
  

Bumps in the Night

• (In)homogeneity of the universe

• Gravitational instability

• Density fluctuations

• Correlation functions and power spectra

• Evolution

• Non-linear evolution



  

• Largest known structures have sizes ~ 70 Mpc

• This is ~3% of the Hubble radius of 2200 Mpc.

• Thus, the universe appears homogeneous at very large scales.

Homogeneity at large scales

^



  

• Define density contrast δ = (ρ-ρ)/ρ  where ρ = average matter density

• Fluctuations in CMB have ΔT/T ~ 10-5, suggest δ ~ 10-5 at z ~ 1000.

• For Earth at z ~ 0,  δ ~ 1030.    How?

• Gravity makes density fluctuations unstable.

Inhomogeneity



  

• Consider density perturbations in pressure-free matter, e.g. dust, in the linear regime.

• Use fluid approximation: density ρ(r, t) and velocity v(r, t).

– Have continuity equation (mass conservation):  ∂ρ/∂t + ∇• (ρv) = 0   

– And Euler equation (momentum conservation): ∂v/∂t + (v•∇)v  = -∇φ
– Gravitational potential:  ∇2φ = 4πGρ

• For initial δ = (ρ-ρ)/ρ  one can calculate δ(t).

•  In cosmology, one must consider the overall Hubble expansion  v(r, t) = H(t)r

• Rewrite in comoving coordinates, r = a(t)x, and peculiar velocity, v = H(t)r + u

• Equation for δ with only terms linear in δ and u:  ∂2δ/∂t2 + (2H)∂δ/∂t = 4πGρδ   

• No dependence on x due to Copernican principle, no spatial derivatives because terms 
beyond first order, e.g. uδ and u•u, were ignored since δ << 1.

Linear perturbations



  

• Equation for δ with only terms linear in δ and u:  ∂2δ/∂t2 + (2H)∂δ/∂t = 4πGρδ   

• Write solutions as: δ(x, t) = D(t) δ0(x), where d2D/dt2 + (2H) dD/dt  = 4πGρD

• In general, this equation has two linearly independent solutions: one increases with time, 
the other decreases.  We are interested only in perturbations that increase with time.  For 
this case, D(t) is the “growth factor”.

• For Einstein-de Sitter universe (Ωm = 1, ΩΛ = 0), solution is: D(t) = (t/t0)2/3 = a(t), 

growth factor equals scale factor.  Expansion slows growth from exponential to linear.

Linear perturbations

• Solution can be found for any 
cosmology and are relatively close 
to D = a, for realistic cosmologies.

• Since δ > 1 now, expect δ > 10-3  at  
z ~ 1000 when a ~ 10-3 

• From CMB,  δ ~ 10-5 for visible 
matter when a ~ 10-3   

• Solution is dark matter – δdark not 

constrained by CMB, dark matter 
not smoothed by radiation.



  

• How do we characterize δ?

• Use correlation function:                          
   <ρ(x)ρ(y)> = ρ2<[1+δ(x)][1+δ(y)]>

• Since <δ(x)> = 0, then                              
    <ρ(x)ρ(y)> = ρ2[1+<δ(x)δ(y)>])           
                      =  ρ2([1+ξ(x,y)]

• Correlation function ξ(x,y) = ξ(r) due to 
isotropy of universe.

• On scales of 2 to 20 Mpc, the correlation 
function is a power-law ξ(r) = (r/r0)

-γ,   

with r0 ~ 3 Mpc and  γ ~ 1.8.

• On scales larger than ~ 100 Mpc, ξ ~ 0.

Correlation functions



  

• Fourier transform converts a function of time to a 
function of (angular) frequency, F(ω) =  ∫ f(t)e-iωt dt 

• The transform, F(ω), reveals the frequencies at 
which there is significant structure in f(t).

• The transform is additive: F(f+g) = F(f) + F(g)

• The full Fourier transform of a function (in general 
complex) is a complete description of the original 
function.

• Fourier transforms can also be used to convert a 
function of position, f(x), to a function of 
wavenumber, F(k).

• The transform, F(k), reveals the length scales,           
L ~ 2π/k, where there is significant structure in f(x).

• Power is usually F*∙F

Fourier transform



  

• Power spectrum P(k) is the Fourier transform of the correlation function. 

• P(k) = 2π ∫ dr r2  ξ(r) sin(kr)/kr  where  k is the wave number.

• Significant power P(k) means there is structure at length scales L ~ 2π/k.

• Evolution of the power spectrum in the linear regime:

                       P(k,t) = D2(t)P(k,t0) = D2(t)P0(k)

• This is valid only for the evolution during the matter dominated phase of the universe 
(and only for small density fluctuations), so P0(k) is the power spectrum at the 

beginning of the matter dominated phase.

Power spectrum



  

• The initial spectrum of perturbations is thought to be a powerlaw, P(k) ~ kn, because 
powerlaws are scale invariant,  f(ax) = abf(x).  

• The initial power spectrum is modified during the radiation-dominated phase of the 
universe.  These modifications are described by the “transfer function”, T(k).

• The power spectrum at the beginning of the matter-dominated phase is then 

               P0(k) = A kn T2(k)

• The transfer function depends on the cosmological parameters and also on the nature of 
the dark matter.  There are two major classes of dark matter depending on whether or 
not the particles were relativistic at teq when radiation and matter had equal densities.

• For hot dark matter mc2 << kT(teq), for cold dark matter mc2 >> kT(teq) (note T ≠ T).  

The dividing mass works out to be ~ 1 eV/c2.

• For HDM, small scale structure is suppressed because fast moving particles are not 
gravitationally confined in small potential wells “free streaming”,  T(k) ~ e-k for large k.

• In HDM, structure forms top-down, large structures form first and then fragment into 
smaller structures.  This is inconsistent with observations of galaxies at z > 6.

• Thus, CMD is preferred.

Initial power spectrum



  

• Perturbations can grow on length scales larger than the horizon.

• When radiation dominates, growth ~ a2, when matter dominates, growth ~ a1.

• Perturbations with length scale L  “enter the horizon” when horizon > L.

• In radiation-dominated era, free-streaming and pressure of radiation impedes growth of 
perturbations with L < horizon.  Therefore, the length scale L0 = horizon at teq  is important.

• Growth of perturbations with L < L0 is suppressed from when perturbation enters the 

horizon until end of radiation-dominated era.

• Thus, T(k) ~ 1 for k << 1/L0  and T(k) ~ (kL0)
-2 for k >> 1/L0 – perturbations with small 

length scales = large wavenumbers are suppressed.

Growth of 
fluctuations



  

• Perturbations can grow on length scales larger than the horizon.

• When radiation dominates, growth ~ a2, when matter dominates, growth ~ a1.

• Perturbations with length scale L  “enter the horizon” when horizon > L.

• In radiation-dominated era, free-streaming and pressure of radiation impedes growth of 
perturbations with L < horizon.  Therefore, the length scale L0 = horizon at teq  is important.

• Growth of perturbations with L < L0 is suppressed from when perturbation enters the 

horizon until end of radiation-dominated era.

• Thus, T(k) ~ 1 for k << 1/L0  and T(k) ~ (kL0)
-2 for k >> 1/L0 – perturbations with small 

length scales = large wavenumbers are suppressed.

Growth of 
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• Power spectrum from White, Scott, and Silk (1994).  Curve is CDM model, boxes are 
from CMB experiments, points from galaxy surveys, lower curve is radiation power 
spectrum.

• Distribution of baryons will differ from distribution of dark matter because baryons feel 
radiation pressure causing a smoother distribution.  After recombination, baryons fall 
into the potential wells of dark matter and the distributions become similar.

Power 
spectrum



  

For next class
• Read 7.5-7.7

• Homework #7 is due on October 22 (next class).

• Project work day scheduled for October 24.

• First draft of project papers will be due on October 29.

EARLY VOTING TIMES/LOCATIONS

Wednesday, 10/17: 10 am–5 pm at the Old Capitol Mall

Thursday, 10/18:  9 am–3 pm at the IMU, 2:30–8:30 pm at the Theater Building

Friday, 10/19:  11 am–5 pm at Mayflower, 12 pm–6 pm at Burge
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