# Outline

- Hand in, go over homework problems 2.2, 2.3
- Stars in binary systems

# **Binary Star Systems**

- Observational categories:
  - Visual binaries can see and resolve the two stars
  - Astrometric binaries can see at least one stars and measure its orbital motion on the sky
  - Spectroscopic binaries cannot resolve the two stars, but can detect spectral lines that shift in wavelength due to orbital motion (and Doppler effect). Can be 'single lined' or 'double lined'.
  - Eclipsing binaries orbital plane lies near our line of sight, so stars eclipse each other.

## **Two Body Problem**



System viewed above orbital plane

 $r_1 M_1 = r_2 M_2$  $a = r_1 + r_2$  $r_1 = a M_2 / (M_1 + M_2)$  $r_2 = a M_1 / (M_1 + M_2)$ 

Do equations of motion from notes/book

# **Visual Binary**

System viewed at inclination *i* 

Inclination is measured perpendicular to orbital plane.

Circular orbit appears as an ellipse, but major axes remain same:

$$r_1 = \theta_1 d, \quad r_2 = \theta_2 d, \quad a = (\theta_1 + \theta_2) d$$

Since  $r_1 M_1 = r_2 M_2$ , then  $\theta_1 / \theta_2 = M_2 / M_1$ 

Orbital period is determined by watching the stellar motion.

If *d* is known, then we can find *a* and calculate

 $M_1 + M_2 = 4\pi^2 a^3/G\tau^2$ 

Can solve for two unknowns using two equations.



#### **Spectroscopic Binaries**



- In a double lined system, each line appears twice, once from each star.
- The lines move due to orbital motion of the star (and Doppler effect).
- Movie: http://www.astronomy.ohio-state.edu/~pogge/Ast162/Movies/spbin.mpg

#### **Spectroscopic Binaries**



- We see only the component of the velocity along our line of sight, so  $v_{obs} = v \sin i$
- We still have  $v_{1\text{obs}} / v_{2\text{obs}} = M_2 / M_1$  since the sin *i* cancels out.
- Separation *a* depends on *i* :

$$r_{1} = \tau v_{1}/2\pi = \tau v_{1obs}/2\pi \sin i, \quad a = \tau (v_{1obs} + v_{2obs})/2\pi \sin I$$
$$(M_{1} + M_{2}) \sin^{3} i = \tau (v_{1obs} + v_{2obs})^{3}/2\pi G$$

• Need some way to determine *i*.

## **Spectroscopic Binaries**

- For single line binaries, we cannot directly measure the mass ratio.
- Then Kepler's law becomes

 $M_2^3 \sin^3 i / (M_1 + M_2)^2 = \tau (v_{1obs})^3 / 2\pi G$ 

- This is called the 'mass function'. It has units of mass.
- Note that  $M_1 > 0$  and  $\sin i \le 1$ , so  $M_2 \ge \tau (v_{1obs})^3 / 2\pi G$ .
- Need some way to determine *i* and mass ratio.

# **Eclipsing Binaries**



- Orbital plane must lie in or near our line of sight.
  - Provides direct constraint on orbital inclination, best mass measurements come from eclipsing systems.
- Eclipses provide means to measure orbital period.
- Eclipses provide means to measure diameters of the stars.

#### Homework

- For next class:
  - Problem 2-4
  - Note problem 2-5 is similar to 2-4, but is not assigned