Really, what universe do we live in?

- White dwarfs
- Supernova type Ia
- Accelerating universe
- Cosmic shear
- Lyman α forest

White dwarf

- Core of solar mass star
- No energy from fusion or gravitational contraction
- Most oxygen and carbon nulcei with degenerate gas of electrons
- Supported by quantum mechanical motions of electrons

Mass versus radius relation

• For objects made of normal matter, radius tends to increase with mass

Mass/radius relation for degenerate star

- Star mass = M, radius = R
- Gravitational potential energy = $-\frac{3GM^2}{5R}$
- Heisenberg uncertainty: $\Delta x \Delta p \ge \hbar$
- Electron density $n = \frac{3N}{4\pi R^3} \approx \frac{M}{m_p R^3}$ $\Delta x \approx n^{-1/3} \quad \Delta p \approx \frac{\hbar}{\Lambda x} \approx \hbar n^{1/3}$
- Kinetic energy $\varepsilon = \frac{p^2}{2m_e}$ $K = N\varepsilon = \frac{M}{m_p} \varepsilon \approx \frac{\hbar^2 M^{5/3}}{m_e m_p^{5/3} R^2}$

Mass/radius relation for degenerate star

• Total energy
$$E = K + U \approx \frac{\hbar^2 M^{5/3}}{m_e m_p^{5/3} R^2} - \frac{GM^2}{R}$$

• Find *R* by minimizing *E*

$$\frac{dE}{dR} \approx -\frac{\hbar^2 M^{5/3}}{m_e m_p^{5/3} R^3} + \frac{GM^2}{R^2} = 0$$

$$R \approx \frac{\hbar^2 M^{-1/3}}{Gm_e m_p^{5/3}}$$

Radius decreases as mass increases

Maximum white dwarf mass

- As mass increases, electron speed $\rightarrow c$, kinetic energy $\rightarrow K=pc$
- Electron degeneracy cannot support a white dwarf heavier than 1.4 solar masses, the "Chandrasekhar limit".

$$M = K \left(\frac{\hbar^3 c^3}{G^3 m_p^4} \right)^{1/2}$$

Supernovae type Ia

- Type Ia supernovae occur when the mass of a white dwarf exceeds the Chandrasakar limit (1.4 Msun). May occur via accretion from a companion or collision with another star.
- Because starting condition is the same, reasonable that all Ia have same luminosity.
- Maximum luminosity does vary, but is well correlated with time scale of light curve.
- Can correct using measured light curves and recover standard luminosity. Note need to first correct for cosmological time dilation = 1+z.
- Also need to correct for extinction in host and MW galaxy.

SN Ia as distance indicators

- Uncorrected maximum luminosity of SNIa has scatter of ~ 0.42 mag.
- Correction improves this to 0.15 mag.
- Luminosity estimate is good to 15%.
- Distance estimates good to 8% if extinction is measured accurately.
- Distance modulus $\mu = 5 \log(d/pc) 5$

Searching for supernovae

- Need to repeatedly obtain images of target galaxies or fields.
- Search for new sources appearing.
- Cadence of monitoring is set by time scale of SNIa light curves, ~ 10 days.
- Then need to:
 - follow each SN with ~daily photometry, preferably in several bands
 - Obtain spectrum to confirm Ia identification and measure redshift
- Originally, SN searches done by the Berkeley group had a very hard time in arranging telescope time for follow-up because they would need to bump observers off big telescopes (target of opportunity observations = TOOs).
- Important threshold was when search observations could discover a new SN every few nights, so there was always at least one SN to observe on any given night.
- Searches have also been done with the Hubble Space Telescope that found SN at $z \sim 1.7$.

Supernova cosmology

- Plot of distance vs redshift for SNIa is a Hubble diagram, extending to high z.
- Diagrams probe expansion history of the universe.

Supernova cosmology

- Plot of mag mag in empty universe. Empty universe means constant expansion (dotted).
- Points above dotted line mean that expansion has accelerated, e.g. $\Omega_{\Lambda} > 0$.
- Thick dashed curve $\Omega_{\rm m} = 0.27$, $\Omega_{\Lambda} = 0.73$. Lower solid curve $\Omega_{\rm m} = 1$, $\Omega_{\Lambda} = 0$.
- Two upper curves, evolution of SN or grey dust with z.
- High z points show turn over, important for confirming cosmological nature.

Supernova cosmology

- Solid contours from data on previous slide. Dotted contours from 1998 data. expansion has accelerated, e.g. $\Omega_{\Lambda} > 0$.
- If we require $\Omega_{tot} = 1$ (from CMB), then best fit is $\Omega_{m} = 0.27$, $\Omega_{\Lambda} = 0.73$.
- Ω_{Λ} may be true cosmological constant or could be a quantum field with equation of state $P = w\rho c^2$, w = -1 is same as CC.
- Primary goal of future dark energy surveys is to measure w.

Cosmic shear

- Shapes of galaxies are distorted as light moves through gravitational potentials to us.
- Similar to weak lensing by clusters, one can use the distortions (averaged over many galaxies) to directly probe the total matter distribution.
- Hard to do, really want redshifts for all galaxies.

QSO absorption lines

• Gas within quasars or in gas clouds or galaxies between us the and quasar can produce absorption lines.

Diffuse intergalactic medium

- If diffuse IGM is neutral, it should absorb light shortward of Ly α , λ < 1216 Å.
- Expect jump in continuum radiation from quasars between the red and blue sides of their Ly α line, S(blue)/S(red) = $e^{-\tau}$ where $\tau \sim 6 \times 10^{10} \, (n_{\rm HI}/{\rm cm}^{-3})$ at z = 0.
- If $\Omega_{\rm HI} \ge 10^{-6}$ then $\tau > 1$ and universe is opaque.
- •For z < 3, find $\tau < 0.05$; for $z \sim 5$, find $\tau < 0.1$.
- From these limits, find $n_{\rm HI}({\rm comoving}) < 3 \times 10^{-13} {\rm cm}^{-3} {\rm or} \ \Omega_{\rm HI} < 3 \times 10^{-8}$.
- Compare with baryon density from BBN, $\Omega_b = 0.04$.
- Hydrogen in a diffuse component of the intergalactic medium must be essentially fully ionized.
- Searching for this gas in the nearby universe $(z \sim 0)$, figuring out when the ionization occurred ("reionization"), and explaining what caused reionization are major topics of current interest.

Lyman α forest

- We do see Ly α absorption features in spectra of distant quasars.
- Number density of Ly\alpha lines for z > 2 follows $dN/dz \sim k(1+z)^{\gamma}$ with $\gamma \sim 2.5$ and $k \sim 4$.
 - Increases strongly with z.
- Can determine HI column density from line strength.
- Widths of lines often $\sim 10,000$ km/s, origin?
 - Massive cluster, outflow, or thermal ($\sim 10^4$ K)
- Proximity effect: quasars ionize nearby gas, suppressing Ly α forest.
 - Ionization rate = $\Gamma \cdot n_{HI}$ = recombination rate = $\alpha n_p n_e$, where $\alpha = \alpha(T)$
 - In highly ionized medium $n_{\rm HI} << n_{\rm p} = n_{\rm e}$
 - Thus $n_{\rm HI} = \alpha n_{\rm p}^2 / \Gamma$

Lyman α forest

- How did Lyα forest arise?
- Galaxies and clusters formed when baryons fell into dark matter gravitational potential wells after recombination.
- Gas clouds in the Ly α forest formed the same way. However, smaller density perturbations produced smaller baryon concentrations.
- These smaller perturbations are better described by linear theory.
- Ly α forest can be probed to higher z than galaxy and cluster distributions, up to $z \sim 4$.
- Can do same sorts of statistics (power spectrum, correlation function) as with galaxies but have disadvantage that probes are along a limit number of lines of sight.

Lyman α forest

- Simulations follow evolution of dark matter. Must convert dark matter perturbations into gas density perturbations and then into the observable which is optical depth of Ly α absorption.
- As gas falls into potential well, it gains energy and heats up. Temperature depends on density.
- Use $n_{\rm HI} = \alpha n_{\rm p}^2/\Gamma$, temperature dependence of α .
- Find $\tau = A(n_p/\overline{n_p})^{\beta}$ with $\beta \sim 1.6$ and A depends on z, intensity of ionizing radiation, average temperature of universe.
- This provides relation to convert simulation results into simulated spectra.
- Figure shows two spectra, one simulated, one observed.

For next class

- Read 8.6-8.7.
- HW #8 due on November 5.
- Project presentations on November 12 and 14. Should be full presentations with all results.