Using Infrared Colors to Identify Obscured AGN

By Ryan Allured and Hannah Marlowe based on:

MID-INFRARED SELECTION OF ACTIVE GALACTIC NUCLEI WITH THE WIDE-FIELD INFRARED SURVEY EXPLORER. I. CHARACTERIZING WISE-SELECTED ACTIVE GALACTIC NUCLEI IN COSMOS
Stern et al. 2012
http://adsabs.harvard.edu/abs/2012ApJ...753...30S
Active Galactic Nuclei

• What are they?
 – Accreting SMBH in galactic centers
 – High luminosity allows probe of early universe

• Emit across EM spectrum
 – Thermal radiation
 • Big Blue Bump
 • Heated dust
 – Power law
 • Radio synchrotron
 • High energy (Comptonization)
Why Do We Care?

- There is an apparently diffuse X-ray background (XRB)
- In the 2-8 keV band, Chandra and XMM-Newton surveys of deep fields have resolved > 80% of the XRB
- Roughly 83% and 95% of these sources are classified as AGN in the 0.5-2 keV and 2-8 keV bands, respectively
- X-Ray background could be explained by the superposition of unobscured (type I) and obscured (type II) AGN
Type I (Unobscured) vs. Type II (Obscured) AGN

- Obscured AGN lack broad line emission and have a harder X-ray spectrum due to absorption of soft X-rays in the dusty torus.
- Cutoff between Type I and Type II defined by Hydrogen column density.
- To account for the XRB, need ~3:1 ratio of obscured to unobscured AGN.
- Observations biased toward unobscured.
How Do We Observe Obscured AGN?

- It is not possible to observe obscured AGN in all wavelengths due to absorption and scattering in the torus. We have a few choices:
 - Radio
 - Only ~10% expected to be radio loud
 - X-ray
 - Not sensitive enough, or small field of view (non-survey)
 - MIR!
 - Can differentiate MIR AGN spectrum from stellar black bodies in a normal galaxy
 - Use WISE (Wide-Field Infrared Survey Explorer)
- COSMOS Field
 - Well studied 2 square degree field at high galactic latitude (l=237.6 b=42.5)
 - Shallow coverage for WISE will actually be better for AGN selection
WISE Selection Criteria

- Use a color-color criterion to pick out the typical AGN MIR spectrum
- Trade off between completeness and reliability
- From models, choose a cutoff:
 - $[3.4]-[4.6] \geq 0.8$, Vega
- Expect criterion to work well in the COSMOS field
 - Low galactic contamination
 - Red color selections cuts out normal galaxies which are bluer up to $z \sim 1.2$
 - High redshift galaxies not detected at WISE COSMOS depth
IRAC 'Truth Sample'

- IRAC (Infrared Array Camera) onboard Spitzer
- Previous studies use IRAC color criteria to select AGN
- Use previously determined IRAC criterion as a gauge of the WISE selection (Stern et al. 2005)
- Of AGES (AGN and Galaxy Evolution Survey) sources in Bootes field, IRAC criteria selects 91% of Type I and 40% of Type II spectroscopically identified AGN
- 17% of IRAC selected AGN not spectroscopically classified as AGN by Hectospec Redshift Survey
Analysis

- Select AGN from WISE data in COSMOS field
- Catalogs obtained through the Infrared Science Archive (IRSA)
- Compare WISE-selected AGN with IRAC selected AGN (truth sample)
- Determine what fraction of WISE-selected AGNs are detected in other bands
 - VLA; XMM-Newton; Chandra
 - Compare expected fractions in radio and X-ray
- Estimate Type I/Type II using optical comparison to SDSS
WISE + IRAC Matching

- Determine WISE sources with IRAC counterparts:
 - S-COSMOS (IRAC)
 - Require no error flags
 - Remove sources with negative flux measures
 - Require \([3.6] \geq 11\) for saturation
 - WISE Requirements:
 - Require no error flags
 - S/N in W2 ≥ 10

- Find 7684 WISE sources with IRAC counterparts
AGN Selection

- AGN color selection criteria applied to 7684 sources detected in both IRAC and WISE
- 143 sources match IRAC selection criteria for AGN (“Truth Sample”)
 \[(5.8 - 8.0) > 0.6 \land \\
 (3.6 - 4.5) > 0.2 \times (5.8 - 8.0) + 0.18 \land \\
 (3.6 - 4.5) > 2.5 \times (5.8 - 8.0) - 3.5 \]
- 123 match WISE color criteria
 \[(3.4 - 4.6) > 0.8 \]
- 116 match both IRAC and WISE color criteria
- Completeness: 116.0/148 = 0.784
- Reliability: 116.0/123 = 0.943
Radio Comparison with VLA

- VLA deep coverage of COSMOS at
 - 20 cm
 - 350 hrs primarily in A-array
 - 1''.5 resolution
 - ~11μJy sensitivity
- Out of 2864 VLA sources in COSMOS, using 1''.5 radius:
 - 2864 sources in field
 - 293 matches with WISE
 - 50 matches to WISE+IRAC AGN (43%)
- Detected but not necessarily radio 'loud'
 - Could expand and look at a cutoff value of radio luminosity to check radio loud percentage
Multiwavelength Properties: XMM-Newton and Chandra

- 0.9 deg^2 field in COSMOS to an overall flux limit of 5.7x10^16 ergs/(cm^2 s)
- 1760 total sources in field
- 180 matches to WISE (2''.5 radius)
- 40 matches to WISE+IRAC:
 - 44.4 deg^-2 compared to 58 deg^-2 (77%)

- Entire field to depth of 7x10^16 ergs/(cm^2 s)
- 1887 sources in field
- 180 matches to WISE (3''.5 radius)
- 86 matches to WISE+IRAC (74%)
Chandra is able to observe some Type II AGN up to H column densities of $\sim 10^{23.5}$

Expect Chandra to detect $\sim 64\%$ of sources which roughly agrees with our results (77%)

Those sources not detected by Chandra expected to be heavily obscured AGN
Comparison to SDSS

- Number of obscured AGN estimated by assuming they would not be detected by SDSS since the optical flux of Type II AGN is below the limit of SDSS
 - Type II = WISE AGN not detected by SDSS
 - Type I = WISE AGN also detected by SDSS
- Cross referencing our sources with SDSS (data release 7) catalog using a 2'' radius finds 38 galaxy matches
- Obscured/unobscured = (116-38)/ 38 = 2.05:1
- Efficiency of IRAC normalization leads 4.5:1
 - (not done in Stern et al.)
Conclusions

• Find completeness and reliability compared to IRAC of 78% and 94% respectively

• Obscured/unobscured ratio ~4.5 (reasonable)

• Comparing the density of AGN on other parts of the sky on the equator with high galactic latitude, we find similar results

 • (10,0): 222/4 = 55.5 AGN/deg^2
 • (60,0): 248/4 = 61.5 AGN/deg^2
 • (165, 0): 219/4 = 54.75 AGN/deg^2
 • (195,0): 309/4 = 77.25 AGN/deg^2
 • (345,0): 215/4 = 53.75 AGN/deg^2

• Best fit constant = 59.87 with a reduced chi2 of 1.11
• P-value for rejecting that it is constant is 0.353 — much too high to reject.
Positional Errors

Position Errors

Normalized Probability Density

Arcsec

Chandra
XMM
VLA
WISE