c}\right) \frac{E_{0}}{c} \cos (k x-\omega t) \\
& =\gamma\left(1-\frac{u}{c}\right) B_{z} \\
& B x^{\prime}=B_{y}^{\prime}=0
\end{aligned}
$$

Note $|\vec{E}| /|\vec{B}|=C$ both frames!

Sample Problem II

- Starting with the plane wave from the previous problem, rewrite the fields so they depend on the coordinates x^{\prime} and t^{\prime} rather than x and t, using the inverse Lorentz transformation

Lorentz transformation

$$
\begin{aligned}
x^{\prime} & =\gamma(x-u t) \\
y^{\prime} & =y \\
z^{\prime} & =z \\
t^{\prime} & =\gamma\left(t-\frac{u}{c^{2}} x\right)
\end{aligned}
$$

- Use $\omega / k=c$ to simplify
$s p \pi$

Transform $k x-w t$

$$
\begin{aligned}
& x=\gamma\left(x^{-}+u f^{\prime}\right) \\
& t=\gamma\left(t^{-}+\frac{u}{c^{2}} x^{\prime}\right)
\end{aligned}
$$

sa $k x-w+\rightarrow \operatorname{kr}\left(x^{\prime}+u t^{\prime}\right)$

$$
-w \gamma\left(t^{\prime}+u / c^{2} x^{\prime}\right)
$$

$$
\begin{aligned}
& =\gamma\left[\left(k-w u / c^{2}\right) x^{\prime}-(w-k u) t^{\prime}\right] \\
& =\gamma\left[k(1-u / c) x^{\prime}-w(1-u / c) f^{\prime}\right]
\end{aligned}
$$

s. $k^{\prime}=\gamma\left(1-\frac{u}{c}\right) k$
$w^{\prime}=\gamma(1-u / c) \omega$
Note $w / k^{\prime}=w / k=C$

Sample Problem III

- Consider an infinitely extended neutral wire carrying a current I along the x-axis in frame S
- Transforming to a frame S' moving at velocity u in the x direction with respect to S, find the resulting line charge density λ in S^{\prime}
$J^{\mu}=\rho_{0} \eta^{\mu}=\left(c \rho_{0}, \rho_{0} v_{x}, \rho_{0} v_{y}, \rho_{0} v_{z}\right) / \sqrt{1-v^{2} / c^{2}}=\left(c \rho, J_{x}, J_{y}, J_{z}\right)$
$a^{\mu \prime}=\left(\gamma\left[a^{0}-\beta a^{1}\right], \gamma\left[a^{1}-\beta a^{0}\right], a^{2}, a^{3}\right)$

$$
\begin{aligned}
& \text { SP II } \\
& J^{\mu}=\left(0, \frac{I}{A}, 0,0\right) \\
& J^{\mu}=\left(\frac{-\gamma u}{c} \frac{I}{A}, \gamma \frac{I}{A}, 0,0\right) \\
& \Rightarrow C \rho^{\prime}=-\frac{\gamma u}{c} \frac{I}{A} \\
& \lambda^{\prime}=l^{\prime} A=\frac{-\gamma u}{c^{2}} I
\end{aligned}
$$

Note: $I=2 \lambda V$ composed of of $\lambda \quad \mathrm{w} /$ velocity V and $-\lambda$ w/ velocity $-V$ s. that $\lambda_{\text {total }}=0$

$$
\text { sa } \quad \begin{aligned}
\lambda^{\prime} & =\frac{-\gamma u}{c^{2}} I \\
& =\frac{-2 u \lambda v}{c^{2} \sqrt{1-u^{2} / c^{2}}}
\end{aligned}
$$

- Griffith gets this result wo considerably more effort by loving at how λ and $-\lambda$ transform

