Outline

- Hand in, go over homework problem 2.1
- Parallax
- Luminosity, temperature, radius
- HR diagram

Parallax

- The apparent positions of nearby stars change as the Earth moves due to parallax.
- A star traces out an ellipse on the sky with angular semi-major axis $\alpha=d_{\odot} / d$, where $d=$ distance to the star and $d_{\odot}=$ Earth-Sun distance.
- In addition, most stars are moving relative to the Earth, so there is a linear component to the motion of the star on the sky.
- 1 parsec = distance to star with parallax
 of 1 ". 1 pc $=3.26 \mathrm{ly}$.

Parallax

- Parallax measurements from the Earth in the optical are limited by seeing.
- Best available measurements come from the European Space Agency (ESA) Hipparcos satellite that measured positions of 10^{5} stars to 1 milliarcsec accuracy.
- ESA just launched the Gaia satellite to measure positions of all stars brighter than $15^{\text {th }}$ mag to 0.024 milliarcsec, typically 70 measurements over 5 years.
- Gaia will provide less accurate measurements down to $20^{\text {th }}$ mag for 10^{9} objects, making a 3d map of Milky Way.
- Can measure parallax in radio (VLBI) to ~ 0.1 milliarcsec, only a few dozen objects done.

Hipparcos

Gaia

Luminosity, Temperature, and Radius

- Bolometric luminosity, L, measured flux, f, and distance, d, are related:

$$
L=4 \pi f d^{2}
$$

- Stefan-Boltzman law relates bolometric luminosity, surface area, and temperature (sometimes called the effective temperature):

$$
L=4 \pi r_{*}^{2} \sigma T^{4}
$$

- Note that is it basically impossible to measure flux over all wavelengths, as would be required to make the first equation correct. Instead, one typically makes a measurement in one or a few bands and then makes a 'bolometric correction' - one assumes a blackbody (or other) spectra shape to estimate the bolometric flux from the measurement(s).

HertzsprungRussell Diagram

- Hertzsprung-Russell diagram is plot of luminosity versus temperature for stars.
- Dashed lines are constant radius $\mathrm{L} \propto \mathrm{T}^{4}$., $0.01 R_{\odot}, R_{\odot}, 100 R_{\odot}$.
- Stars in different evolutionary phases appear in different regions on the HR diagram.
- Main sequence are stars burning hydrogen in their core.
- Hotter main sequence stars have larger radii.
- Hotter main sequence stars are more massive.
- Luminosity class V.
- Giant stars have radii $\sim 100 \mathrm{x}$ larger than main sequence, are cooler.
- Luminosity classes I to IV.
- White dwarfs have radii $\sim 100 \mathrm{x}$ smaller than main sequence, are hotter.

Homework

- For next class:
- Problems 2-2, 2-3

