Spherical Coordinates and Astrometry

ASTR4850
10/5/2015

Overview

- Definition \& Units
- Relation to other coordinate systems
- Using it with Astrometry

Definition

- Radius $=\rho$ (or r)
- Polar angle or z-inclination angle $=\theta$
- Azimuthal angle $=\varphi$
- Why polar angle instead of elevation angle?

Units

- All units in arc (radians, degrees..)
- Lower-case letters just are subtended arcs from the center
- Arcs of least distance between points lie on great circles
- Triangles have a sum of angles $>180^{\circ}$

Relation to Terrestrial Coordinates

- Longitude ~ azimuthal angle
- Latitude $\sim \pi / 2$ - polar angle
- Radius?

Relation to Celestial Coordinates

- Right ascension (α) = azimuthal angle (φ)
- Declination $(\delta)=\pi / 2-$ polar angle (θ)
- Radius?

Use with Astrometry

- Knowns:
- Celestial position of at least two stars (α, δ)
- Why are at least two star positions necessary, instead of just one?
- Physical position on a CCD of those two stars (x,y)
- Relative physical position of a third star on a CCD (x, y)
- Find:
- Celestial position of the third star (α, δ)

Use with Astrometry, cont.

- One can find spherical angles by using Cartesian conversion (NB: these x, y, z listed aren't physical coordinates of CCD, but Cartesian locations) $\mathrm{x}=\mathrm{r}^{*} \sin (\theta){ }^{*} \cos (\varphi)$
$y=r * \sin (\theta) * \sin (\varphi)$
$z=r * \cos (\theta)$
Reminder: θ the not the same as declination
- Example: B and C positions are known in RA, Dec, find their angular separation (a)
- Solution: Use dot product with position vectors, in Cartesian coordinates, for B \& C.
$|B|=|C|=r=1$ on the celestial sphere.
So...
$\mathrm{B} \cdot \mathrm{C}=|\mathrm{B}||\mathrm{C}|^{*} \cos (\mathrm{a})=\cos (\mathrm{a})$
$\mathrm{a}=\arccos (\mathrm{B} \bullet \mathrm{C})$

Use with Astrometry, cont.

- Example: Find angle B relative to star C and the North Celestial Pole (a useful angle when deciding how your image is rotated compared to celestial coordinates)
Hint: If we choose A as the NCP, then
$\mathrm{b}=90^{\circ}-\mathrm{C}$ Dec
A = B_RA - C_RA
$\mathrm{a}=\arccos (\mathrm{B} \bullet \mathrm{C})$
This only works since we are doing this relative to the NCP. If A was a non-pole, this would not be as straightforward.
- Solution: Use spherical law of sines.
$\sin (A) / \sin (a)=\sin (B) / \sin (b)=\sin (C) / \sin (c)$
$B=\arcsin \left\{\sin \left(90-C _D e c\right) * \sin \left(B _R A-C _R A\right) /\right.$
$\sin [\arccos (\mathrm{B} \bullet \mathrm{C})]\}$

Credits

- Images credits: Peter Mercator (wikimedia)

