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ABSTRACT

Using WISE color-color data, we identify the morphology of 129 member galaxies within 33
compact groups. We present a systematic approach to identifying compact group members that
are QSOs, ULIRGs, LINERs, starbursts, and LIRGs. Our results supplement and replace, in
some cases, the classifications for these galaxies that are currently available in the literature.
We compare the “canyon” region of Walker et al. (2012), which is a gap between gas-rich and
gas-poor galaxies, with WISE color space. We do see a “canyon” region in WISE colors, but
it is very narrow. Finally, we compare HI gas content within the 15 CG galaxies to the WISE
colors, and we find a significant correlation between the two for Sequence A & B galaxies.

1. Introduction

Since our ability to observe the early universe
is limited by distance, time, and technology, it is
necessary to find similar environments in the lo-
cal universe that can provide insights to the past.
Compact groups (CGs) are thought to be one of
these environments that share similar attributes
with the early universe like having a high num-
ber density of galaxies and low velocity dispersions
(Pompei & Iovino 2012). Hickson (1997) defines a
CG as an isolated, small system of 4-5 galaxies in
close proximity to one another. Such groups are
not unbound, chance superpositions but dynami-
cally bound systems (Barton et al. 1996; Hickson
& Rood 1988; Mamon 1986). A number of studies
have cataloged CGs (e.g. Hickson et al. (1992);
Rose (1977); Barton et al. (1996)), and multiple
studies have been conducted to determine proper-
ties of CGs. The two catalogs of interest for this
paper are the Hickson Compact Groups (HCGs),
which consists of 100 CGs, and the Redshift Sur-
vey Compact Groups (RSCG’s) that contains 89
CGs (Barton et al. 1996). These catalogs will be
discussed further in Section 2.1.

The morphology of CGs and the member galax-
ies within CGs have implications for cosmology.
Galaxies within CGs have strong tidal interac-
tions that impact their evolution (Barnes 1989),
and they are dynamically dominated by dark mat-

ter and may be a potential environment in which
to study dark matter (Hickson 1997). Rood &
Williams (1989) found that CGs have a signifi-
cantly smaller fraction of spirals and irregular type
galaxies (late-type), and a given CG is more likely
to host similar type (late or early) of galaxies than
allowed in a random distribution and found in a
random field sample of galaxies (Kindl 1990; Hick-
son 1997). Unlike the early universe, GCs have
lower populations of spiral galaxies, which makes
CGs very unique due to the strong tidal interac-
tions. In some cases, the end result of CGs may
be a merger of the galaxies into a bright, giant,
elliptical galaxy (Barton et al. 1996; Barnes 1989;
Carnevali et al. 1981; Cavaliere et al. 1983; Gover-
nato et al. 1991). Determining the morphology of
group members may give insight into initial galaxy
populations and the subsequent evolution of galax-
ies. The morphologies of CG members also cor-
relate with characteristics of their host CG, like
the velocity distributions of the galaxies. Higher
velocity dispersions correlate to fewer late-type
galaxies in CGs (Hickson 1997).

Determining the morphology of the members
of CGs is difficult due to the interactions within
the group. Arp (1973) studied the shapes of CGs
and found that “chains” of galaxies were features
of CGs. Hickson (1984) and Malykh & Orlov
(1986) concluded a similar result from the study
of the HCGs and confirmed that CGs were not



random projections or chance crossings. If the
CG galaxies were a collection of chance cross-
ings, the interactions of the galaxies would strip
any inherent ellipticity from the group (Hickson
1997) and the “chain” feature would not be ob-
served. From multi-frequency studies, ranging
from radio continuum to X-ray, the usual charac-
teristics that have been used to identify late-type
and early-type galaxies are insufficient. CGs usu-
ally lack neutral hydrogen compared to other loose
groups, and interactions of galactic members have
removed much of the gas from the galaxies, gas
that would normally give indication in the HI line
of spiral galaxies (Williams & Rood 1987; Menon
1995). Another property of CGs that makes mor-
phological identification of the members difficult is
that within the contained galaxies, the original gas
has been distributed throughout the group, some-
times forming an envelope surrounding it (Hick-
son 1997). Previous X-ray observations have pro-
vided information about the hot gas in the clus-
ters, including metalicity and temperature, but
these studies indicate that the CG members have
gas envelopes and dark matter halos, which would
merge before the baryonic matter (Barnes 1984;
Bode et al. 1993).

Studies with the Infrared Array Camera (IRAC)
on Spitzer using polycylic aromatic hydrocarbon
(PAH) emission, which traces warm dust and star
formation, show that as CG galaxies transition
from being gas-poor to gas-rich, the amount of
PAH emission in the galaxies increases as well as
the temperature of the dust (Walker et al. 2012).
In Figure 1, CG galaxies from Walker et al. (2012)
sample are plotted in IRAC color bands of [3.6]-
[5.8] and [4.5]-[5.8], where the color of the markers
represents gas-poor galaxies in blue, and gas-rich
galaxies in red. As galaxies transition from gas-
poor to gas-rich along the fitted line in Figure 1,
there is an increase of PAH emission observed as
well as an increase in dust temperature due to
stars ionizing and heating the dust in the galaxy
(Walker et al. 2010, 2012). Walker et al. (2012)
suggests that galaxies within CGs contain vary-
ing distributions of dust that indicate whether a
galaxy is forming stars (active) or quiescent.

From initial IRAC studies of CGs conducted by
Johnson et al. (2007), a sparsely populated region
between the gas-rich and gas-poor galaxies was
found, which they termed the “gap” region and
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Fig. 1.— From Walker et al. (2012). A plot of the IRAC
color bands of [3.6]-[5.8] and [4.5]-[8.0] shows the canyon
region, which is outlined by the dashed box. The gray box
shows the “gap” in Johnson et al. (2007), which has since
been narrowed to the canyon by Walker et al. (2012). The
colors of the markers represent gas-poor (blue) and gas-
rich (red). The dashed line shows that the PAH emission
eventually levels off, which indicates a limit for the PAH
emission.

is shown in Figure 1 as the shaded gray portion
of the graph. This “gap” region was also verified
in independent studies performed by Tzanavaris
et al. (2010), which looked at 11 GCs in the UV,
and they found that there was also a gap in the
specific star formation rate (SSFR), which traces
young stars. Further studies were done by Walker
et al. (2010) that looked at a comparison of both
MIR and UV linear plots and found that the gap
regions lined up. Walker et al. (2012) expanded
the sample of 12 groups and found that the origi-
nal gap was better described as a “canyon” region
that had low number densities relative to the gas-
rich and gas-poor groups. For the CG galaxies in
the Walker et al. (2010) survey, the “canyon” re-
gion is defined to be where the number of galaxies
is less than half of the average number of galax-
ies (See Figure 2). This under density in popu-
lation suggests a short time scale to evolve from
gas-rich to a gas-poor galaxy. The “canyon” re-
gion is seemingly unique for CGs as this relation-
ship is not observed for other environments, such
as loose groups and interacting pairs. Using the
Kolmogorov-Smirnov test, Walker et al. (2010)



modeled a cumulative distribution of the color-
color curve for galaxy densities in four distinct
environments in order to test whether or not the
canyon region was unique to the CG environment.
These environments include interacting pairs, the
Coma center, the Coma infall, and LVL+SINGS
(See Figure 7 in Walker et al. (2010)), and models
of these environments do not reproduce the canyon
region.

Since the canyon galaxies represent a brief pe-
riod in a galaxy’s evolution, a survey was done
using the g’, r’, and i’ data from the Sloan Digi-
tal Sky Survey (SDSS) (dr 8 edition) (Butterfield
et al. in progress). They wanted to investigate
if the canyon galaxies also fell in the green val-
ley on the color-magnitude diagram (CMD). The
green valley is the region that lies in between the
red sequence and the blue cloud Gaussian peaks,
where the blue cloud is thought to be composed of
spirals, and the red sequence is mainly ellipticals
(Hogg et al. 2004; Smolci¢ 2009). The green valley
is also thought to be a transition region delineating
when a galaxy has recently ended star formation
(Smolci¢ 2009). As the young blue stars die off,
the ratio of blue light to red light will decrease,
and the galaxy will pass through the green valley
into the red sequence.

Despite the similar environment to the early
universe, Butterfield et al. (in progress) found that
the majority of the CG galaxies fell in the red se-
quence. This was unexpected since the early uni-
verse had a much higher number density of spiral
galaxies. Butterfield et al. (in progress) compared
their findings with the Walker et al. (2012) MIR
data and found that while the blue MIR galaxies
were mainly condensed in the red sequence, the red
MIR had a large spread through the optical colors.
This indicates that there is dust obscuring the blue
light of galaxies in the red sequence. Since lentic-
ular galaxies are found in the red sequence and
spirals in the blue cloud, this gives a false impres-
sion that many of these CG galaxies are ellipticals.
Constraining the morphology within these bands
would give better estimates of galaxy morphology
distributions in CGs, which may also give insight
into distributions of the early universe.

Currently, the identification of galaxies is com-
piled from the literature in the NASA /TPAC Ex-
tragalacitc Database (NED), which offers an a
priori look into the morphologies of the galax-
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Fig. 2.— From Walker et al. (2010). Histogram of the
number of galaxies v.s. the change in MIR color (AMIR).
The bold dashed line is the average number of galaxies, and
the normal dashed lines define the “canyon” region as less
than half of the average number of galaxies.
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Fig. 3.— Color-color plot of optical vs MIR. colors for
CG member galaxies from the HCG and RSCG catalogs
(Butterfield et al. in progress). Four areas shown correlate
dust and star formation. The regions are further described
in the text.

ies within GCs. Figure 3 shows CG galaxies on
a plot of optical colors vs. mid-infrared colors
(henceforth referred to as “optmir plot”), where
the x-axis corresponds to the distance along the
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Fig. 4.— The same plot as Figure 3 except that the galax-
ies have their morphologies indicated, which were complied
by NED.

line of best fit (dotted line) in Figure 1. This il-
lustrates an“unwrapping” of the best fit line to
show a clear separation between the gas-rich and
gas-poor galaxies. Figure 4 shows the optmir plot
with symbols indicating the morphology of galax-
ies as classified in NED. The optmir plot has four
main areas of interest for star formation, shown in
Figure 3:

1. Galaxies with cold dust and no current star forma-
tion are blue in MIR and red in optical- the “red
and dead” galaxies,

2. Dust obscured galaxies with warm dust and current
star formation are red in both MIR and optical,

3. Galaxies with warm dust, young stars, and current
star formation are red in MIR and blue in optical,

4. Galaxies with young stars but no current star for-
mation are blue in both bands, which indicates that
star formation has recently ended.

NED is an incomplete compilation of morphologies
for many CG galaxies, and for the CG members
it does identify, there are few variations beyond
spirals and ellipticals. Two opposing questions
can be drawn from current identifications: 1) How
are CG members overwhelmingly spirals and el-
liptical galaxies in such environments with strong
tidal forces, mergers, and intense interactions or
2) If CG members are not just spiral and ellipti-
cal galaxies, what does the morphology say about
star formation and dust content within CGs? We

expect the later, but in order to answer either of
these questions, we will determine morphology for
CG members.

Once we determine the morphology for CG
galaxies, we will also investigate star forma-
tion and dust content of these galaxies using HI
maps from previous studies of CGs conducted
by Verdes-Montenegro et al. (2000) and Verdes-
Montenegro et al. (2001). Studies of HI content
by Johnson et al. (2007) and Konstantopoulos et
al. (2010) indentified two different kinds of CGs,
Sequence A and Sequence B, which are defined by
the compactness of the HI gas in CG galaxies. In
Sequence A, the gas is mostly contained within
the member galaxies, and the individual galaxy’s
star formation is uninterrupted as the gas is con-
sumed before any major galaxy interactions can
occur within the group. The gas does not play
a role in the eventual “dry merger” into an el-
liptical galaxy. In Sequence B, the gas is spread
throughout the Intergalactic Medium (IGM), and
multiple strong interactions can occur between the
galaxies throughout the group’s evolution, which
can strongly affects star formation rates.

Previous to the Sequence A and B classifica-
tion, Verdes-Montenegro et al. (2001) had cate-
gorized the CGs into an “evolutionary sequence”
of three scenarios based on the HI gas content
and distribution in the galaxies, which are Type
I) galaxies pre-interaction, Type II) a shocked
intergroup medium of HI gas, and Type III) a
smooth intergroup medium of HI gas (See Figure
1 of Konstantopoulos et al. (2010)). Johnson et
al. (2007) adopted the three evolutionary scenar-
ios and quantified them as I) relatively HI rich,
log(Mpr)/log(May,) > 0.9, II) intermediate HI,
0.9 > log(Mpr)/log(Mayn) > 0.8, and III) rela-
tively HI poor, log (My7)/ log(Mgyn) < 0.8, where
the My and Mgy, have been normalized by Mg.
Previous studies of the evolutionary sequence done
by Johnson et al. (2007) and Konstantopoulos et
al. (2010) were limited in the number of CGs, 12
and 1, respectively. In this paper, we will expand
the number of CGs to 33.

In 2010, the Wide-field Infrared Survey Ex-
plorer (WISE) completed a MIR survey of the
entire sky. WISE offers high sensitivity in 4 IR
bands, 3.4, 4.6, 12, and 22um (Wright et al.
2010). Previous studies in the MIR using IRAC
on Spitzer did not offer the all sky coverage of



WISE, and IRAC bands cover only a fraction of
the frequency range that WISE does. The com-
pletion of WISE provides new opportunities in the
MIR to identify morphologies of CG galaxies in or-
der to understand star formation and dust content
in the turbulent environments of CGs. Our sam-
ple of 33 CGs will provide an in-depth analysis of
the “evolutionary sequence” proposed by Verdes-
Montenegro et al. (2001), and we will investigate
the “canyon” region in the WISE colors in order
to compare it to the Walker et al. (2012) region.

2. DATA

2.1. Selection of Compact Groups

The 33 CGs chosen for this project are from the
Hickson Compact Group catalog (HCG; Hickson
(1982)) and the Redshift Survey Compact Group
catalog (RSCG; Barton et al. (1996)). Due to
the nature of selection criteria of the two differ-
ent catalogs, we will briefly summarize the orig-
inal criteria. The HCG catalog selected CGs
from the Palomar Sky Survey, requiring at least
3 galaxies within 3 magnitudes of the brightest
galaxy; isolation of the group from external galax-
ies within a certain magnitude range; and com-
pactness, requiring the surface brightness averaged
over the smallest circle containing the galaxies to
be [i<26.0/ mag arcsec™? (Hickson 1982). The
RSCG catalog utilized a magnitude-limited red-
shift survey to identify CGs and their members
and was created to have similar properties to the
HCG catalog (Barton et al. 1996). From the HCG
and RSCG catalogs, we selected CGs that have
TRAC and SDSS data available, and we used a red-
shift criteria of z<0.035 as well. IRAC and SDSS
data enables us to analyze HI properties and com-
pare possible correlations in optmir color to mor-
phology. Table 2 lists the CGs and the member
galaxies selected from the HCG and RSCG cata-
log.

2.2. Procedure

For each member galaxy in the CGs, we ob-
tained infrared data from the WISE point source
catalog. Comparing the sources to SDSS, we de-
termined that the cores of the galaxies are point
sources in WISE. The average angular size of the
galaxies was 20 arcsecs (), with a maximum of 2
arcmins, which is much larger than the WISE res-

olution of 6.1” and 12”. We adopt a point source
approach to the relative centers of the sources and
do not integrate over the size of the galaxies. We
do this because there are two problems when de-
termining the spatial extent of the galaxies: (1)
galaxies within CGs experience strong tidal forces
that may strip gas, dust, and stars from the galax-
ies and deposit or stretch said contents outside
of the initial diameter of the galaxy, (2) pairs of
galaxies may merge on smaller timescales than the
timescale for the CG as a whole to merge. Figure
5 shows HCG 56, a compact group with five mem-
ber galaxies, which illustrates situations (1) and
(2) in tandem.
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Fig. 5.— SDSS image of HCG 56 illustrating two po-
tential problems when determining the spatial extent of
galaxies in environments of strong tidal forces and merg-
ers. The SDSS resolution is 20”7, and the two WISE angular
resolutions are the circles of ~ 6.1” and ~ 12”.

With the WISE data, we produced color-color
plots of the magnitudes of 3.4, 4.6, and 12 um.
The 3.4, 4.6 and 12 um bands correspond to the
WISE colors of wl, w2, and w3, respectively. The
color-color plots were constructed by taking the
difference in magnitudes in the 3.4 and 4.6 pum
bands and plotting it against the difference in
magnitudes of the 4.6 and 12 pm bands,

[3.4] — [4.6]
[4.6] — [12]

Using the regions colored on Figure 6, we identified
the types of galaxies in the CGs.
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Fig. 6.— Color-color diagram of WISE data showing
locations on the plot of type of galaxies. This diagram is
from Wright et al. (2010), Figure 12.

The regions we include in our classification sys-
tem are as follows: Stars, Elliptical, Spirals, Spi-
ral/LIRG!, Starburst, LIRG, ULIRG/LINER?,
Seyfert, QSO?, ULIRG/LINER Obscured AGN*,
and Cool T-dwarfs, all of which correspond to col-
ors on Figure 6. One region that requires more
explanation is the Spiral/LIRG. We include this
region due to the lack of clarity in defining the
regions provided by Wright et al. (2010).

3. Results

The results of our WISE color-color plots for
each CG are shown in Figures 13 & 14 for the
RSCGs and the HCGs respectively, and the iden-
tification of the galaxies is in Table 2. The iden-
tifications from this paper, which are presented in
Table 2 column 10, correspond to regions on the
WISE color-color diagram in Figure 6. The er-
rors for each CG member were taken into account
thus some galaxies have multiple classifications,
and we list the CG members that have no clas-

I'Luminous infrared galaxy (LIRG)

2Ultra luminous infrared galaxy (ULIRG); Low-ionization
nuclear emission-line region (LINER)

3Quasi stellar object (QSO)
4Active galactic nuclei (AGN)

sification based on the WISE diagram. In Table
2, we show the classification of the CG members
complied from NED in column 5 for comparison
with our identification. We discuss this more in
Section 4.1.

Using the classifications of the galaxies deter-
mined from the WISE data, we constructed a his-
togram of the number of galaxies vs. the difference
in the WISE colors, 4.6 and 12 pum (see Figure 7).
We identified the canyon region for our sample of
galaxies using the same criteria as Walker et al.
(2010), who determined the canyon region to be
where the number of galaxies fell to half of the
average number. In the WISE colors, our canyon
is between 2.1 < [[4.6]-[12]] < 2.7 in magnitude,
which lies in the spiral region of Figure 6.

[4.6r]-[12] "|n ma;j

Fig. 7.— A histogram of the number of galaxies vs. the
WISE colors of 4.6 and 12 pm. This histogram reflects the
galaxies as classified by this paper and shows the associated
canyon region.

3.1. Errors

The errors on the positions are listed in Table
2, however they are relatively small. Two galax-
ies had large errors, and they were both classified
as LIRGS. Large errors may be a result of using
a point source catalog for particular galaxies that
are not strictly point sources to WISE. Galaxies
not identified are mainly due to the member galax-
ies being to close in angular projection for WISE



to distinguish two sources. Other factors during
the observation could also affect the quality of the
data.

4. Discussion

4.1. Classification

We classified 129 galaxies within 33 CGs;
two galaxies are classified as QSOs and two are
Seyferts. Figure 8 is a complied graph of all the
identified galaxies. NED offers galaxy classifi-
cation through literature searches, however the
current classifications for our galaxies are primar-
ily available from the de Vaucouleurs et al. (1991)
catalog, which expanded upon the Hubble system.
de Vaucouleurs et al. (1991) visually inspected the
optical images of galaxies in order to classify them.
This approach is not systematic and is biased to-
wards the classifier. Identifying galaxies based
solely on optical data precludes possible identifi-
cation of such types like LINERs, ULIRGs, QSOs,
Starbursts, and LIRGs. NED is also not complete
in its classifications as many galaxies are not yet
classified, and many galaxies have multiple classi-
fications from multiple papers. Our classification
is systematic, unbiased, and can identify galax-
ies beyond ellipticals and spirals, within errors.
Specifically, we have established a process that
can identify QSOs and Seyfert galaxies that are
not detected in optical bands.
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Fig. 8.— WISE color-color plot of the 129 galaxies sur-
veyed.

4.2. The Canyon Region

Similar to the Johnson et al. (2007) and Walker
et al. (2010) studies, we found a canyon region in
the distribution of galaxies in the WISE colors.

However, the canyon from this study is much nar-
rower than that of Walker et al. (2012), and our
canyon region contains three galaxies, HCG 79B,
HCG 47A, and HCG 47D. To investigate possible
correlations between the two canyon regions, we
designated the colors of the galaxies to reflect the
TRAC colors in Figure 9, using blue for galaxies
containing cold dust, green for canyon galaxies,
and red for galaxies with warm dust, which cor-
respond to the colors in Figure 1. Comparing the
IRAC and WISE bands, it is evident that there is
not a one-to-one mapping for some galaxies. In our
canyon region, HCG 79B is the only galaxy that is
also contained in the canyon region of Walker et al.
(2010). In the Walker et al. (2010) canyon, HCG
47A and HCG 47D were listed as MIR red. Since
there is not a one-to-one mapping of the canyon
galaxies, this suggests that the galaxies were un-
der sampled. A larger survey in both WISE and
IRAC colors would narrow the canyon further be-
cause the canyon region is defined to be where the
density of galaxies is half of the median galaxy
density. We can “fine-tune” the canyon region
by enlarging our survey to include more galaxies,
which would only further constrain the canyon re-
gion. From the definition of the canyon, increas-
ing the sample size would not remove the region.
Another example of the discrepancy between the
IRAC and WISE bands is RSCG 66B. In IRAC
colors, RSCG 66B falls in the warm dust region,
but in WISE colors, it falls with the cold galaxies.
This discrepancy could indicate that the galaxy is
in transition between having active star formation
and becoming quiescent.

As discussed in the Introduction and in Figure
3, the regions surrounding the canyon indicate star
formation and dust quantities within the galaxies.
The canyon region is thought to be a transition
region in which galaxies are changing from having
active star formation to becoming inactive, or vice
versa. It is possible for the galaxies within CGs to
transition between these regions because mergers
and interactions create strong tidal forces, which
change the gas distribution within the galaxies.
Since our canyon falls in the spiral region of the
WISE bands, this could constrain star formation
activity within spirals, being either an active or
inactive spiral galaxy.
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Fig. 9.— A plot of the WISE color bands with the sources
colored in IRAC colors. Some sources from our sample are
not present due to the sources not being apart of the Walker
et al. (2010) IRAC survey. This difference is noted most
obviously in the QSO and Seyfert region of the graph.
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Fig. 10.— WISE color-colors plots of Sequence A and B.

4.3. Distribution of HI in CGs

Johnson et al. (2007), Konstantopoulos et al.
(2010), and Verdes-Montenegro et al. (2001) cate-
gorized CGs into two sequences, Sequence A and
Sequence B, and then further divided the CGs
into three evolutionary scenarios, Type I (HI-rich),
Type II (intermediate HI), and Type III (HI-

Table 1: Summary of Sequence A and B CGs and the
Type I (HI-rich), IT (intermediate HI), and III (HI-poor).
Sequence A Sequence B

Type I
HCG 2 HCG 16
HCG 31
HCG 54
Type 11
HCG 7 HCG 96
RSCG 38 HCG 100
RSCG 66 HCG 79
HCG 92
RSCG 6
RSCG 34
Type II1
HCG 15
HCG 22

poor). Though previous studies identified the Se-
quences and Types of some galaxies in CGs, the
samples were small. From our sample, 15 out of 33
CGs had sufficient HI data available. The two se-
quences are plotted in the WISE colors in Figures
10(a) & 10(b), and in Table 1, we report sequence
and type.

By comparing the WISE color plot and the HI
maps of the CGs, for Sequence A, we determined
that the [4.6]-[12] color magnitude decreases as the
HI in the gas is depleted in the galaxy. Galax-
ies within Type I CGs are on the right of the
“canyon”, indicating an excess of HI in the group
and very active galaxies. Type III fall on the ex-
treme left of the canyon near the elliptical galax-
ies, with one exception, HCH 15F, which is located
with the Type I galaxies. Looking at the HI map
of this group, HGC 15F hosts HI, unlike the other
members of HCG 15. Type II galaxies are dis-
tributed throughout the [4.6]-[12] colors. When
looking at the individual galaxies in Type II, we
see that the galaxies containing HI are located to
the right of the canyon region, which indicates ac-
tive starformation. The CG galaxies lacking in HI,
or where the HI is distributed in the Intergalactic
Medium, are located to the left of the canyon re-
gion and are quiescent galaxies.

Looking at Sequence B, we do not see an even
distribution of galaxies in the [3.4]-[4.6] band;
there are more galaxies to the right of the canyon
region in the active star forming section. The



Type I CG galaxies generally are located to the
right of the canyon region; the exceptions are HCG
16B and HCG 54A. The Type IT CG galaxies are
distributed on either side of the canyon region. In
Sequence B, there are two galaxies that are distin-
guished from the general distribution of galaxies,
HCG 92C and HCG 96A, both of which are QSOs.
Only Sequence B has the QSO galaxies, but we be-
lieve this to be a selection bias as we only have 15
CGs available. We did not have any CGs that met
the Type III requirements.

Type I CG galaxies in both sequences tend to
fall to the right of the canyon, Type II galaxies
are distributed on either side of the canyon, and
Type III members are located predominately to
the left of the canyon. The exceptions to the Type
I and III trends indicate that galaxies, regardless
of Type (I, IT, or I1IT), which have HI still tied to the
galaxies fall to the right of the canyon region, in
the active star forming section, but galaxies lack-
ing in HI are to the left of the canyon region, the
quiescent, inactive star forming side. In the fu-
ture, it may be beneficial to classify the galaxies
as Type I, II, or III to analyze the interactions
and mergers in the CGs. From examining the
HI maps and the WISE morphology of the galax-
ies, we do see that there is a correlation between
the two. Hl-rich galaxies tend are to the right
of the canyon region and are active galaxies like
starbursts, ULIRGS/LINERs, LIRGS, and QSOs.
HI-poor galaxies are quiescent ellipticals and spi-
rals and are to the left of the canyon region.

Fig. 11.— Plot for HCG 96 with HI contours, which
represent the HI content within the galaxies (Verdes-
Montenegro et al. 2000).

A specific example is HCG 96, which is a Se-

"red AG;N‘

[3.4] - [4.6] in mag

[4.6] — [12] in mag

Fig. 12.— A WISE color-color plot for HCG 96 overlaid
on the WISE morphology plot.

quence B, Type II group. Looking at the distri-
bution of HI around the group (Figure 11), there
is a high concentration of HI around Galaxy A
and diffuse gas extending out into Galaxy C and
Galaxy D. In Figure 11, Galaxy B appears to be
void of HI, relative to the other group members.
Then, we compared the HI contour maps with the
classification based on the WISE morphology (Fig-
ure 12), and we see that HI does play a clear role
in the evolution of the group and the morphol-
ogy of the individual galaxies. Since ellipticals are
believed to form from galaxy mergers (Barton et
al. 1996; Konstantopoulos et al. 2010), Galaxy B
might be from a previous merger in the group’s
lifetime, which consumed the HI in star formation
and left behind an elliptical galaxy.

5. Summary

The conclusions of this paper are as follows:

o We classified 129 galaxies within 33 compact
groups using WISE color-color diagrams.
We identified 2 previously unknown QSOs
and 2 Seyfert galaxies along with numerous
starbursts, ULIRGS, LIRGS, and LINERS.
Our classification system using the WISE
color bands is a systematic process for iden-
tifying galaxies.

e We locate the canyon region for our galaxies
and find only one galaxy, HCG 79, which is
consistently in the canyon regions of John-
son et al. (2007) and Walker et al. (2010).
Our canyon region is narrower than previous



studies, and we suggest that the canyon re-
gion should be narrowed. The canyon region
could indicate a transition region between
active star forming and inactive galaxies for
CG members.

We find a significant correlation between
the degree of which the HI gas is bound to
the host galaxy and the galaxy’s position
on the WISE color-color diagram. Galaxies
with bound HI gas are active galaxies like
starbursts, ULIRGS/LINERS, LIRGS, and
QSOs, whereas galaxies lacking in HI tend
to be elliptical and inactive spiral galaxies.
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