Spherical Coordinates and Astrometry

ASTR4850 10/5/2015

Overview

- Definition & Units
- Relation to other coordinate systems
- Using it with Astrometry

Definition

- Radius = ρ (or r)
- Polar angle or z-inclination angle = θ
- Azimuthal angle = φ
- Why polar angle instead of elevation angle?

Units

- All units in arc (radians, degrees..)
- Lower-case letters just are subtended arcs from the center
- Arcs of least distance between points lie on great circles
- Triangles have a sum of angles >180°

Relation to Terrestrial Coordinates

- Longitude ~ azimuthal angle
- Latitude ~ $\pi/2$ polar angle
- Radius?

Relation to Celestial Coordinates

- Right ascension (α) = azimuthal angle (ϕ)
- Declination (δ) = $\pi/2$ polar angle (θ)
- Radius?

Use with Astrometry

- Knowns:
 - Celestial position of at least two stars (α, δ)
 - Why are at least two star positions necessary, instead of just one?
 - Physical position on a CCD of those two stars (x,y)
 - Relative physical position of a third star on a CCD (x,y)
- Find:
 - Celestial position of the third star (α , δ)

Use with Astrometry, cont.

One can find spherical angles by using Cartesian conversion (NB: these x,y,z listed aren't physical coordinates of CCD, but Cartesian locations) x=r*sin(θ)*cos(φ) y=r*sin(θ)*sin(φ) z=r*cos(θ)

Reminder: θ the not the same as declination

- Example: B and C positions are known in RA, Dec, find their angular separation (a)
- Solution: Use dot product with position vectors, in Cartesian coordinates, for B & C.
 |B| = |C| = r = 1 on the celestial sphere.
 So...

 $\mathbf{B} \bullet \mathbf{C} = |\mathbf{B}||\mathbf{C}|^*\cos(a) = \cos(a)$ a = arccos($\mathbf{B} \bullet \mathbf{C}$)

Use with Astrometry, cont.

• Example: Find angle B relative to star C and the North Celestial Pole (a useful angle when deciding how your image is rotated compared to celestial coordinates)

Hint: If we choose A as the NCP, then $b = 90^{\circ} - C_Dec$

 $A = B_RA - C_RA$ $a = \arccos(\mathbf{B} \bullet \mathbf{C})$

This only works since we are doing this relative to the NCP. If A was a non-pole, this would not be as straightforward.

 Solution: Use spherical law of sines. sin(A)/sin(a) = sin(B)/sin(b) = sin(C)/sin(c)

 $B = \arcsin\{\sin(90-C_Dec)*\sin(B_RA - C_RA) / \\ sin[\arccos(B \bullet C)]\}$

Credits

• Images credits: Peter Mercator (wikimedia)