Outline

- Sirius B
- Equation of state of a degenerate gas
- Properties of white dwarfs

Sirius B

- Sirius B is companion to Sirius A, which is the brightest star.
- Bessel in 1844 found Sirius' proper motion implies a companion star.
- Clark in 1915, measured spectrum of Sirius B. From luminosity and temperature calculate radius of ~ 6000 km.
- First white dwarf discovered was actually 40 Eridani B.

How Dense is Quantum?

- Need to use quantum statistics when average separation between particles is comparable to the de Broglie wavelength $\lambda=h / p$.
- Use $E=p^{2} / 2 m=(3 / 2) k T$, find $\lambda=h(3 m k T)^{-1 / 2}$.
- Note λ is larger for electrons, since $m_{e} \ll m_{p}$.
- Quantum statistics will become important first for electrons.
- Electrons will "become degenerate" first.
- Corresponding density $\rho=m_{\mathrm{p}} /($ volume per particle $)=m_{\mathrm{p}} /(\lambda / 2)^{3}$.
- Note use m_{p} for density, but m_{e} for λ.
- For core of Sun to be degenerate need $\rho>640 \mathrm{~g} \mathrm{~cm}^{-3}$
- classical treatment is ok since $\rho_{C}=150 \mathrm{~g} \mathrm{~cm}^{-3}$

Phase Space

- Count states in "phase space" - 6d space of momentum and position.
- Number of states

$$
d N=f(p) \frac{d^{3} \vec{p} d^{3} \vec{x}}{h^{3}}=f(p) \frac{d^{3} \vec{p} d V}{h^{3}}
$$

- Unit volume is h^{3}. Can motivate from Heisenburg uncertainty principle or derive from solutions of Schrödinger equation.
- $\Delta x \Delta p>h \rightarrow \Delta x \Delta p_{\mathrm{x}} \Delta y \Delta p_{\mathrm{y}} \Delta z \Delta p_{\mathrm{z}}>h^{3} \rightarrow d^{3} p d V>h^{3}$
- Function $f(p)$ is occupation number = probability that state at given momentum is occupied.
- Divide by volume to get number density of particles
- $n(p) d p=f(p) d^{3} p$

Classical versus quantum statistics

- Classical occuption number function

$$
f(p)=\frac{1}{e^{(E-\mu) / k T}}
$$

where μ is the "chemical potential".

- This leads to the Maxwell-Boltzmann distribution

$$
n(p) d^{3} \vec{p}=4 \pi\left(\frac{m}{2 \pi k T}\right)^{3 / 2} \frac{p^{2}}{m^{3}} e^{-p^{2} / 2 m k T} d p
$$

Fermi-Dirac Statistics

- Quantum particles are bosons (integer spin) that follow Bose-Einstein statistics or fermions (half integer spin) that follow Fermi-Dirac statistics.
- Fermions are unneighborly, two identical fermions cannot occupy the same quantum state. This leads to occupation number function

$$
f(p)=\frac{1}{e^{(E-\mu) / k T}+1}
$$

- In general, chemical potential is a function of energy. We will consider the case where $\mu(\mathrm{E}) \rightarrow E_{\mathrm{f}}$, where E_{f} is the "Fermi energy".
- If $k T \ll E_{\mathrm{f}}$, then $\mathrm{f}(\mathrm{E})$ is a step function with states $E<E_{\mathrm{f}}$ occupied and states $E>E_{\mathrm{f}}$ empty.
- Define Fermi momentum p_{f} so that $p_{\mathrm{f}}^{2} / 2 m=E_{\mathrm{f}}$

Fermi-Dirac Statistics

Fermi-Dirac Statistics

- In limit $k T \ll E_{f}$, integrals become easy.
- Number density of particles

$$
\begin{aligned}
-n(p) d p=f(p) d^{3} p & =8 \pi p^{2} d p / h^{3} \text { for } p \leq p_{\mathrm{f}} \\
& =0 \text { for } p>p_{\mathrm{f}}
\end{aligned}
$$

- Find total particle number density by integrating

$$
n=\int_{0}^{\infty} f(p) d^{3} \vec{p}=\int_{0}^{p_{f}} \frac{8 \pi}{h^{3}} p^{2} d p=\frac{8 \pi}{3 h^{3}} p_{f}^{3}
$$

Pressure

- To find pressure, note that particle with momentum p transfers $2 p$ to wall during a collision

$$
P=\frac{d F_{x}}{d A}=\frac{2 p_{x}}{d A d t}=\frac{2 p_{x}}{d A} \frac{v_{x}}{d x}=\frac{2 p_{x} v_{x}}{d V}
$$

- Pressure is then (note that half of particles are going the wrong way)

$$
P=\int_{0}^{\infty} d N(p) \frac{p_{x} v_{x}}{d V} d p=\frac{1}{3} \int_{0}^{\infty} n(p) p v d p
$$

- where we have assumed isotropic velocities and used

$$
p_{x} v_{x}=m v_{x}^{2}=\frac{1}{3} m v^{2}=\frac{1}{3} p v
$$

Pressure

- Use $n(p) d p=8 \pi p^{2} d p / h^{3}$ for $p \leq p_{\mathrm{f}}$, to find calculate pressure

$$
P=\frac{1}{3} \int_{0}^{\infty} n(p) p v d p=\frac{1}{3} \int_{0}^{p_{f}} \frac{8 \pi}{h^{3}} \frac{p^{4}}{m} d p=\frac{8 \pi}{3 h^{3}} \frac{p_{f}^{5}}{5 m}
$$

- Recall $n=\frac{8 \pi}{3 h^{3}} p_{f}^{3}$
- Then

$$
P=\frac{8 \pi}{3 h^{3} m}\left(\frac{3 h^{3}}{8 \pi}\right)^{5 / 3} \frac{1}{5} n_{e}^{5 / 3}=\left(\frac{3}{8 \pi}\right)^{2 / 3} \frac{h^{2}}{5 m} n_{e}^{5 / 3}
$$

- Note $n_{\mathrm{e}}=Z n_{+}=Z \rho / A m_{\mathrm{p}}$, so equation of state for non-relativistic degenerate electron gas is:

$$
P=\left(\frac{3}{\pi}\right)^{2 / 3} \frac{h^{2}}{20 m} m_{p}^{-5 / 3}\left(\frac{Z}{A}\right)^{5 / 3} \rho^{5 / 3}
$$

Pressure

- For typical white dwarf, $\rho \sim 10^{6} \mathrm{~g} / \mathrm{cm}^{3}, \mathrm{Z} / \mathrm{A} \sim 0.5$

$$
P=\left(\frac{3}{\pi}\right)^{2 / 3} \frac{h^{2}}{20 m} m_{p}^{-5 / 3}\left(\frac{Z}{A}\right)^{5 / 3} \rho^{5 / 3}=3 \times 10^{22} \text { dyne } \mathrm{cm}^{-2}
$$

- Compare to thermal pressure of nuclei with $T \sim 10^{7} \mathrm{~K}$,

$$
P=n_{+} k T=2 \times 10^{20} \text { dyne } \mathrm{cm}^{-2}
$$

- Note it is possible to derive the ideal gas law from the MaxwellBoltzmann distribution using the same equation

$$
P=\frac{1}{3} \int_{0}^{\infty} n(p) p v d p=n k T
$$

Homework

- For next class:
- Problem 4-1

