Really, what universe do we live 1n?

* White dwarfs

* Supernova type Ia

* Accelerating universe
* Cosmic shear

* Lyman o forest



White dwart

* Core of solar mass star

* No energy from fusion or
gravitational contraction

. * Most oxygen and carbon nulcei
with degenerate gas of electrons

* Supported by quantum
mechanical motions of electrons



Mass versus radius relation

* For objects made of normal matter, radius
tends to increase with mass



Mass/radius relation for degenerate star

* Star mass = M, radius = R
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* Gravitational potential energy = -

* Heisenberg uncertainty: AxAp=>n

* Electron density , — SN ~ M
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Mass/radius relation for degenerate star
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* Total energy E=K+U~

* Find R by minimizing £
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* Radius decreases as mass increases



Maximum white dwarf mass

* As mass increases, electron speed — ¢, kinetic energy — K=pc

* Electron degeneracy cannot support a white dwarf heavier than 1.4 solar
masses, the “Chandrasekhar limit”.
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* Type Ia supernovae occur when the mass of a white dwarf exceeds the Chandrasakar limit
(1.4 Msun). May occur via accretion from a companion or collision with another star.

* Because starting condition is the same, reasonable that all Ia have same luminosity.
* Maximum luminosity does vary, but is well correlated with time scale of light curve.

* Can correct using measured light curves and recover standard luminosity. Note need to first
correct for cosmological time dilation = 1+z.

* Also need to correct for extinction in host and MW galaxy.



SN Ia as dlstance mdlcators

* Uncorrected maximum luminosity of SNIa
has scatter of ~ 0.42 mag.

* Correction improves this to 0.15 mag.
* Luminosity estimate is good to 15%.

* Distance estimates good to 8% if extinction is
measured accurately.

* Distance modulus p = 5 log(d/pc) - 5
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Searching for supernovae

* Need to repeatedly obtain images of target galaxies or fields.
* Search for new sources appearing.
* Cadence of monitoring is set by time scale of SNIa light curves, ~ 10 days.
* Then need to:
— follow each SN with ~daily photometry, preferably in several bands

— Obtain spectrum to confirm Ia identification and measure redshift

* Originally, SN searches done by the Berkeley group had a very hard time in arranging
telescope time for follow-up because they would need to bump observers off big telescopes
(target of opportunity observations = TOOs).

* Important threshold was when search observations could discover a new SN every few
nights, so there was always at least one SN to observe on any given night.

* Searches have also been done with the Hubble Space Telescope that found SN at z ~ 1.7.



Supernova
cosmology

* Plot of distance vs redshift for SNIa 1s a
Hubble diagram, extending to high z.

* Diagrams probe expansion history of the
universe.
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* Plot of mag — mag in empty universe. Empty universe means constant expansion (dotted).
« Points above dotted line mean that expansion has accelerated, e.g. Q, > 0.

e Thick dashed curve Q_=0.27,Q, =0.73. Lower solid curve Q_=1,Q, =0.

* Two upper curves, evolution of SN or grey dust with z.
* High z points show turn over, important for confirming cosmological nature.



Supernova cosmology

* Solid contours from data on previous
slide. Dotted contours from 1998 data.
expansion has accelerated, e.g. Q, > 0.

« If we require Q . = 1 (from CMB), then
bestfitis Q =0.27,Q, =0.73.

« QO may be true cosmological constant or
could be a quantum field with equation of
state P = wpc?, w = -1 is same as CC.

* Primary goal of future dark energy
surveys is to measure w.
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Cosmic shear
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* Shapes of galaxies are distorted as light moves through gravitational potentials to us.

* Similar to weak lensing by clusters, one can use the distortions (averaged over many
galaxies) to directly probe the total matter distribution.

* Hard to do, really want redshifts for all galaxies.
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QSO absorption lines
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* Gas within quasars or in gas clouds or galaxies between us the and quasar can produce
absorption lines.



Diffuse intergalactic medium

* If diffuse IGM is neutral, it should absorb light shortward of Lya, A < 1216 A.

* Expect jump in continuum radiation from quasars between the red and blue sides of
their Lya line, S(blue)/S(red) = e where © ~ 6x10'? (n,,/cm™) at z = 0.

« If Q. >10° thent>1 and universe is opaque.

*Forz <3, find t<0.05; for z~5, find t<0.1.
« From these limits, find 7, (comoving) < 3x10"° cm™ or Q,;, < 3x10%.
« Compare with baryon density from BBN, Q= 0.04.

* Hydrogen 1in a diffuse component of the intergalactic medium must be essentially
fully ionized.

* Searching for this gas in the nearby universe (z ~ 0), figuring out when the
ionization occurred (“reionization”), and explaining what caused reionization are
major topics of current interest.



Lyman a forest

Hydrogen
highly ionized

Quasar 1

* We do see Lya absorption features in spectra of distant quasars.

* Number density of Lya lines for z > 2 follows dN/dz ~ k(1+z)" with y ~ 2.5 and k ~ 4.
— Increases strongly with z.

* Can determine HI column density from line strength.

* Widths of lines often ~ 10,000 km/s, origin?
— Massive cluster, outflow, or thermal (~10* K)

* Proximity effect: quasars ionize nearby gas, suppressing Lya forest.

— lonization rate = I''n;; = recombination rate = o1 7, where o = o(7)
— In highly ionized medium n,, << n,=n,

— Thus ny, = anpz/r



Lyman o forest

* How did Lya forest arise?

* Galaxies and clusters formed when baryons fell
into dark matter gravitational potential wells after
recombination.

* Gas clouds in the Lya forest formed the same
way. However, smaller density perturbations
produced smaller baryon concentrations.

* These smaller perturbations are better described
by linear theory.

* Lya forest can be probed to higher z than galaxy
and cluster distributions, up to z ~ 4.

* Can do same sorts of statistics (power spectrum,
correlation function) as with galaxies but have
disadvantage that probes are along a limit number
of lines of sight.




Lyman o forest

* Simulations follow evolution of dark matter.
Must convert dark matter perturbations into gas
density perturbations and then into the observable
which is optical depth of Lya absorption.

* As gas falls into potential well, it gains energy
and heats up. Temperature depends on density.

e Use ny = (xnpz/F, temperature dependence of a.

eFindt= A(np/ﬁp)B with B~1.6 and 4 depends on z,

intensity of 10onizing radiation, average temperature
of universe.

* This provides relation to convert simulation
results into simulated spectra.

* Figure shows two spectra, one simulated, one
observed.
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For next class

Read 8.6-8.7.
HW #8 due on November 5.

Project presentations on November 12 and 14. Should be full presentations with all
results.
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