Outline

- Hand in, go over homework problem 3.6
- Rates of nuclear reactions
- Nuclear energy production in Sun

- One two protons are close enough for strong interactions, the probability of an interaction occurring depends on the nuclear cross section
- Most cross sections $\sigma = S_0/E$, why?
- Cross section is a measure of the size of a particle.
- What is the quantum mechanical size of a particle?
 - The deBroglie wavelength, $\lambda = h (2mE)^{-1/2}$
 - $\sigma \propto size^2 \propto \lambda^2 \propto E^{-1}$
- S_0 is a constant or weak function of energy.
 - S_0 is either measured or calculated from theory.
- Cross section including Coulomb screening $\sigma = (S_0/E) \exp(-(E_G/E)^{1/2})$

• Number of reactions of nucleus A as it travels a distance dx

$$- dN_{\rm A} = n_{\rm B} \,\sigma_{\rm AB} \,dx$$

• To find rate of reactions (per unit volume), divide by dt, multiply by n_A

$$- R_{AB} = n_A dN_A/dt = n_A n_B \sigma_{AB} dx/dt = n_A n_B \sigma_{AB} v_{AB}$$

 To find power per unit mass, multiply by energy of each reaction = Q, divide by density ρ,

$$- \epsilon = n_A n_B \sigma_{AB} v_{AB} Q/\rho$$

• We could re-write this in terms of abundances X_A , X_B , but that just makes it harder to type in the equations.

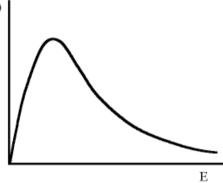
 An ideal gas contains particles with a distribution of velocities, given by the Maxwell-Boltzmann distribution. Holds for relative velocities if one uses the reduced mass.

$$P(v) = 4 \pi \left(\frac{\mu}{2 \pi kT}\right)^{3/2} v^2 \exp\left(\frac{-\mu v^2}{2 kT}\right)$$

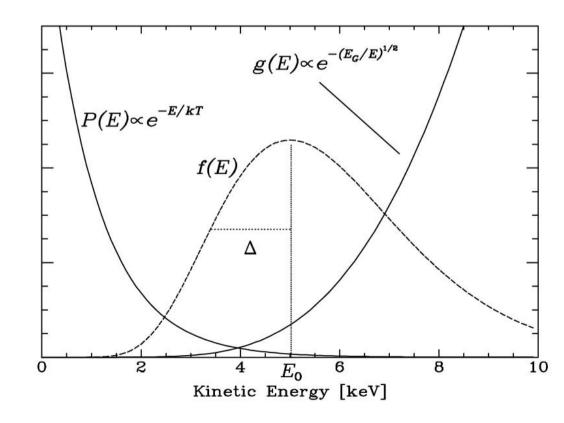
- Need to find average $\langle \sigma v \rangle = \int_0^\infty \sigma_{AB} v_{AB} P(v_{AB}) dv_{AB}$
- Change integration variable to $E = 0.5 \mu v^2$, $dE = v \mu dv$,

$$\langle \sigma v \rangle = \left(\frac{8}{\pi \mu}\right)^{1/2} \frac{S_0}{(kT)^{3/2}} \int_0^\infty e^{-E/kT} e^{-\sqrt{E_G/E}} dE$$

• Call $f(E) = e^{-E/kT} e^{-\sqrt{E_G/E}}$



- Integrand $f(E) = e^{-E/kT} e^{-\sqrt{E_G/E}}$
- Maximum at $E_0 = (kT/2)^{2/3} E_G^{1/3}$.
- Approximate as Gaussian ~ $\exp(-E^2/2\sigma^2)$ with $\sigma = 3^{-1/2} 2^{1/6} E_G^{-1/6} (kT)^{5/6}$
- Then integrate Gaussian.



• Energy production per unit mass

$$\epsilon = 2^{5/3} \sqrt{\frac{2}{3}} \frac{\rho X_A X_B}{m_H^2 A_A A_B \sqrt{\mu}} Q S_0 E_G^{1/6} (kT)^{-2/3} \exp\left[-3 \left(\frac{E_G}{4 kT}\right)^{1/3}\right]$$

• For $p + p \rightarrow d + e^+ + v_e^+$,

-
$$S_0 = 4 \times 10^{-46} \text{ cm}^2 \text{ keV}$$
, $E_G = 500 \text{ keV}$

- Q = 26.2 MeV for full reaction, less neutrinos (plus electrons)
- In core of Sun, $\rho = 150 \text{ g/cm}^3$, $X = 0.5 = X_A = X_B$, kT = 1 keV

 $-\epsilon = 10 \text{ erg/s/gm}$

• Mass of core ~ 0.2 $M_{sun} = 4 \times 10^{32}$ gm, power = $\epsilon \times mass = 4 \times 10^{33}$ erg/s.

– Match solar luminosity, neutrino flux at Earth.

• 1/rate per proton = 6×10^{17} seconds = 2×10^{10} years > age of Sun.

CNO cycle

- First step: $p + {}^{12}C \rightarrow {}^{13}N + \gamma$
 - How does this differ from p-p interaction?
- Subsequent steps:

$$-$$
 ¹³N \rightarrow ¹³C $+ e^+ + v_e$

$$- p + {}^{13}C \rightarrow {}^{14}N + \gamma$$

-
$$p + {}^{14}N \rightarrow {}^{15}O + \gamma$$

$$-$$
 ¹⁵O \rightarrow ¹⁵N $+ e^+ + v_e$

$$- p + {}^{15}N \rightarrow {}^{12}C + {}^{4}He$$

• Coulomb barrier is higher than p-p, but first step is not a weak interaction. CNO dominates over p-p at higher core temperatures.

Homework

- For next class:
 - Problem 3-7